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The purpose of this experiment is to acquaint you with physical illustration of concepts

in Fourier analysis all using a simple experimental setup involving wave-like behavior. In

addition, you will measure the speed of propagation of thermal oscillations, analyze the

heat equation and measure the thermal diffusivity of the material under observation.

The temperature oscillations are distinct from true “travelling waves” as they do not

transfer energy, and arise out of a diffusive or scattering process. But the concept of

a “wave”, as simple, innocuous and ubiquitous it seems, is exceedingly difficult and

multi-faceted to the extent that no universal definition is possible [1]!
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APPROXIMATE PERFORMANCE TIME 1 week.

1 Objectives

In this experiment, we will,

1. understand the basis of heat flow and recognize heat conduction as a diffusive

process,

2. learn about solutions of the heat equation,

3. decompose an oscillation into its harmonics,
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4. observe different harmonics and how they damp with different rates, and

5. estimate the thermal diffusivity of a metal.
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2 Theoretical background

2.1 Heat equation

Experiments have shown that heat flow is proportional to the gradient of the temper-

ature. If the heat flux is J⃗, then

J⃗ = −κ ∇⃗ T, (1)
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where T (x, y , z, t) is the temperature, t is time and κ is defined as the thermal

conductivity.

The heat flowing out of a volume, V , bounded by S, is,∫
S

J⃗ · n̂dS =
∫
V

∇⃗ · J⃗dV. (2)

Now the total thermal energy inside V is,

∫
V

CTdV =

∫
V

σρTdV, (3)

with C being the specific heat capacity (JK−1mol−1), σ the per unit mass heat ca-

pacity (JK−1Kg−1) and ρ the mass density.

The rate of loss of energy through S is,

−
∂

∂t

∫
V

σρTdV = −σρ
∫
V

∂T

∂t
dV. (4)

Equating (2) and (4) we obtain,

∇⃗ · J⃗ = −σρ
∂T

∂t
, (5)

and substituting (1) into (5),

∇⃗2T =
σρ

κ

∂T

∂t
(6)

=
1

D

∂T

∂t
, (7)

where D = κ/σρ is called the diffusivity of the material.
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Q 1. How does the heat equation compare with (a) the wave equation∇2Ψ = 1
υ2
∂2Ψ
∂t2
,

(b) the time dependent Schrodinger Equation?

Q 2. Show that for heat flow along a one-dimensional wire or rod, the heat equation

becomes,
∂2T

∂x2
=
1

D

∂T

∂t
. (8)

Q 3. Notice the analogies in the following table.

Conduction of heat Diffusion of particles Electric current

J⃗ = −κ ∇⃗ T Φ⃗ = −D ∇⃗ n J⃗ = −σ ∇⃗ φ
κ: thermal conductivity D: diffusion constant σ: electrical conductivity

T : temperature n: concentration of particles φ: electric potential

J⃗: heat flow rate Φ⃗: flow rate of particles J⃗: current density

Table 1: The analogies between apparently different physical phenomena, all unified

through the heat equation.

Q 4. What are the SI Units of D and κ ?

2.2 Solving the heat equation

For the solution of one dimensional heat equation (Equation (8)) we can use the

technique of separation of variables, and assume a solution of the form [4],

T (x, t) ∝ exp
(
i(kx − ωt)

)
. (9)

Q 5. Show that a legitimate solution of the heat equation in the regime x ⩾ 0 is,

T (x, t) =
∑
ω

F(ω) exp(−iωt) exp
(
(i − 1)

√
ω

2D
x

)
=

∑
ω

F(ω) exp(−
√
ω

2D
x) exp

(
i(

√
ω

2D
x − ωt)

)
. (10)

2.3 Fourier series of a square wave

In the present experiment we apply a periodic square pulse to a heater attached at

one end of copper (Cu) rod.
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Figure 1: Sketch of a square pulse.

Q 6. Show that the Fourier series of a square wave, as shown in Figure 1, is given

by,

f(t) =
A

2
−
A

π

(
sin(ω0t) +

sin(3ω0t)

3
+
sin(5ω0t)

5
+ . . .

)
, (11)

where ω0 = 2π/T is the fundamental frequency of the wave and A is its amplitude.

Q 7. What is the average value of the square wave?

Q 8. Observe the presence of only the odd harmonics in f(t). Can you verify

the frequency components presented in a square wave using the concept of Fourier

transform? Plot the Fourier transform of a simulated square pulse in Matlab.

2.4 Applying boundary conditions

A particular solution to Equation (10) can be found if we apply the appropriate bound-

ary conditions. In our case these conditions are determined by the square pulse heating

waveform applied to the end of the rod, arbitrarily set at x = 0. Therefore,

T (0, t) =
A

2
−
A

π

∞∑
n=0

1

2n + 1
sin((2n + 1)ω0t) (12)

where n = 0, 1, 2, 3 . . . and A represents the maximum temperature. Furthermore,

after substituting x = 0 into Equation (10), we have,

T (0, t) =
∑
ω

F(ω) exp(−iωt). (13)

Q 9. Identify the Fourier relationship between T (0, t) and F(ω) in Equation (13)?

Equations (12) and (13) represent the same pulsing waveform and are necessarily

equal. Hence, expressing (12) in complex form,

T (0, t) =
A

2
−
A

π

∞∑
n=0

(
e i(2n+1)ω0t − e−i(2n+1)ω0t

2i(2n + 1)

)
. (14)
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Comparing Equations (13) and (14), the only nonzero values that occur for A(ω) are,

F(0) =
A

2
(15)

F((2n + 1)ω0) =
−iA

2π(2n + 1)
(16)

F(−(2n + 1)ω0) =
iA

2π(2n + 1)
. (17)

Putting these conditions back into (10), we derive the following particular solution,

T (x, t) =
A

2
−

∞∑
n=0

iA

(2n + 1)2π
exp

(
−
√
(2n + 1)ω0
2D

x

)
exp

(
i(

√
(2n + 1)ω0
2D

x − (2n + 1)ω0t)
)

+

∞∑
n=0

iA

(2n + 1)2π
exp

(
−
√
−(2n + 1)ω0

2D
x

)
exp

(
i(

√
−(2n + 1)ω0

2D
x + (2n + 1)ω0t)

)
.

After some fairly simple algebraic reshuffling,

T (x, t) =
A

2
−

∞∑
n=0

iA

(2n + 1)2π
exp

(
−
√
(2n + 1)ω0
2D

x

)
exp

(
i(

√
(2n + 1)ω0
2D

x − (2n + 1)ω0t)
)
(18)

+

∞∑
n=0

iA

(2n + 1)2π
exp

(
−
√
(2n + 1)ω0
2D

x

)
exp

(
−i(

√
(2n + 1)ω0
2D

x − (2n + 1)ω0t)
)
.(19)

Making the identifications, (2n + 1)ω0 = ω2n+1, −(2n + 1)ω0 = −ω2n+1, as well as,

F(0) =
A

2

F(ω2n+1) =
−iA

2π(2n + 1)

F(−ω2n+1) =
iA

2π(2n + 1)
= (A(ω2n+1))

∗ = A∗(ω2n+1),

the solution can be compactly written as,

T (x, t) =
A

2
+

∞∑
n=0

F(ω2n+1) exp(−iω2n+1t) exp
(
(i − 1)

√
ω2n+1
2D
x

)
(20)

+

∞∑
n=0

F(−ω2n+1) exp(iω2n+1t) exp
(
(−i − 1)

√
ω2n+1
2D
x

)
=
A

2
+

∞∑
n=0

F(ω2n+1) exp(−iω2n+1t) exp
(
(i − 1)

√
ω2n+1
2D
x

)
+

∞∑
n=0

F∗(ω2n+1) exp(iω2n+1t) exp
(
(−i − 1)

√
ω2n+1
2D
x

)
. (21)
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Since the second and third terms on R.H.S of Equation (21) are complex conjugates

of each other, we can write,

T (x, t) =
A

2
+ 2

∞∑
n=0

ℜ[F(ω2n+1) exp(−iω2n+1t) exp
(
(i − 1)

√
ω2n+1
2D
x

)
] (22)

=
A

2
+
A

π

∞∑
n=0

1

2n + 1
exp

(
−
√
ω2n+1
2D
x

)
sin

(√
ω2n+1
2D
x − ω2n+1t

)

Q 10. At a fixed x , time harmonics of which order are present in the temperature

oscillations?

Q 11. Define a damping length δn =
√
2D
ωn
for the n’th harmonic. How does δn vary

with n?

The temperature oscillations shown in the solution (22) illustrate the superposition of

damped oscillations.

Q 12. Calculate the ratio of the n’th harmonic to the fundamental frequency.

It can be seen that the higher harmonics damp out very quickly because the damping

length increases with frequency. Therefore, at a sufficient distance from the origin,

we can also approximate the temperature distribution through the first harmonic only.

2.4.1 An everyday example

The surface of the Earth is heated by a diurnal temperature cycle that can be approx-

imated by the sinusoidal variation

T0 + ∆T cos(Ωt), (23)

where Ω = 2π/24 h−1.

Q 13. How far into the Earth’s surface do the temperature oscillations penetrate?

The average thermal diffusivity D of the Earth’s crust is ∼1 mm2s−1 [6].
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3 The Experiment

3.1 Apparatus Description

Figure 2: Details of the apparatus

This experiment comprises the following primary components (Figure 2):

1. Copper rod (0.5 m length, 30 mm diameter).

2. Cartridge heater of 40 W is inserted into the rod.

3. Cotton shields the rod to insulate it from the surrounding.

4. Four Thermocouples (equidistant and 3 cm apart) are utilized to sense the

temperature at several points of the rod.

5. Four PhysTherms to record the temperature of the metal bar at different points.

6. PhysWatt to provide a voltage (square-wave) of 10 V to the heater.

7. PhysLogger, a device to log, plot, and export data of all the measured quantities.

It has also been deployed for displaying the functions of PhysWatt on the PC

using the PhysLogger Desktop App.
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3.2 Setting the Apparatus

Figure 3: Schematic of the experimental setup

For the experimental setup (as shown in Figure 3), a copper rod is clamped with four

thermocouples arranged along it. This rod is heated with a 40 W cartridge heater

that is provided with a square pulse through the assistance of PhysWatt. PhysWatt

is further connected to PhysLogger. Four thermocouples are connected with different

PhysTherms which are further linked with PhysLogger.

Note: Prior to the performance, ensure that the application of the PhysLogger is

downloaded and installed on the PC. The Physlogger app can be downloaded from

the given link [8].

3.3 Experimental Procedure

You are provided with a copper rod having a heater (12 V, 40 W) inside of it with

four thermocouples connected equidistantly for temperature sensing. You have to:

1. Connect the heater to the channel A of PhysWatt. Power up PhysWatt by

connecting to the 220 V AC main supply (Figure 4a).

2. Connect PhysWatt to PhysLogger by inserting a USB-C cable into one of its

digital channels. Connect the PhysLogger with your PC as well (Figure 4b).

3. Connect PhysTherms with four different analog channels of the PhysLogger.

First PhysTherm is connected to channel A, second to channel B, and so forth

(Figure 4c).

4. Launch PhysLogger Desktop App. Select “PhysLogger” and continue (Figure

4d).
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5. Go to Explore (Figure 4e).

6. Select the template “Temperature Oscillations” to set up thermocouples, PhysWatt,

and the workspace according to a preset template (Figure 4f).

7. Adjust the heater frequency and heater voltage using the respective sliders. The

first run may be operated at a heater frequency of 0.005 Hz and heater voltage

of 12 V. This frequency and voltage, once set, are not changed during a single

experimental run. (Figure 4g).

8. Leave the system running for some time until the dynamic equilibrium state has

been achieved.

9. Export the recorded data to an excel file (Figure 4h).

10. The experiment may be repeated for varying heating frequencies and voltages.

11. Once done with the experiment, lower the heater voltage to 0 V, then close

PhysLogger Desktop, and switch off PhysWatt.

This data can be easily exported to Matlab and other softwares for further processing.

You are required to respond to the given questions by making the suitable graphs.

Q 14. How will you confirm that such a state is achieved?

Q 15. Plot all the thermocouple data in Matlab. What do you observe?

Q 16. Take the Fourier transform. What does the peak at zero frequency specify

and how can it be removed? In Matlab, ones uses the command fftshift(fft(...)) to

find the Fourier transform. Understand the units on the horizontal axis.

Q 17. Determine the damping length on each harmonic.

Q 18. Determine the ‘velocity’ of the ‘wave’.

Q 19. Determine the thermal diffusivity based on the phase velocity.

Q 20. Determine the thermal diffusivity based on the damping coefficient. Compare

your diffusivity value with the published values [3].

Q 21. Compare your results from the preceding two equations and comment on the

accuracy, and the relative accord (or discord) between them.

Q 22. Plot the Fourier transform of your data.

Q 23. Do you observe the higher frequency data to damp out more quickly? Back

up your observations with quantitative results.

Q 24. What is the skin depth of the temperature oscillations?
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4: Steps to follow to run the experiment.

3.4 Comments on energy transfer

You must have noticed that we have refrained from freely labelling these temperature

oscillations as ‘thermal waves’. The first reason is that these oscillations are solutions

of the heat equation, not the wave equation which involves a second time derivative.

Heat conduction is a diffusive rather than a traveling wave. The second reason which

endorses this point of view is that these oscillations do not transport energy [5].

Q 25. Using the temperature oscillations, Equation (22), determine the heat

transfer rate J⃗ = −κ∇⃗T through the Cu rod. Show that the so called thermal ‘waves’
do not carry energy and hence, they are fundamentally different from sound waves or

electromagnetic waves.

Q 26. Contrary to the theoretical suggestion, we know that as one end of the Cu

rod is heated the end does get hot. How does one resolve this paradox?

Q 27. Based on the data you have acquired, calculate the thermal conductivity of

Cu using Equation (1) and compare with your previously determined values.
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