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Abstract

The main focus of this research is to explore magneto-optic phenomena which
have been extensively used as a tool for non-destructive, remote characteriza-
tion of magnetic properties of materials and also demonstrate immense poten-
tial in device manufacturing and magnetic recording media. Magneto-optic
effects are a manifestation of light-matter interaction in the presence of mag-
netic field and can be effectively described by the dielectric tensor. The emer-
gence of different asymmetries in different elements of the tensor is dependent
upon the direction of the applied magnetic field relative to the wavevector of
light. The current work is an amalgamation of theoretical and experimental
investigations of these asymmetries—the various forms of birefringence, while
both the classical and quantum nature of light is utilized.

The theoretical pursuit involves the description and analysis of magnetic cir-
cular birefringence (the Faraday effect), magnetic circular dichroism (the Kerr
effect), magnetic linear birefringence (the Voigt effect) and magnetic linear
dichroism. The intermixing of these effects present a comprehensive picture
of these phenomena. Magnetic birefringence effects are miniscule and require
phase sensitive detection. Several experimental techniques have been devised,
designed and implemented in order to quantify these asymmetries.

The experimental methods employed in this work encompass diverse kinds
of modulation techniques, adapted according to the challenges imposed by the
experiment. For example, for measuring the Faraday rotation, modulation is
achieved through an ac magnetic field generated by the Helmholtz coils, hence
circumventing the need for a large dc field. The Verdet constant for terbium
gallium garnet (TGG) crystal is measured by a home-built setup. The anal-
ysis for the Kerr effect is based on Jones calculus and modulation is realized
through photoelastic modulator. To test the functionality of the setup, ferro-
magnetic thin films are deposited by magnetron sputtering and subsequently
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the absolute Kerr rotation is measured.

The rotation of polarization plane under transverse magnetic fields (the Voigt
effect) for TGG crystal is then studied for a wide range of temperatures (8–100
K) by Stokes polarimetry where an optical chopper modulates the polarized
beam of light. This particular method utilizes the discrete Fourier transform of
polarized light intensity described in terms of the Stokes parameters. The mag-
nitude of rotation and ellipticity are quantified and the Curie-Weiss constant
is estimated from the analysis of Voigt coefficients. We consider it the first
reported instance where the Curie-Weiss constant is derived from magneto-
optic measurements based on the Voigt effect. The Voigt effect, due to its
small value, requires ultra-sensitive measurement techniques, and therefore is,
otherwise, rarely studied.

With technological advancement in femtosecond laser technology, the conven-
tional role of magneto-optics has been widened from probing to controlling the
magnetization of magnetic system. This is dubbed as opto-magnetics. In this
context, the response of rare earth-transition metal (RE-TM) alloys and mag-
netic nano-structures in the form of bilayers, core shell and alloys is simulated,
when excited with femtosecond laser pulses. The simulation environment is
based on Heisenberg’s spin Hamiltonian which then utilizes Monte-Carlo algo-
rithm and Landau-Lifshitz-Gilbert (LLG) in conjunction with two temperature
model for investigation of different magnetic properties of the materials.

The simulation results demonstrate the correct estimation of Curie tempera-
tures for well known rare earth and transition metals. Furthermore, all-optical
deterministic switching of magnetization is observed for rare earth-transition
metal (RE-TM) ferrimagnetic alloys. This switching mechanism operates in
the femtosecond timescale. The control of magnetization switching time can
be achieved by varying certain parameters, i.e., doping concentration of par-
ticular elements in host alloys and variation in laser fluence. These effects are
also studied in this work.
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The last part of this work reproduces measurements of the earlier chapters
using quantum light comprising single photons, generated from a heralded
down-conversion nonlinear optical process. The Faraday rotation for quantum
light is demonstrated using single photons. The synthesis of polarized single
photon states are realized through spontaneous parametric down-conversion
and state estimation is performed by quantum state tomography. The tomo-
graphic results are then analyzed and various kinds of minimization algorithms
are adopted to extract Faraday rotation angles. The extracted Faraday rota-
tion angles from the estimated state are corroborated with the previous exper-
imental findings. Furthermore, our tomographic data is analyzed to assess the
ellipticity acquired by single photons while establishing a correspondence with
single qubit operations described on the Bloch sphere.

During the course of my doctoral research, I was also part of a collaborative
team working on magneto-optic and active optical design of nano-structured
devices. This work resulted in some publications which are listed below, but
are not a part of this thesis.
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Chapter 1

Magneto-Optic Effects: An
Introduction

The role of magneto-optics in development of modern technology is central [1].
From the discovery of the Faraday effect in 1845 and the Kerr effect in 1875

to the development of devices for optical isolation, optical modulation, po-
larization control and nonreciprocal phase-shifters manifest the overarching
role of these physical phenomena in different forms. Magneto-optic materials
offer unique physical properties for device manufacturing with many special
functions not possible with other photonic devices [2]. The phenomenological
explanation of these effects were completed with Maxwell’s electromagnetic
theory but the microscopic origin was not established until 1896 by the dis-
covery of the Zeeman effect and explained by Lorentz in terms of classical
electron theory [3].

The change in optical response of a medium in the presence of magnetic
field is referred to as magnetic birefringence, ascribed to the asymmetry and
anisotropy introduced by magnetic field. The induced birefringence results in
the rotation of plane of polarization of the incident polarized light and asso-
ciation of ellipticity to the light coming out of magnetically active medium.
Depending on the relative orientation between applied magnetic field and prop-
agation vector, magnetically induced birefringence phenomena are categorized
as circular and linear birefringence. In addition, further classification of mag-
neto optic effects arises from the perspective of geometry. For example, in the
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reflection geometry, the leading magneto optic effect is called the Kerr effect
(which will also be discussed in the current Chapter). In the transmission
mode, we can identify two variations as depicted in the Fig. 1.1.

1. The Faraday geometry (circular birefringence): Applied magnetic field
B is parallel to the propagation vector of light k, i.e., B ∥ k. The effect
is proportional to B.

2. The Voigt geometry (linear birefringence): Light travels perpendicular
to the direction of applied magnetic field, i.e. B ⊥ k. The effect is
proportional to B2.

B

𝑘
B

a) b)

MOE MOE

𝑘

Figure 1.1: The applied magnetic field B is a) parallel (the Faraday geometry)
and b) perpendicular (the Voigt geometry) to the propagation vector k. MOE
refers to a magneto-optic element.

These magneto-optical effects are also classified respectively as linear and
quadratic showing their respective dependence on the order of magnetization.
The most straightforward and useful effect is the Faraday effect due to its
potential applications in optical isolators, magneto-optic modulators, current
and magnetic field sensation devices and spatial light modulators [4]. The
next chapter deals completely with quadratic magneto-optic effect, however,
we discuss the Faraday effect in this Chapter.

From discovery of gravitational waves, manipulation of quantum bits in ion
trapped quantum computing, photonic quantum bits, magnetic state rever-
sal, light has played a central role for the demonstration of these far reaching
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discoveries in science. One of the major advantages for using light is that op-
tical manipulation is robust and less affected by noise (shot noise, noise due
to electrical power etc.) which are more pronounced in alternative approaches
such as electrical measurement or vibrating magnetometer devices. In recent
years, the burgeoning interest in all optical magnetic switching and control of
magnetization is another key aspect of magneto-optic effects.

In one of the kinds of such experiments, ultra-short (femtosecond scale) pulses
of polarized light can result in precessional switching of the magnetization even
in the absence of an external field. This all-optical switching is enabled by the
increase in temperature of the spin system due to the femtosecond laser pulse.
Consequently, magnetization of the system relaxes to a direction opposite to
prior. This method promises magnetization switching at an unprecedent rate
in the femtosecond— the ultrafast regime. In another experiment, helicity de-
pendent magnetic switching is attributed to inverse Faraday effect in rare-earth
transition metal GdFeCo alloy [5]. In chapter 3, we explore this particular as-
pect of ultrafast magnetization switching in detail.

Coming back to some of the interesting explorations of the Faraday effect,
it can also be used in paramagnetic resonance experiments to measure the
saturation of spin levels under steady and perturbed states for investigation of
spin-lattice relaxation times [6, 7]. In addition, Crooker et.al [8] described a
method of time-resolved Faraday rotation to study the dynamic spin behavior
of both photoinjected excitons and of the embedded magnetic sublattice.

The non-reciprocal nature of the Faraday effect allows its use as an optical
isolator. Non-reciprocity means that if linearly polarized material is subjected
through a medium in a magnetic field, the sense of rotation reverses for light
traveling parallel or antiparallel to the field. A great deal of scientific effort
is spent in the search of suitable Faraday devices (FDs) for high power laser
system. Faraday devices are used in laser systems particularly for the multi-
pass amplification and regenerative amplifiers as well as for optical isolation
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of one part of the system from another by eliminating possible harmful back-
reflections [9]. Additionally due to the inherited dependence on temperature
and wavelength, only few of the magneto-optic materials covers the complete
spectral range (UV-IR).

The desirable feature for a Faraday material to be used as an optical iso-
lator are high Verdet constant and high thermal conductivity. The Verdet
constant signifies the amount of polarization rotation with respect to B. Some
promising materials for FDs are orthoferrites with the general formula RFeO3

and paramagnetic rare earth garnets especially terbium gallium garnet doped
with rare earth ions, titatnium doped terbium aluminum garnet (Ti:TAG) [10],
terbium scandium aluminum garnet (TSAG) [11] and Tb doped yttrium ox-
ide [12], which have been extensively studied and reported over wide tempera-
ture ranges [13]. Further, garnets based ceramics have enabled the researcher
to develop large aperture components unlike single crystals.

In addition to rotation of plane of polarization of light, another pertinent effect
is ellipticity which arises due to ever present absorption inside the medium. For
room temperature measurement, the magnitude of ellipticity is usually small,
however for cryogenic temperatures, the magnitude become considerably large
affecting the output state of emerging light, hence, altering the capabilities of
an optical isolator. The mathematical background presented in this chapter
also encompasses polarization rotation in conjunction with ellipticity imparted
to the light due to circular dichroism and linear magneto optic effects.

We setup the discussion by reviewing Maxwell’s equations and polarized light
in terms of Jones calculus. Then follows the discussion for basic framework of
magnetic circular birefringence (the Faraday effect), magnetic circular dichro-
ism (the Kerr effect) and devise experimental techniques for measurements of
these MO effects. We will also accurately define what is meant by circular and
linear birefringence, dichroism effects etc.
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1.1. MAXWELL’S EQUATIONS

1.1 Maxwell’s Equations

Maxwell’s equations provide the basic constitutive framework for magneto-
optical phenomenon. In free space, Maxwell’s equations are [2, 14]

∇× E = −µ0
∂H
∂t

(1.1a) ∇ · H = 0 (1.1b)

∇× H = ε0
∂E
∂t

(1.2a) ∇ · E = 0 (1.2b)

where ε0 and µ0 are electric permittivity and magnetic permeability of free
space. They constitute a set of first order partial differential coupled equations
and can be decoupled by applying the curl operator to Eq. (1.1a), resulting in
the wave equation [15]

∇2E = − 1

c2
∂2E
∂t2

(1.3)

where c2 = 1/
√
µ0ε0 is the speed of light. One of the remarkable features of

Maxwell’s theory is that the speed of light can be determined from experiments
based on force between condensor plates or current carrying wire, which do
not seem to be connected to light [15]. Any function that satisfies Eq. (1.3) is
an electromagnetic wave. One possible solution to Eq. (1.3) is

E(r, t) = E0e
i(k·r−ωt)

where E0 entails the information of amplitude and phase of the electromagnetic
(EM) wave [14]. In a non conducting medium, two additional vector fields
are required, electric displacement D(r, t) and magnetic flux density B(r, t).
Maxwell’s equations are now written as

∇× E = −∂B
∂t

(1.4a) ∇ · B = 0 (1.4b)

∇× H =
∂D
∂t

(1.5a) ∇ · D = 0. (1.5b)

The relationship between electric displacement and electric field is determined
by electric properties of the medium, characterized by the polarization density
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1.1. MAXWELL’S EQUATIONS

P, macroscopic sum of the electric dipole moments induced by the electric
field [16]. Similarly, magnetic flux density and magnetic field depends on the
magnetic properties of medium, embodied in the magnetization density M,
volume density of magnetic moments [16]. The corresponding relations be-
tween flux densities and the fields are

D = ε0E + P (1.6)

B = µ0H + M. (1.7)

For linear homogeneous medium, D = εE where ε = ε0(1 + χ) is a scalar
quantity called the electric permittivity and χ is the medium’s electric sus-
ceptibility. A similar relation holds for the magnetic field and magnetic flux
density

B = µH

where µ is called the magnetic permeability of the medium. For an optically
anisotropic medium, the relation between P and E depends on the direction
of vector E,

Pi =
∑
j

ε0χijEj, i, j = x, y, z.

Consequentially the relation between electric displacement D and E follows

Di =
∑
i

εijEj (1.8)

where χij and εij now represent the electric susceptibility and electric permit-
tivity tensors. Similarly, the magnetic susceptibility tensor χm can be defined
to describe the magnetization either intrinsic or induced by a magnetic field

Mi(ω) =
∑
i

(χm)ij(ω)Hj and Hi(ω) =
∑
i

1

µij(ω)
Bj. (1.9)

However χm = 0 and µ = µ0 at optical frequencies [2]. Therefore, the response
of material to an optical field at a frequency ω, irrespective of whether it is
magnetic or non-magnetic, is fully characterized by its electric susceptibility
χ(ω) and equivalently by its electric permittivity ε(ω) [2]. The electric suscep-
tibility and electric permittivity at an optical frequency thus become a function
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1.1. MAXWELL’S EQUATIONS

of magnetic field H. Therefore, magneto-optic effects are completely charac-
terized by the permittivity tensor. This implies that if a dielectric medium is
symmetric εik = εki at H = 0, it will be anti-symmetric εik(H) = εki(−H) in
the presence of a magnetic field.

In general, these effects are weak perturbations to the optical properties of ma-
terial. The first order or linear magneto-optic effect is characterized by a linear
dependence of ε on H or M and the second order or quadratic magneto-optic
effects results from a quadratic dependence of ε on H or M. A phenomenolog-
ical expression for the dielectric tensor capturing magneto-optic effects for an
isotropic medium magnetized in an arbitrary direction is [17]

εMO = ε0

 n2
o −iA1Mz iA1My

iA1Mz n2
o −iA1Mx

−iA1My iA1Mx n2
o

+ A2

 M2
x MxMy MxMz

MxMy M2
y MyMz

MxMz MyMz M2
z

 .

(1.10)
The tensor is decomposed into terms that are respectively linear and quadratic
in the magnetization. The magnetization has components Mx, My and Mz.
Furthermore no is the isotropic refractive index and A1(ω) and A2(ω) are
frequency-dependent empirical constants. Generally A2 ≪ A1. Other physical
effects which need be considered from a crystal symmetry perspective while
discussing magneto-optic effects are given below.

1. Space Inversion Symmetry. Dielectric medium with inversion sym-
metry, i.e., the properties of the medium are not changed under the
transformation r → -r, are centrosymmetric [2]. No spontaneous po-
larization occurs in such materials, hence there can be no first order
electro-optic effect. However, this does not imply any constraint for the
observation of linear magneto-optic effects. The difference arises due to
odd and even symmetry of vector E and H respectively, under parity
transformation.

Pf(E,H) = f(−E,H) (1.11)

where P is the parity operator.
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1.2. POLARIZATION OF LIGHT

2. Time Reversal Symmetry. Time reversal symmetry implies the con-
servation of energy of the system if direction of time is reversed t→-t.
Dielectric media with time reversal symmetry are considered lossless and
reciprocal. Time reversal symmetry breaks when a dielectric medium has
loss or gain, or subjected to an external magnetic field. In an optical sys-
tem, reciprocity is manifested as the interchange of source and detector
without altering the reality of physics [2].

Note that in vacuum, Maxwell’s equations are parity and time invariant.

1.1.1 Boundary Conditions

When an electromagnetic wave travels from one medium to other medium with
different refractive indices, whether it is reflected or transmitted, the kind and
strength of interaction depends on the electrodynamics boundary conditions.
For a linear, homogeneous dielectric medium, in the absence of free charges and
currents, the tangential components of E and H and the normal components
of D and B must be continuous which is symbolized as [15]

ϵ1E
⊥
1 = ϵ2E

⊥
2 , E

∥
1 = E

∥
2 , (1.12)

B⊥
1 = B⊥

2 and 1

µ1

H
∥
1 =

1

µ2

H
∥
2 . (1.13)

1.2 Polarization of Light

The electromagnetic nature of light is a well established concept which captures
the oscillating electric and magnetic field vectors, mutually perpendicular to
each other and the direction of propagation of light. Polarization specifies the
direction of the electric field vector in a plane perpendicular to the direction
of electromagnetic wave’s propagation. Figure 1.2 illustrates different polar-
ization states of light.

Consider a monochromatic plane wave with frequency ω traveling in the z-
direction

E(r, t) = E0e
i(kz−ωt) (1.14)

9



1.2. POLARIZATION OF LIGHT

Only the real part of Eq. (1.14) is physically relevant. Here E0 = Exx̂+Eyŷ is a
complex vector indicating the polarization vector. In general, the relationship
between Ex and Ey defines the polarization of light. For example, if Ey = 0, the
light is said to be linearly polarized along the x-direction. Expressing Ex =

E0x exp iϕx and Ey = E0y exp iϕy in terms of their magnitude and complex
phases and substituting in (1.14) we get

Ex = E0x cos(kz − ωt+ ϕx)

and
Ey = E0y cos(kz − ωt+ ϕy)

which further reduces to the parametric equation for an ellipse [1]

E2
x

E2
0x

+
E2
y

E2
0y

− 2
ExEy
E0xE0y

cosϕ = sin2 ϕ (1.15)

where ϕ = ϕy − ϕx is the phase difference. The shape of the polarization
ellipse is determined by the amplitude and relative phase between electric field
vector which is characterized by two angles defined in Fig. 1.2(d). The angle θ
represents the direction of the major axis a with respect to the horizontal and
the angle χ stands for the ratio of minor to major axis, tan(χ) = ±b/a, known
as the ellipticity (χ), where b is the semi-minor axis [18]. The relationships
between electric field vector components and the rotation θ and ellipticity χ
relevant to the polarization ellipse are [16]

tan 2θ = 2r

1− r2
cosϕ (1.16)

and
sin 2χ =

2r

1 + r2
sinϕ (1.17)

where r = E0y/E0x.

As a plane wave is completely characterized by its complex envelope of the
x and y components of the electric field vector, a more useful mathematical
representation of plane wave is given by the Jones vector [18]. For a plane

10
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a) b)

c) y

x

χ

bad)

Ey = 0 Ex =Ey = E0,

φ = 0

Ex = Ey = E0,

φ = -π/2

θ

2
E

0
y

2E0x

Figure 1.2: a) Linearly polarized light along the x-direction, b) plane polarized
light at an angle 450 w.r.t. the horizontal, c) left circularly polarized light seen
as wave approaches the observer and d) elliptically polarized light where the
size of ellipse represents the intensity of light.

wave described by Eq. (1.14), the Jones vector is defined, after suppressing
the time dependent exponent, as

J =

[
Ax

Ay

]
, (1.18)

where Ax and Ay are complex amplitudes. For a given J, the total inten-
sity of polarized light can be determined by I =

√
A2
x + A2

y, the ratio of the
amplitudes r = E0y/E0x = |Ay|/|Ax| determines the size and shape of the
polarization ellipse and also determines the Stokes parameters [16]. The po-
larization state of light is represented by 2 × 1 column vector i.e., the Jones
vector, whereas polarization modifying optical elements are represented by
2× 2 matrix i.e., the Jones matrices. The Jones vectors and matrices for par-
ticular polarization and birefringent elements are given in Table 1.1.

11



1.3. THE FARADAY EFFECT

Table 1.1: Jones vector representation of polarization states and optical ele-
ments.

Horizontally polarized light
(
1
0

)

Right (+) and left (-) circularly polarized 1√
2

(
1
±i

)
Polarizer with transmission

axis at an angle β
(

cos2 β sin β cos β
sin β cos β sin2 β

)
Retarder with fast axis oriented

along the horizontal
(
eiϕ/2 0
0 e−iϕ/2

)

With discussion on Jones calculus, we conclude this section which lays the
foundation of basic framework for our mathematical analysis in the forthcom-
ing sections. The next section deals with birefringence introduced in a medium
by a magnetic field and will explore how different types of MO effects including
circular and linear birefringence and dichroism affect the polarization state of
the electromagnetic wave.

1.3 The Faraday Effect
1.3.1 Magnetic Circular Birefringence

We set up the discussion by reviewing the basics of magneto-optic effect in an
isotropic paramagnetic crystal. This discussion is based upon the work [19]
earlier published by our research group and merely reproduces and expands
the calculation therein. The permittivity tensor (2.1) in the presence of an
applied magnetic field applied B = (0, 0, B) is modified as

εMO = ε0

n2 −iQ 0
iQ n2 0
0 0 n2

 (1.19)

The diagonal term in the tensor corresponds to refractive indices for isotropic
medium and off-diagonal terms proportional to Q, are responsible for magneto

12



1.3. THE FARADAY EFFECT

optical activity of the medium. Comparing with Eq. (2.1), we have Q = A1Mz

and Mx = My = 0. For the current discussion, we assume Q to be real which
determines the strength of magneto-optical interaction. A real Q represents
what is called pure magnetic circular birefringence as we explain shortly.

By solving Eq. (1.19) for its eigenvalues, plane wave normal modes for mag-
neto optic system turn out to be left and right circularly polarization states,
ê− and ê+ respectively, where e± = (x̂ ± iŷ)/

√
2. The respective refractive

indices are n+ =
√
n2 +Q and n− =

√
n2 −Q. The relationship between the

wavecetors and their respective refractive indices is given by

β± =
ω◦

c
(n±). (1.20)

Since Q ̸= 0, n+ ̸= n−, this difference in refractive indices for the two kinds
of circular polarization states leads to the terminology magnetic circular bire-
fringence and can be written as

∆β =
ω◦

c
∆n. (1.21)

where ∆n = n+−n−. For linearly polarized light along the horizontal traveling
in the z-direction through a magneto optical element of length d, the output
polarization state would be

E
∣∣
d
=
E0√
2
(ê+e

−iβ+d + ê−e
−iβ−d)

=
E0e

−β0d/2
√
2

(êx cos∆βd/2 + êy sin∆βd/2)

=
E0e

−β0d/2
√
2

(
cos∆βd/2
sin∆βd/2

) (1.22)

Hence the Faraday rotation angle extracted from equation (1.16) will take the
form

θ =
∆βd

2
=
ω◦

2c
(n+ − n−)d ≈ ω◦

2c
nQd. (1.23)
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1.3. THE FARADAY EFFECT

1.3.2 Combined Magnetic Circular Birefringence and
Dichroism

If a magneto-optic media exhibits absorption, the plane wave normal modes,
RCP and LCP will encounter different absorption coefficients, hence the output
polarization state will be elliptically polarized. This is called magnetic circular
dichroism (MCD). In the previous section 1.3.1 we assumed the variable Q to
be real but with the introduction of the absorption inside the medium, Q
becomes complex i.e., Q = Q′ − iQ′′. Dichroism can be introduced into the
system by making the wavevector complex i.e. k± = β± − iα± where α±

represents the absorption coefficients for different normal modes ê+ and ê−

respectively. Now this modifies the expression (1.21) as

∆β − i∆α =
ω◦

c
(∆n) (1.24)

where ∆β is ascribed to MCB and ∆α (change in absorption coefficients i.e.,
∆α = α+ − α−) accounts for MCD. The electric field vector (polarized along
the horizontal) after passing through an optical medium which exhibits both
MCB and MCD will be

E
∣∣
d
=
E0√
2

(
ê+e

−i(β+−iα+)d + ê−e
−i(β−−iα−)d

)
=
E0e

−iβd/2e−iαd/2√
2

(
êx cosh[i(∆βd/2 + i∆αd/2)]

− iêy sinh[i(∆βd/2 + i∆αd/2)]

)
. (1.25)

Note the presence of hyperbolic trigonometric functions instead of ordinary
trigonometric functions. For linearly polarized light along y-axis, a similar
calculation can be performed and finally the transfer matrix for a medium
with both MCB and MCD can be written as

T =

(
cosh[i(∆βd/2 + i∆αd/2)] −i sinh[i(∆βd/2 + i∆αd/2)]
i sinh[i(∆βd/2 + i∆αd/2)] cosh[i(∆βd/2 + i∆αd/2)

)
. (1.26)

Ignoring global phase factor in expression (1.25), it is clearly seen that Ey =

cosh[i(∆βd/2 + i∆αd/2)] and Ex = sinh[i(∆βd/2 + i∆αd/2)]. Using this
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1.3. THE FARADAY EFFECT

formulation and after trigonometric manipulation, the angles for rotation θ

and ellipticity χ can be extracted using equations (1.16) and (1.17) and yield

tan 2θ =
√

cosh2 (∆αd)− cos2 (∆βd)
cos (∆βd) cosϕ (1.27)

= tan(∆βd) (1.28)

sin 2χ =

√
cosh2 (∆αd)− cos2 (∆βd)

cosh (∆αd) sinϕ (1.29)

= tanh(∆αd) (1.30)

ϕ = ϕy − ϕx

= tan−1

(
sin(∆βd)e−∆αd

1 + cos(∆βd)e−∆αd

)
− tan−1

(
1− cos(∆βd)e−∆αd

sin(∆βd)e−∆αd

)
.

(1.31)

We first assume the case of pure magnetic linear birefringence (the nominal
Faraday effect), i.e., ∆α = 0. For incident light polarized along the horizon-
tal, Eq. (1.27) will reduce to tan(2θ) = tan(∆βd) which is identical to Eq.
(1.23). This further implies that rotation angle is a linear function of circular
birefringence ∆β, as shown in Fig. 1.3.

-360 -180 180 360

θ (
d

e
g
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e

s)
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-100
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100

200

0
Δβd (degrees)

Figure 1.3: Angle of rotation as a function of magnetic circular birefringence.

For the other extreme, we have pure circular dichroism, i.e., ∆β = 0 and
∆α → ∞, the phase difference turns out to be ϕ = −90o. It immediately
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Figure 1.4: Angle of ellipticity as a function of (a) magnetic circular dichroism
and (b) magnetic circular birefringence for different values of MCD.

follows from Eqns. (1.27) and (1.29) that

tan 2ψ = 0 (1.32)

sin 2χ = sinϕ→ χ = −45◦ (1.33)

the output light is left circularly polarized but the rotation of plane of polar-
ization (the Faraday rotation) will be zero in a pure absorptive medium. Fig.
1.4(a) illustrates the non linear variation of ellipticity as a function of magnetic
circular dichroism.

In the limit of small MCD, i.e., ∆α ≪ 1 ellipticity is linear as tanh(∆αd/2) ≈
∆αd/2 and sinh 2χ ≈ 2χ ≈ ∆αd/2. Figure 1.4(b) displays the angle of el-
lipticity for different values of MCD iterated in steps of 0.1 rad from top to
bottom of plot.

The discussion of MCB and MCD complements the observation that ellipticity
is entirely caused by magnetic circular dichroism and the rotation is an arti-
fact of pure magnetic circular birefringence. Next section deals with another
interesting magneto optic effect, i.e., magnetic linear birefringence combined
with MCB.
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1.3. THE FARADAY EFFECT

1.3.3 Combined Magnetic Circular and Linear Birefrin-
gence

Magnetic linear birefringence (MLB) arises when the externally applied static
magnetic field is perpendicular to the wavevector of electromagnetic wave pass-
ing through the magneto-optic medium or paramagnetic crystal. In liquids,
MLB is generally referred to the Cotton-Mouton effect whereas in crystalline
solids, MLB is known as the Voigt effect. These effects for a terbium gallium
garnet crystal are thoroughly discussed in the next chapter over a wide range
of temperatures. Here we discuss the MCB in the presence of MLB (irrespec-
tive of the origin of MLB) and the consequence on the rotation and ellipticity
of polarization state of the output electromagnetic wave.

In the presence of pure magnetic linear birefringence, the diagonal elements of
the magneto optical tensor (1.34) are asymmetric, i.e., n2

x = εxx ̸= n2
y = εyy ̸=

n2
z = εzz and off diagonal terms are zero. However, in the combined presence

of magnetic linear and circular birefringence, the magneto-optical tensor in
Eq. (1.19) takes the form

εMO = ε0

n2
x −iQ 0
iQ n2

y 0
0 0 n2

z

 (1.34)

where MLB is quantified by εxx − εyy = ε0(n
2
x − n2

y). Generally, MLB is a
much smaller effect than magnetic circular birefringence quantified by Re(Q).
The relative strengths of MCB and MLB are captured by the angle ξ defined
as tan ξ = Q/ς where ς = (εxx − εyy)/2. Solving the wave equation (1.3) and
assuming only plane wave solutions propagating in the z-direction, the normal
modes are given by

β± =
ω2

2c20

[
(εxx + εyy)±

√
(εxx − εyy)2 + 4Q2

]
(1.35)

and the wave vectors for these normal modes are

v̂+ =

(
1

i
εyy−εxx+

√
(εxx−εyy)2+4Q2

2Q

)
, (1.36)
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and

v̂− =

(
1

−i εxx−εyy+
√

(εxx−εyy)2+4Q2

2Q
a

)
. (1.37)

Eqns. (1.36) and (1.37) can be simplified by defining the following variables
and identities

γ2+γ
2
− = −Q2 γ2+ + γ2− = 2ξ (1.38)

γ4+ −Q2

γ4+ −Q2
=
γ2−
γ2+

γ2+ − γ2− = 2
√
ξ2 +Q2 (1.39)

where γ2± = ς ±
√
ς2 +Q2. With these substitutions, the normal mode wave

vectors will be transformed to

v̂+ = C1

(
1

i Q
γ2−

)
(1.40)

and

v̂− = C1

(γ+
γ−

)( 1

−i Q
γ2−

)
. (1.41)

The coefficient C1 is a normalization constant. These wave-vectors can be
transformed into their corresponding rectilinear coordinates. The transforma-
tion is (

êx
êy

)
= M

(
v̂+
v̂−

)

where

M =
γ2−

C1(γ2− − γ2+)

(
1 −γ+

γ−
γ+
γ−

1

)
. (1.42)

For input light polarized along the x-direction, E0êx can be rearranged in
superposition states of RCP and LCP as

E0êx = E0

γ2−
(γ2− − γ2+)

(
v̂+ +

γ+
γ−
v̂−

)
(1.43)

which upon passing through magneto-optical element of length d, will take the
form

E0

γ2−
(γ2− − γ2+)

(
v̂+e

−iβ+d +
(γ+
γ−

)
v̂−e

−iβ−d
)
. (1.44)
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Substituting the values of normal modes from (1.35), we get

E0

γ2−
(γ2− − γ2+)

(
γ2−e

−iβ+d − γ2+e
−iβ−d

iQ
(
e−iβ+d − e−iβ−d

)) . (1.45)

In a similar manner, if the input light is vertically polarized, E0êy, the output
is

E0

γ2−
(γ2− − γ2+)

(
iQ
(
e−iβ+d − e−iβ−d

)
γ2+e

−iβ+d − γ2−e
−iβ−d

)
. (1.46)

Implying trigonometric identities and mathematical manipulation, the transfer
matrix for a magneto-optic medium exhibiting both MCB and MLB can finally
be written as

T2 =

(
cos(∆βd/2) + i cos(ξ) sin(∆βd/2) − sin(ξ sin(∆βd/2)

sin(ξ sin(∆βd/2) cos(∆βd/2)− i cos(ξ) sin(∆βd/2)

)
(1.47)

where ∆β = β+−β−. The transfer matrix is sufficient to determine the output
polarization state properties. Finally, the azimuthal rotation θ and ellipticity
χ are respectively found out to be

tan(2θ) = sin ξ sin(∆βd)
cos2(∆βd/2) + cos(2ξ) sin2(∆βd/2)

, (1.48)

sin(2χ) = sin(2ξ) sin2(∆βd/2). (1.49)

Analyzing the expressions (1.48) and (1.49) reveals interesting effects. For the
limiting case of pure circular birefringence, ξ = 90o and the Faraday rotation
is θ = ∆βd/2 while χ = 0 as expected. On other extreme, for pure linear bire-
fringence, ξ = 0o. This condition results in the complete preservation of the
input state since θ = χ = 0. This is expected as the input light is horizontally
polarized which is a normal mode of a magneto-optic system possessing pure
MLB.

Figure 1.5 shows the Faraday rotation variation with Q, the magneto-optic
parameter which varies from zero to a maximum value of λ◦ where λ◦ = 785

nm represents the typical wavelength used in the experiments and n = 1.9535

is the refractive index for paramagnetic crystal TGG as reported in the refer-
ence [20]. Figure 1.5 also iterates the fact that relationship between rotation
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and Q becomes nonlinear as a small magnetic linear birefringence is introduced
in the system and χ becomes smaller than 90◦, but still greater than 45◦. It
is also noticeable that the magnitude of Faraday rotation angle increases de-
spite lowering the strength of pure circular birefringence. This effect is more
pronounced at ξ = 50◦.
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×( )
Figure 1.5: Angle of rotation as a function of magneto optic parameter Q for
different values of ξ. The non-linearity in rotation angle θ increases as relative
strength between MCB and MLB, i.e., ξ is varied from 90◦ to 50◦.

The second term in the denominator of equation (1.48) changes sign between
ξ ∈ [0◦, 45◦] and ξ ∈ [45◦, 90◦]. For smaller values of ξ, the effect of linear bire-
fringence dominates and results in the oscillatory and non monotonic behavior
of rotation angle as described in Figure 1.6(a). The rotation changes sign
with the transition from negative to positive being more pronounced around
ξ = 45o as depicted in Figure 1.6(b). For smaller values of ξ, i.e., ξ ≪ 1, Eq.
(1.48) can be simplified as

tan 2ψ ≈ 2ψ ≈ ξ sin(∆βd) (1.50)

which constrains the rotation within the range ±ξ/2. Furthermore, there also
exists nodal points where the rotation is completely zero, where ∆β is an in-
tegral multiple of π/d.
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Figure 1.6: (a) Oscillatory behavior of the Faraday rotation angle for different
strength of ξ, (b) variation of angle of rotation around ξ = 45◦, showing the
switching of the sense of rotation.

The addition of magnetic linear birefringence certainly imparts ellipticity to
the output light which deteriorates the quality of polarization. The alternation
of angle of ellipticity with magneto optical parameter for different values of ξ
is illustrated in Fig. 1.7. For pure magnetic circular birefringence, the Faraday
effect ξ = 90o, ellipticity is zero as shown in Figure 1.7(b). As the strength of
MLB increases, the response becomes oscillatory. For the dominating condi-
tion of MLB, equation (1.49) can be modeled to a good approximation as

sin 2χ ≈ 2χ ≈ 2ξ sin2(∆βd/2) (1.51)

where maximum allowed values are χ = ±ξ.

The preceding discussion describes the polarization properties of light through
pure circular birefringence (MCB) intermixed with magnetic linear birefrin-
gence (MLB). The detailed analysis revealed interesting properties of the emer-
gent light such as periodic variation in ellipticity and rotation angle and the
complementary and indispensable role of ellipticity measurements. The calcu-
lations also highlight the interdependency of rotation and ellipticity. However,
the description of magneto-optic effects is still incomplete without the discus-
sion of magnetic linear and circular dichroism combined with MCB and MLB.
This discussion will be continued in the next Chapter.
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Figure 1.7: Ellipticity as a function of magneto optic parameter for relative
strengths of MCB and MLB with a) and b) showing different ranges of the
relative MLB and MCB strength quantified by the angle ξ.

Another important part of this chapter is to introduce the reader with an
experimental arrangement for the measurement of Faraday rotation angle and
the ellipticity. The Faraday rotation angles and ellipticities are usually very
small and prone to electrical and thermal noises. In the following Section,
we discuss a detection technique which is useful in determining the signal of
interest obscured by noise. We will use these techniques to describe our ex-
perimental work conducted as part of this dissertation.

1.3.4 Experimental Scheme for Measuring Faraday Ro-
tation

In any physical experiment, there is an uncertainty associated with the mea-
surement. These uncertainties could be the result of limitation of the measur-
ing device or maybe random in nature. In case of electrical measurement, there
are different types of noises, e.g., white noise, shot noise and flicker noise etc.
The credibility of a measurement is highly dependent on the size and magni-
tudes of these errors. Very often the signal of interest, in our case the Faraday
rotation angle, which is minuscule and may be of the order of nanoradians is
buried under noise. In these cases, phase sensitive detection provides the tool
to detect and measure extremely small signals hidden inside noise.
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Figure 1.8: Block Diagram of phase sensitive detection. Amp= amplifier and
PSD= phase sensitive detection box and L.P= low pass filter.

1.3.5 Phase Sensitive Detection

Phase sensitive detection relies on measurement of that component of the sig-
nal which is around a specific frequency or possesses a specific phase. Noise
signals, other than within a narrow band around specified frequency are re-
jected and do not affect the measurement [21]. The steps involved in this phase
sensitive detection are depicted in Fig. 1.8 and are mostly implemented by an
instrument called lockin amplifier.

A lockin amplifier has two ac input signals, i.e., signal input A and refer-
ence input B as shown in Fig. 1.8. The desired signal (ω◦) which is to be
measured is given at input A and input B (reference input) is excited with
a reference signal with a particular frequency ωr. This reference signal could
be the sync output of an optical chopper or a function generator. The input
signal A is first amplified prior to multiplication with the reference signal at
mixer. The product signal from the mixer consists of a dc component and
and high frequency harmonics. This signal is then allowed to pass through a
low pass filter which rectifies the higher harmonics from the output signal and
completes the PSD operation. The preceding discussion can also be under-
stood mathematically in the following way.
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Consider a sinusoidal input signal with amplitude A and frequency ω◦

Vin = A sin(ω◦t) (1.52)

and reference signal with amplitude B, frequency ωr and phase ϕ relative to
the input signal

Vref = B sin(ωrt+ ϕ). (1.53)

The mixer multiplies the signals and the output will be

Vpsd = AB sin(ω◦t) sin(ωrt+ ϕ) (1.54)

=
AB

2

(
cos((ω◦ − ωr)t+ ϕ)− cos((ω◦ + ωr)t+ ϕ)

)
. (1.55)

The output signal Vpsd comprises of two ac signals, one at the difference of
frequencies (ω−Ω) and the other at the sum frequency (ω+Ω). For a special
case when input signal frequency matches the reference frequency, i.e., ω◦ = ωr,
Eq. (1.54) can be rewritten as

Vpsd =
AB

2

(
cos(ϕ) + cos(2ωrt+ ϕ)

)
ω◦ = ωr (1.56)

Now if this output from the mixer is allowed to pass through a low pass filter
with a cutt-off frequency ωc = ω◦, the sinusoidal component of the equation
(1.56) will be removed and the output signal will be

Vpsd =
AB

2
cosϕ (1.57)

Note the presence of phase component ϕ in Eq. 1.57 which can be adjusted
to give a clean DC signal proportional to the amplitude of input signal. The
relevance of this phase component can be explained graphically.

Fig. 1.9 displays three different possibilities depending on the relative phase ϕ
between reference and input signal which are 0◦, 90◦ and 180◦. Let’s consider
the first case when the reference and input signal are in phase, the output from
mixer is a positive quantity (voltage or current). The output remains positive
even for the negative half cycle of the reference wave. Hence the output from
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mixer is a full wave rectified sinusoid whose DC component is proportional to
the input signal. For th second case, i.e. ϕ = 90◦, the time average of the
output is zero whereas for ϕ = 180◦, the output is simply the negative value
of the DC signal and is affirmed by the Eq. (1.57).

0
o

a) b)

Signal

Reference

Mixer

180
o

c)

9
0

o

Figure 1.9: Reference and input signal are a) in phase, the mixer output is
positive, b) at 90◦, the mixer output is zero and c) out of phase, the output is
negative.

The signal to noise ratio can be further improved by narrowing the bandwidth
of the low pass filter. In the next section, we will discuss the experiment in
which we detect the signal of interest extracting the Verdet constant based on
this phase sensitive detection technique.

1.3.6 Determination of the Verdet Constant

The strength of the Faraday material is characterized usually by a more mean-
ingful quantity called the Verdet constant. The Verdet constant is basically
the measure of the Faraday rotation θ per unit length per unit field. Magneto
optic materials with high Verdet constant are highly desirable from device

25



1.3. THE FARADAY EFFECT

manufacturing point of view. In this section, we buildup a theoretical back-
ground of our experimental setting followed by describing the procedure for
determining the Verdet constant. We will use the delineated technique in our
subsequent work, in particular the magneto-optic measurements described in
Chapters 2 and 4.

The relationship between the Faraday rotation angle θ and the Verdet con-
stant is given by

θ = V Bd (1.58)

where V represents the Verdet constant which depends on wavelength, tem-
perature and properties of the medium. Different methods for measurement
of Verdet constant are outlined by several authors [22, 23] which make use of
large dc magnetic field produced by bulky and heavy solenoids and susceptible
to electrical noise. In this work we instead follow a phase sensitive detection
technique with ac field modulation.

The schematic arrangement of our experimental setup is illustrated in Figure
1.10. Light from a laser source is polarized by a polarizer and passes through
the magneto-optic medium placed inside a set of home-built Helmholtz coils.
After the coils, the light passes through another polarizer, often called the
analyzer. Finally, it impinges on a photodetector which produces a current
proportional to the input light intensity. A transimpedance amplifier (TIA)
can be used to convert this photocurrent into a voltage before feeding into a
lockin amplifier.

For maximum sensitivity of our experimental setup, we ought to find the opti-
mum relative angle between polarizer and analyzer. A linearly polarized light
along the horizontal after passing through the Faraday crystal is rotated by an
angle θ and Jones vector (suppressing the exponent part) of light is as follows

A

(
cos θ
sin θ

)
, (1.59)
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Figure 1.10: The experimental arrangement includes L=laser, P=polarizer,
MOE= magneto optic element, A= analyzer, D= photodetector, C= capaci-
tor, H= Helmholtz coils and TIA= transimpedance amplifier. The perceived
beam path is shown in purple.

where A is some constant. After passing through analyzer oriented at angle α
relative to polarizer, the electric field vector is given by

E = A

(
cos(α− θ) cosα
cos(α− θ) sinα

)
(1.60)

Therefore, the intensity expression for this electric field vector is

I = E∗E = |A|2 cos2(α− θ). (1.61)

Double differentiating equation (1.61) will help us determine the optimum
relative angle between polarizer and analyzer. In other words, dI/dα will be
maximum when

α− θ = 45◦

This equation states that relative angle between polarizer and analyzer must
be adjusted to 45◦ for maximum sensitivity of the setup to measure the Fara-
day rotation θ. Now if an ac current of frequency Ω was driven through the
Helmholtz coils, it generates an oscillatory magnetic field B = B◦ sinΩt. In
response to this field, the Faraday rotation angle also becomes a function of
time, θ = θ◦ sinΩt with θ◦ = V B◦d. For α = 45◦ and assuming θ to be small,
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equation (1.61) will become

I = |A|2
(
1 + 2θ◦ sinΩt

2

)
. (1.62)

The intensity at photodetector is converted to an electrical current comprising
of dc and ac components, idc and iac which are given by

idc =
|A|2

2

and
i′ac = |A|2θ◦ sinΩt

As far as the lockin is concerned, it measures the rms component of iac which
is iac = i′ac/

√
2.

L
P

H

MOE

A  D

TIA

Figure 1.11: Experimental arrangement of the Faraday setup. The light exiting
the source passes through the optical element before hitting the photodetector.
Where L=laser, P=polarizer, H= Helmholtz coils, MOE= magneto-optic el-
ement, A= analyzer, TIA= trans-impedance amplifier and D= photodetector

The dc signal refers to the intensity in the absence of a magnetic field. The
Faraday rotation angle can be extracted by taking the ratio of ac and dc
components.

θ◦ =
iac√
2idc

(1.63)

θrms =
θ◦√
2
. (1.64)

For measurement of these rotation angles, we employed phase sensitive detec-
tion technique through a lockin amplifier (Stanford Research System, SR-830).
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The procedural steps for measurement of idc and iac are enlisted in the following
section.

1.3.7 Experimental Results on Faraday Rotation

A linearly polarized light of wavelength 405 nm from a laser source (B & W
TEK-40mW ) is allowed to fall on the cross-sectional area of a magneto-optical
element placed at the center of Helmholtz coils. The inductance and resistance
of the coils are measured using an LCR meter, are found to be 15 mH and 3.0

ohm, respectively. Before hitting the surface of photodetector (Newport SLS-
818), light passes through an analyzer oriented at 45◦ relative to the polarizer.
The detector converts the light intensity to electrical current which serves as
an input signal to lockin amplifier.

The pair of Helmholtz coils1 presents an RLC series circuit whose resonant
frequency is given by fr = 1/2π

√
LC, where L is the inductance and C is the

capacitance of the series connected capacitor. The resonance frequency fr is
determined by varying the frequency while current through the coils is being
measured. At resonant frequency, the strength of inductive and capactive re-
actances are equal and out of phase, hence the coils become purely resistive
and the current through the coils is maximized, which also maximizes the mag-
netic field.

An ac signal at the resonant frequency fr = 820 Hz is generated by a function
generator (BK-precision) is split into two parts. One is used as a reference for
lockin amplifier and the other as input to Audio amplifier (150 W) which is
connected to the Helmholtz coils for producing an oscillating magnetic field.

Furthermore, prior to conducting the optical measurement, the magnitude of
magnetic field produced by the Helmholtz coils is measured using Gaussmeter
(Lakeshore-410). We measure different values of iac as strength of magnetic

1Inner and outer diameter of coils are 10.2 cm and 6.5 cm, respectively. No. of turns for
each coil is 324 with a resistance of 1.5 Ohm and total inductance L = 7 mH.
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field is varied by changing the magnitude of current through the Helmholtz
coils.
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Figure 1.12: Least square curve fitted graph for the Faraday rotation angle
θ vs magnetic field Brms. Verdet constant is extracted from the slope of the
graph in accordance with Eq. (1.58).

The measured ratio of intensities (1.64), θ is plotted against the magnetic field
in Figure 1.12. The dc signal idc is measured at zero field by using an IV
converter of known transimpedance gain. The complete arrangement of the
experimental setup is illustrated in Fig. 1.11. The Verdet constant at room
temperature for TGG crystal is then estimated by least squares curve fitting
of the graph and equals V = (470 ± 9) rad/T-m at the wavelength 405 nm.
This result corroborates with another published value of Verdet constant for
TGG which is 463 rad/T-m [24] at λ = 405 nm.

In another collaborative work carried out by our lab, we also investigated
the magneto optic properties of zinc oxide ZnO thin films irradiated with Ni+2

ions at different fluence. The results for the Verdet constant measurement are
illustrated in Fig. 1.13. The maximum value of Verdet constant is obtained
for pristine ZnO thin film which is 53 rad/T-m. The detailed discussion can
be found in the published article [25].

Our experimental setup is capable of measuring the Faraday rotation at room
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Figure 1.13: The Faraday rotation measurement of pristine and Ni+2 irra-
diated ZnO thin films with different ion fluence. Optical rotation are plotted
against the applied magnetic field B.

temperature and it can be also extended to low temperature measurement
in a cryogenic chamber equipped with an optical window. As the tempera-
ture of the paramagnetic crystals is lowered, the magnetization of the material
increases. Consequentially, the Voigt parameter Q, the off-diagonal term in
equation (1.19) manifests as the rotation of plane of polarization, is directly
proportional to magnetization M. Hence the magnitude of the Faraday rota-
tion increases which could go upto as high as 300◦ [24]. We describe these low
temperature measurements in the next Chapter.

1.4 Magneto Optical Kerr Effect

In the previous section we have discussed magneto-optical effects in the trans-
mission geometry. Its counterpart in reflection geometry is known as magneto
optical Kerr effect (MOKE). In Kerr effect, the plane of polarization of rota-
tion of incident light is rotated similar to the Faraday effect but the underlying
mechanism for this rotation is somewhat different. In Faraday effect, magnetic
circular birefringence is considered the main cause for rotation whereas in Kerr
effect it is magnetic circular dichroism which leads to different absorption spec-
tra for left and right circularly polarized light [2, 26]. Polar MOKE was first
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used in 1985 for the optical readout of magneto-optic recording devices but
the idea of MO storage devices was superseded by advancement in Hard Disk
Drive (HDD) technology.

1.4.1 Uses of MOKE in Physics

MOKE is most commonly used in research settings to characterize the elec-
tronic and magnetic properties of materials such as the magnetic domain struc-
ture, spin density of states, and magnetic phase transition dynamics. We can-
not present a comprehensive survey review here. Rather, we like to mention
some of the application we’ve studied (and even attempted, albeit unsuccess-
fully) in the course of the current doctoral work.

Recent experimental progress on high-quality nanostructures and 2D materials
(e.g., transition metal dichalcogenides, graphene, topological insulators) [27]
promises to harness these magneto-optic effects for enhanced control of light
at the nanoscale for integrated photonic [28] or spintronics devices [29].

Magnetic anisotropy of thin films can be estimated using longitudinal and
polar MOKE (we will explain kinds of MOKE shortly). Additionally, in the
emergent field of spintronics, one manipulates the spin degree of freedom re-
sulting in spin-polarized currents or pure spin currents and their interaction
with lattice, orbital and magnetic moments of the crystal. In a ferromagnetic
structure, a spin current can be initialized either by electronic current or ap-
plying a thermal gradient to the magnetized sample. The latter comes under
the realm of spin caloritronics and is called the spin Seebeck effect [30, 31]. The
direct detection of these spin currents is not possible and alternatively, spin
currents are converted to charge current by the inverse spin Hall effect [30, 32].

However the detection is encountered with certain limitations due to diminu-
tive size of spin diffusion length and very often the detected signal is con-
taminated by noise due to different mechanisms such as proximity effect [33],
Planar Nernst effects [34], thermoelectric and magnetothermal noises [35–37].
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The MOKE technique offers a non-invasive method for detection of these spin
currents and was beautifully demonstrated by Ryan et.al [38] providing a quan-
titative description of Kerr rotation due to spin accumulation. In another ex-
periment, the generation of spin orbit torque in a heavy metal(HM)/ferromagnetic
metal(FM) bilayer structures due to spin orbit coupling and Rashba effect is
detected and quantified by using different geometries of the Kerr effect [39, 40].
Furthermore, detection of spin Hall effect was realized in ferromagnetic semi-
conductors by making use of MOKE [41].

1.4.2 MOKE Microscopy

Similarly, MOKE microscopy provides the opportunity to observe the dynamic
behavior of ferromagnetic domains and domain wall motion [42, 43]. The obser-
vation of magnetic domains in ferromagnetic materials by MOKE microscopy
is first established in the 1950’s [26]. The reflected light from a ferromagnetic
film determines the the magnitude of the rotation which is proportional to
the local magnetization. The Kerr rotation can determine the orientation and
magnitude of the local magnetic domain.

In contemporary physics, MOKE is well established as a cornerstone for inves-
tigation of magnetization dynamics and offers a distinctive, robust, noise-free
and unique tool for understanding and unraveling the fundamental physical
processes involved at nanoscale and ultrafast timescales. The polar, longitu-
dinal and transverse MOKE effects have been exploited in magnetometry and
imaging measurements performed upon magnetic thin films [3,5,6].

With technological development, time resolved MOKE microscopy has enabled
the researchers to observe the evolutionary behavior of magnetization in the
sub-picosecond time regime. Time-resolved MOKE measurements can be used
to study electronic relaxation processes and lifetimes of spin populations. A
polarized pump pulse initializes the population of spin states. Then a probe
pulse measures the strength of the MOKE signal. The relaxation and lifetime
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of spin states can be examined by time dependence of population states [44].
A pump-probe MOKE investigation demonstrated the first ever spin dynamics
in ultrafast regime by Beaurepaire et. al. [45] and initiated a chain reaction of
research and exploration in the ultrafast regime. One particular topic in the
realm of ultrafast all-optical switching will be discussed in detail in Chapter 3.

MOKE is particularly favored for the non-invasive evaluation of samples and
devices that are spatially inhomogeneous, and for in-situ measurements within
growth chambers. The additional use of an ultrafast laser source allows high
frequency magnetisation dynamics to be probed and imaged [10–16]. The
principal limitation of the magneto-optical probe is the finite spatial resolu-
tion associated with the optical diffraction limit.

Over the course of this PhD work, we have attempted several experiments
revolving around MOKE. The purpose for developing MOKE setup (apart
from pedagogical reasons) in our research group is to observe the spin currents
generated by thermal gradients in magnetic thin films—the spin Seebeck ef-
fect. We first attempted the electrical detection of these spin currents which
involves the development and optimization of different components of appara-
tus required for the desired task, i.e., deposition of thin films, the design and
construction of thermo-spin generator, measurement and control of tempera-
ture gradients, interfacing of equipments with the computer and MOKE setup.
A great deal of time and effort was rendered for this purpose but the attempts
to measure the spin current optically were outstripped by another research
group [38]. Nevertheless, we learned and developed some key projects during
the course of these ventures. Here we’ll discuss one of them—magneto-optic
Kerr effect.

1.4.3 Geometries of MOKE

MOKE has been classified into three categories based on different orientations
of the magnetization of the medium with respect to the incident plane and are
depicted in Fig. 1.14.
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M M M

(a) (b) (c)

Figure 1.14: Different orientations of magnetization vector with plane of in-
cidence corresponds to different geometries of the Kerr effect: a) polar Kerr
effect, b) longitudinal Kerr effect and c) transverse Kerr effect.

1. Longitudinal: The magnetization of the medium is in plane and parallel
to incident plane of light.

2. Polar: Magnetization vector is perpendicular to the plane of medium
and parallel to plane of incidence.

3. Transverse Kerr effect: Magnetization of the medium is in plane but
perpendicular to the plane of incidence.

In each geometry, Kerr effect varies strongly with the angle of incidence. In
longitudinal geometry, the magneto optic Kerr effect is zero for normal in-
cidence whereas in the polar Kerr effect, the signal is maximum at normal
incidence [46]. Furthermore, polar Kerr effect is almost one order of mag-
nitude larger than longitudinal. The transverse Kerr effect is fundamentally
different from longitudinal and polar configuration as it depends on the nature
of polarization of incident light. In this configuration, for s-polarized light,
there is no interaction between magnetic moment of the sample and incident
light. However, for incident p-polarization, the intensity of the reflected light
changes but no rotation of polarization plane occurs.

1.4.4 Jones Calculus for Kerr Effect

Here we present the phenomenological description of Kerr effect based on Jones
calculus. The schematics of MOKE setup is displayed in Fig. 1.15 and the
Jones matrices for the various optical elements are presented below. For the
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Figure 1.15: The experimental arrangement for longitudinal MOKE includ-
ing L=laser, P=Glan-Thompson polarizer, S= sample, PEM=photoelastic
modulator, A= analyzer, D= photodetector, DAQ= data acquisition device,
EM= electromagnet. The perceived beam path is shown in red.

initial polarizer oriented at an angle β with respect to horizontal, we have

P =

(
cos2 β sin β cos β

sin β cos β sin2 β

)
, (1.65)

and for the analyzer at an angle α

A =

(
cos2 α sinα cosα

sinα cosα sin2 α

)
. (1.66)

Magneto optic Kerr effect is relatively weaker effect than Faraday, which neces-
sitates the use of phase sensitive detection technique, which can be employed
by several methods. For example, light modulation can be achieved with op-
tical chopper or magnetic field (discussed in the Section 1.3.7). However we
adopted the light polarization modulation technique with photoelastic modu-
lator. The working principle of the photoelastic modulator is the photoelastic
effect, i.e., the change in optical properties of the dielectric medium when sub-
jected to mechanical stress. The stress is imposed by a piezoelectric transducer
operated at a frequency tuned to the natural frequency of the dielectric which
is fused silica The matrix for the photoeleastic modulator is given by

M =

(
eiϕ/2 0
0 e−iϕ/2

)
(1.67)
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where ϕ = ϕ◦ sin(ωt) is the periodic retardation imposed by an electric field.
The magnetic sample has the matrix of the following form

R =

(
r̃p r̃ps
r̃sp r̃s

)
(1.68)

where diagonal terms are normal Fresnel reflection coefficients and are indepen-
dent of magnetization similar to the dielectric tensor, defined earlier in Section
1.3.1. The off-diagonal terms describes the coupling strength between s and
p polarization components. The magnitudes of r̃sp and r̃ps are proportional
to magnetization and are linearly dependent on M, consequently they change
sign upon the reversal of magnetization of the medium. These co-efficients
also reflect the ability of the medium to change an incident p-polarized light to
reflected s-polarized light and vice versa. For example, for linearly vertically
polarized incident light, the action of the sample matrix will be(

r̃p r̃ps
r̃sp r̃s

)(
0
1

)
=

(
r̃ps
r̃s

)
. (1.69)

The off-diagonal terms are given as r̃ps = rpse
iδps = −r̃sp = −rspeiδsp . The

terms δi are the corresponding phase angles. Following the schematic arrange-
ment shown in Figure 1.15, the output electric field vector after exiting through
analyzer can be computed as(

Ep
Es

)
r

= AM RP

(
Ep
Es

)
i

, (1.70)

where r and i represents reflected and incident Jones vectors. The polarizer
is used to control the incident beam polarization, the PEM easy axis is along
x-direction (lab frame) while the analyzer angle can be varied to obtain the
maximum sensitivity for the signal. The Jones calculus for this particular
arrangement of elements with polarizer kept at β = 90◦ is computed as(

Ep
Es

)
r

=

(
cos2 α sinα cosα

sinα cosα sin2 α

)(
eiϕ/2 0
0 e−iϕ/2

)(
r̃p r̃ps
r̃sp r̃s

)(
0
1

)
(1.71)

=

e− iϕ
2 cos(α)

(
eiϕ cos(α)rps + sin(α)rs

)
e−

iϕ
2 sin(α)

(
eiϕ cos(α)rps + sin(α)rs

) . (1.72)
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The intensity received at the photodetector is

I ∝ E∗
rEr = |Er|2

= K
[
cos2 α

[
|rps|2 cos2 α + |rs|2 sin2 α + 2r̃∗s r̃ps cos(α) sin(α)

× e−iϕ◦ sin(ωt) + 2r̃∗psr̃s cos(α) sin(α)e−iϕ◦ sin(ωt)] (1.73)

= K
[
|rps|2 cos2 α+|rs|2 sin2 α+rpsrs sin(2α) cos

(
ϕ◦ sin(ωt+δps−δs)

)]
(1.74)

The constant K represents the conversion of electric field squared to intensity
units. The last term in expression (1.74) can be further simplified using the
Jacobi-Anger expansion [47] which states that

cos(z sin θ) = J0(z) + 2
∞∑
n=1

J2n(z) cos(2nθ) (1.75)

sin(z sin θ) = 2
∞∑
n=1

J2n−1(z) sin
(
2n− 1

)
(θ) (1.76)

where Jζ(ϕ) is the Bessel function of first kind and ζ is an integer. The Bessel
function is defined as

Jζ(z) =
∞∑
m=0

(−1)m

m! Γ(m+ ζ + 1)!

(
z

2

)2m+ζ

(1.77)

where Γ is the gamma function Γ(n) = (n − 1)! [47]. Hence the general
expression for intensity can be rewritten as

I

K
= |rps|2 cos2 α + |rs|2 sin2 α + 2J0(ϕ◦)rsrps × cos(δs − δps) sinα cosα

+ 4J1(ϕ◦)rsrps sin(ωt) sin(δs − δps) sinα cosα

+ 4J2(ϕ◦) cos(2ωt)rsrps cos(δs − δps) sinα cosα + · · · . (1.78)

Let’s analyze this expression for various orientations of the analyzer angle
α. For α = 0, I/K = |rps|2 showing that the intensity directly determines
the magnitude of the Fresnel coefficients, i.e., |rps|2. Similarly for α = 90o,
the expression (1.78) is simplified to I/K = |rs|2. However for α = 45o and
α = 135o, the intensity expression comprise the sum of the magnitude of
Fresnel coefficients (steady component) and time varying component which
are given by

I

K
=

1

2
|rps|2 +

1

2
|rs|2 + J0(ϕ0)rsrps cos(δs − δps) + 2J1(ϕ0)rsrps sin(ωt)

× sin(δs − δps) + 2J2(ϕ0) cos(2ωt)rsrps cos(δs − δps) + · · · (1.79)
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and

I

K
=

1

2
|rps|2 +

1

2
|rs|2 − J0(ϕ0)rsrps cos(δs − δps)− 2J1(ϕ0)rsrps sin(ωt)

× sin(δs − δps)− 2J2(ϕ0) cos(2ωt)rsrps cos(δs − δps) + · · · (1.80)

respectively.

We strive to find the angle of rotation and ellipticity specified by the gen-
eral expressions (1.16) and (1.17) for a polarization ellipse. In the present
case, r = r̃s/r̃ps, therefore the rotation angle and ellipticity can be redefined
in terms of the Fresnel coefficients as

tan 2θk ≈ 2θk =
rps
rs

cos δ (1.81)

sin 2χk ≈ 2χk =
rps
rs

sin δ (1.82)

where δ = δs − δps and subscript k is attributed to the Kerr effect. Using
equations (1.81) and (1.82) and algebraic manipulation, the intensity (1.79)
can be rewritten as

I

K
= 1+

|rps|2

2|rs|2
+J0(ϕ0)θk+4J1(ϕ0)χk sin(ωt)+4J2(ϕ0) cos(2ωt)θk+· · · . (1.83)

Equation (1.83) corresponds to two different frequencies (ωt) and (2ωt), which
are called first and second harmonics in addition to a dc value.

Ĩ0 = 1 +
|rps|2

2|rs|2
+ J0(ϕ0)θk (1.84)

Iω = 4J1(ϕ0)χk (1.85)

I2ω = 4J2(ϕ0)θk (1.86)

In our experimental scheme, we have chosen the value of ϕ0 = 108o which
renders J0(ϕ0) = 0. Furthermore, rps ≪ rs, hence r2ps/r2s ≈ 0, which reduces
Ĩ0 = I0 = (1/2)r2s . It is also obvious that rotation angle can be extracted from
equation (1.86) as

θk =

√
2I2ω

4J2(ϕ0)I0
(1.87)
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where
√
2 comes from the fact that the lockin amplifier outputs the rms value.

We conclude this section with the comment that the measurement of the Kerr
rotation angle requires the second harmonic measurement which can be per-
formed by phase sensitive detection as described earlier in Section 1.3.5. The
next section lays out the experimental details and implementation of PSD for
the Kerr measurements performed in our lab.

1.4.5 Experimental Method for MOKE Studies

The experimental method is based on phase sensitive detection where modula-
tion is achieved by a photoeleastic modulator as described previously [48–51].
A photograph showing the experimental arrangement of all optical elements is
shown in Figure 1.16.

a)

L

I

P
AL

S M

A D

EM

Figure 1.16: Experimental arrangement of optical elements for polar MOKE.
The percieved beam path is highlighted in red where L=laser, I= iris di-
aphragm, P=polarizer, S= magnetic thin film, PEM= photoelastic modula-
tor, A= analyzer, D= photodetector and EM= electromagnet.

Since Kerr rotation and ellipticity are usually small in magnitude ≈ 10−3 rad,
suitable arrangement of optical elements is crucial to achieve high signal to
noise ratio.

For a high degree of polarization, the light from He-Ne laser (λ = 632.8 nm)
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passes through a Glan-Thompson polarizer (Thorlabs GTH10-A) with an ex-
tinction ratio of 106:1. An aspheric lens of focal length f = 250 mm is used
to focus the light on the sample surface. The reflected light is then modulated
sinusoidally by the photoelastic modulator (Hinds Instrument, PEM-100) op-
erated at 50 kHz. The modulation signal is also used as a reference for the
lockin amplifier (Stanford Reasearch System, SR-830). The modulated beam
traverses through the analyzer (Thorlabs, LPVIS050-A) to reach a high speed
photodetector (Hinds Instruments, DET-200).

The sample is placed between the poles of an electromagnet (GMW-3470)
which is driven by a bipolar power supply (KEPCO). The strength of the mag-
netic field is measured with a Gaussmeter (Lakeshore-410) against the input
current. For convenience, this graph is stated as calibration curve and is pre-
sented in Fig. 1.17 (we will explain shortly how this calibration curve is used in
our measurements). The slope of the graph yields the magnitude of magnetic
field per unit current which is (45 ± 1) mT/A. The complete MOKE setup
is integrated and interfaced with computer in Labview environment (A.1.1)
through a data acquisition device (National Instruments, USB-6001).
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Figure 1.17: Magnitude of magnetic field produced between the poles of the
electromagnet against the input current. The data is curve fitted linearly and
shown as solid lines.
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This concludes the discussion of experimental details on MOKE. For test-
ing the capabilities of our experimental setup, we obtained standard samples,
i.e., ferromagnetic thin films, from Durham Magneto Optics with known val-
ues of the Kerr rotation. In addition, we also deposited ferromagnetic thin
films using magnetron sputtering. The next section introduces the reader to
this topic in particular.

1.4.6 Thin Film Deposition by Magnetron Sputtering

Sputtering is a physical vapor deposition technique for thin film deposition.
This involves the generation of a plasma inside a vaccum chamber and posi-
tively charged ions and electrons are accelerated by high voltage imposed upon
the plasma. The accelerated ions strike the negative electrode with sufficient
energy to dislodge and eject atoms from the target. These atoms will be ejected
in a typical line-of-sight cosine distribution from the face of the target and will
get deposited to a substrate placed in close proximity of the sputtering cath-
ode. The sputtering process is illustrated in Figure 1.18.

The target material of which the thin film is desired is placed inside a vac-
uum chamber. Once the desired vacuum has been achieved, the sputter gas
(argon, oxygen, nitrogen etc.) is introduced in the chamber at constant pres-
sure using a mass flow controller. The sputtering is initialized by applying high
voltages which ionizes the sputter gas and creates a plasma inside the chamber.
These positive ions are attracted towards the negatively biased target mate-
rial at high velocities that sputters off atomic size particles from the surface
of the target source material due to the momentum of the collisions. These
particles cross the vacuum deposition chamber of the sputter coater and are
deposited as a thin film of material on the surface of the substrate to be coated.

The sputtering process can be distinguished as DC or RF sputtering depending
on the type of applied potential difference. Metallic target can be sputtered
by direct current power supply (DC-sputter) and insulators are deposited by
using radio frequency power supply (RF-sputter). Further, the application of
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Figure 1.18: The schematic illustration of the mechanical and electrical com-
ponents involved in magnetron sputtering process. Here HVG= high vacuum
gauge, M= cylindrical magnets below the sputter targets, MFC= mass flow
controller and TM= thickness monitor.

magnetic field can be used to trap ions and electrons which in turns enhances
the efficiency of ionization process and allow the plasma to be generated at
lower pressure. This kind of sputtering is often referred to “magnetron” sput-
tering.

The number of atoms ejected or “sputtered off” from the target or source
material is called the sputter yield. The sputter yield can be controlled by
many key parameters, e.g., base pressure, substrate temperature, target to
substrate distance, applied voltages and more importantly sputter gas pres-
sure. The sputter gas pressure increases the rate at which atoms are ejected
from the target surface and results in non uniform clusteral growth of target
material on the substrate. Further, the substrate temperature is quite crucial
for nucleation of atoms being deposited on substrate which in turns affect the
uniformity of thin films. The optimization of these key parameters is an iter-
ative process and it may take several weeks to obtain desired results.
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In our case thin films have been deposited by using the magnetron sputter-
ing unit (VTS Korea DaON 1000s), equipped with an RF and two DC power
supplies. Before deposition, we followed the standard protocol for cleaning
the substrate which is essential for deposition of good quality thin films. The
substrate were first dipped in acetone and placed in an ultrasonic bath for 15
minutes. The same procedure is followed with iso-propanol and distilled water.
The process may be repeated if any dust residue remained on the surface.

Table 1.2: Optimized parameters for magnetron sputtering of magnetic thin
films.

Base Pressure 1.0× 10−6 Torr
Ar Pressure 4.8 mTorr
Ar flow rate 50 sccm
RF power 100 Watt

Substrate temperature 25◦C
Target to substrate distance 7 cm

We have optimized the sputter parameters for deposition of magnetic thin
films of permalloy Ni80Fe20, Nickel (Ni), permendur (Co50Fe50) on silicon (Si)
and sapphire ( Al2O3) substrates and are listed in Table 1.2. To minimize the
lattice mismatch, we deposited a buffer layer of thickness 2 nm of platinum
(Pt) between substrate and magnetic thin film. The thickness of thin films is
estimated by analyzing the cross-sectional image of thin film using scanning
electron microscope. Moreover, the surface analysis is also performed to de-
termine the quality of sputtered thin films. The results of SEM are presented
in the Appendix A.1.

1.4.7 MOKE Results for Ferromagnetic Thin Films

A set of ferromagnetic thin films have been utilized to study the magnetiza-
tion response and accuracy of the MOKE setup. The scheme for measuring
the Kerr response is as follows. All optical elements are arranged according to
MOKE measurement geometry, i.e., L or P-MOKE. We intend to measure the
change in intensity of the reflected light as the magnetic field at the sample is
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varied. This is achieved by sweeping current I which is manifested as a change
in magnetic field.

It is pertinent to mention two important points while setting the sweep fre-
quency for current I. First, the sweep signal must be slow enough to sample
that magnetization remains in quasi-equilibrium state. Second, the sweep fre-
quency and lockin integration time constant must be adjusted in a way that
lockin must register the change in intensity before the current changes to a
new value. For this purpose, we simulated a triangular wave of frequency 0.01

Hz in a Labview program which is fed to the bipolar power supply (KEPCO,
BOP-50-8D) through the analog output channel of the DAQ. This in turns
drives the stipulated current through the coil of electromagnet. In response
to the variation of magnetic field, the intensity measured at lockin amplifier
is read out by analog inputs of DAQ with an integration time constant of 300
ms, unless stated otherwise.

The Labview program registers the data in the computer which contains the
column vectors for current and lockin intensity. The current is multiplied with
the calibration factor calculated from the slope of Fig. 1.17 to accurately es-
timate the magnitude of magnetic field at the sample. The Labview program
for MOKE setup is given in the Appendix A.1.1.

Figure 1.19 illustrate the results of MOKE measurement of ferromagnetic
permalloy thin film sputtered on silicon and sapphire substrates. Fig. 1.19(a-
b) show the 1st and 2nd harmonic longitudinal MOKE response of Si/Pt/NiFe
thin film, respectively. Further, Fig. 1.19(c) depicts only the first harmonic
of sapphire/Pt/NiFe thin film whereas Fig. 1.19(d) shows the polar MOKE of
Si/Pt/NiFe. The graphs are plotted for the lockin intensity against the mag-
netic field. The soft magnet behavior of NiFe can be clearly seen in the figure
and depicts the magnetization easy axis lying in the plane of thin film. In the
case of permalloy grown on sapphire substrates, a slight increase in coercivity
is observed.
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Figure 1.19: a) First harmonic of longitudinal MOKE (L-MOKE) performed
on Si/Pt/NiFe and b) second harmonic measurement of permalloy thin
film on silicon substrate using L-MOKE. c) First Harmonic of L-MOKE of
Al2O3/Pt/NiFe thin film and d) polar MOKE (P-MOKE) of Si/Pt/NiFe thin
film.

To calculate the absolute Kerr rotation of the samples, we measured the dc
value of light intensity at photodetector in the absence of magnetic field. Dif-
ferent methods can be used to measure the dc component given in equation
(1.84), however we employed the optical shutter (Stanford Research System,
SR-470) in the beam path just before the photodetector in the experimental
arrangement 1.15. The optical shutter blocks/unblocks the laser light me-
chanically. This is operated at a frequency of 100 Hz and the rms output is
measured by the lockin amplifier in the absence of magnetic field.

The ratio of intensities according to equation (1.87) yields the magnitude of
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Figure 1.20: a) First harmonic and b) second harmonic polar MOKE measure-
ment of Ta/Pt/CoFeB/Pt thin film. The data presented here is averaged over
14 run.

the Kerr rotation θk ≈ 14 mdeg in case of Si(substrate)/Pt(8 nm)/NiFe(20
nm) sample.

Similarly Figure 1.20 presents the first and second harmonic measurements for
ultrathin film Si(substrate)/Ta(4 nm)/Pt(10 nm)/CoFeB(0.6 nm)/Pt(2 nm)
obtained from Durham Magneto-optics for testing purpose. The Kerr rotation
angle measured for this thin film is 23 mdeg which is comparable to the re-
ported rotation of 25 mdeg.

The foregoing results completes the discussion of the first order magneto-optic
effects, the Faraday and the Kerr effect. This chapter establishes the ba-
sic theoretical ground for magneto-optic investigation and measurement tech-
niques for their measurements. The next chapter deals with the second order
magneto-optic effects, i.e., the Voigt effect, its measurements and techniques
establishing low-temperature magneto optic studies of the terbium gallium
garnet crystal.
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Chapter 2

Magneto-Optic Rotations under
Transverse Magnetic
Fields—the Voigt Effect

The previous chapter discussed the mainstream magneto-optic effects, the
Faraday and the Kerr, which are important for their widespread utilization in
device manufacturing, technological advancement and role in magnetic char-
acterization. In this chapter, we will discuss the relatively lesser known mag-
neto optic effect (the Voigt effect). We set up the discussion by invoking a
phenomenological description of Voigt effect based on the Jones calculus as
outlined in the previous chapter. Then follows the discussion of Stokes vector
and polarimetry. Afterwards, we describe the experimental arrangement for
measurement in the Voigt geometry and present our experimental results.

2.1 Background and Motivation

A magnetic field induces a magnetization M inside a paramagnetic material
changing its response to polarized light; qualifying as a preliminary investiga-
tion in the realm of magneto-optics [1]. The response manifests as a rotation
θ and ellipticity χ imparted to the outgoing beam. The orientation of M rel-
ative to the wave vector k determines the nature, amplitude, reciprocity and
order of magneto-optic activity. The strongest of these effects, and the most
prominently studied, is undoubtedly the Faraday rotation which is observed
when M∥k. The effect is first order in M, originates from magnetic circular
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birefringence (MCB), and is non reciprocal, θ(−k) = −θ(k) as discussed in
detail in the previous Chapter.

In paramagnetic crystals, there also exists a much smaller effect called the
Voigt [2] or Cotton-Mouton effect [3] which registers when the magnetization
is perpendicular to the wave vector, M ⊥ k. The phenomenon is reciprocal,
θ(−k) = +θ(k) and quadratic, i.e., ∝ |M|2. The Voigt effect originates from
magnetic linear birefringence (MLB) and magnetic linear dichroism (MLD)
which are defined shortly. Briefly these correspond to the real and imaginary
values of the asymmetry in refractive indices ∆n = n1−n2 where n1 and n2 are
defined for polarizations parallel and perpendicular to the magnetization. The
smallness of the effect can be gauged from some typical values. For example,
the asymmetry is reported at a mere (6.7± 0.5)× 10−15 for water vapor [4] at
room temperature and 1 T and ≈ −5× 10−4 for the terbium aluminate garnet
Tb3Al5O12 at 4.2 K and 4 T [5]. Clearly sensitive techniques are required for
recording these asymmetries.

For conductive and semiconducting materials, however relatively larger effects
can be observed. For example we deduce a value of ≈ 3× 10−4 from the data
provided on the doped dilute magnetic semiconductor (Ga0.98Mn0.02)As [6].
For conductive media, the effective permittivity tensor ε̃ includes the conduc-
tivity tensor σ at optical frequency ω and is given by ε̃ = εb + iσ/ω. In these
materials, the magneto-optic rotations are dominated by the field-dependent
terms in σ rather than the non-conductive background part εb. This effect has
been used to reveal magnetic anisotropies related to structural patterning in
Co films [7], spin-orbit torques transferred across interfaces [8] and magneti-
zation dynamics in Huesler compounds [9].

The Voigt studies of non-conducting garnet crystals are however less com-
mon [3, 5, 10]. In the present work, we report systematic investigations of
MLB and MLD for terbium gallium garnet Tb3Ga5O12 (TGG) at cryogenic
temperatures (8–100 K) and variable dc magnetic fields. Although crystalline
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TGG has been extensively studied in the Faraday configuration from room
temperatures all the way down to cryogenic temperatures [11] but measure-
ments in the Voigt geometry are lacking. The material’s prominence owes to
some highly desirable features such as large Verdet constants, high thermal
conductivity [12] and high damage threshold [13] making it into an almost
archetypal material.

Furthermore, the Voigt effect offers an invaluable tool for the investigation
of antiferromagnets (AFs). Antiferromagnetic materials lack the macroscopic
magnetization due to the antiparallel alignment of neighbouring spins in a
crystal. The magnetic field required for reorientation of AFs could reach tens
or hundreds of Tesla. In addition, the AFs materials are much difficult to access
by first order magneto-optic phenomena. However, MLB and MLD are both
quadratic with respect to M , antiparallel magnetization vectors will both give
additive rotations which can be analyzed by means of the expression derived
above. Hence by rotating the crystal, or the input polarization, it is possible to
measure δ and hence the orientation of the Néel vector. Indeed this has been
beautifully demonstrated in the reference [14] and evokes exciting possibilities
for studying antiferromagnets [15, 16]. In another experiment, ultrafast spin
dynamics in antiferromagnet NiO has been attributed to the inverse Voigt ef-
fect [17].

Additionally, interesting quantum phenomena have also been detected in TGG
which include the obsevation of the phonon Hall effect [18], excitation of mag-
netic resonances at THz [19] and microwave frequencies [20], and the obser-
vation of the inverse Faraday effect [21]. The present work complements pre-
vious studies and introduces an altogether new perspective for TGG crystals
to be used in the unusual Voigt geometry, providing quantitative data on the
magnetic field induced asymmetries in the refractive index, ∆n, from which
temperature dependent coefficients can also be deduced. The theoretical back-
ground is presented in Section 2.2 and Section 2.3 describes the experimental
work.
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2.2 Theory
2.2.1 Phenomenological Description of the Voigt Effect

The dielectric tensor capturing magneto-optic effects is represented by equation
(1.34) and is reproduced here

εMO = ε0

 n2
x −iQ 0
iQ n2

y 0
0 0 n2

z

 . (2.1)

x x x x x x x
x x x x x x x
x x x x x x x

x x x x x x x
x x x x x x x α

x

y

MOE
A

D

L

P B

z

Figure 2.1: The Voigt effect geometry. P denotes the light polarized in the x-y
plane transverse to the propagation direction z-axis, MOE = magneto-optic
element, B = magnetic field applied into the page, A = analyzer at an angle
α and D = photodetector.

Magnetic circular birefringence (MCB) and magnetic circular dichroism (MCD)
relate to the off-diagonal whereas magnetic linear birefringence (MLB) and
magnetic linear dichroism (MLD) relate to the diagonal terms. The latter
two are the main theme of the present Chapter. For a cubic crystal we have
nx = ny = nz = n where n represents the refractive index in the absence of
magnetization. Here we assume that the radiation is propagating along the ẑ
direction and is polarized inside the transverse (x̂-ŷ) plane as depicted in Fig.
2.1.

Let’s first assume Q = 0 which which corresponds to the axial magnetiza-
tion Mz = 0. Without loss of generality we also assume that My = 0 and
Mx =M (i.e. the sample is magnetized along x̂). The magnetic field lifts the
nx = ny degeneracy introducing an asymmetry ∆n and the induced refractive
indices become nx = n+∆n/2 and ny = n−∆n/2. By solving Eq. (2.1), the
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normal modes of the tensor are the linear polarization states Eox̂ and Eoŷ.
The wave vectors for the normal modes are given by ω/c(n±∆n/2) where ω
and c represent the angular frequency and speed of light.

The asymmetry ∆n = ∆n′ − i∆n′′ is a complex number, its real (∆n′) and
imaginary (∆n′′) components are designated MLB and MLD respectively.
Even though these terms show a quadratic dependence on Mxy, the terms
are classified linear ascribed to their linear normal modes. In order to probe
∆n with maximal sensitivity, we input light that is an equal superposition of
the normal modes and in Jones notation

E1 =
Eo√
2

(
x̂+ ŷ

)
. (2.2)

After emerging from a crystal of axial length d the state becomes

Eo
eikond√

2

(
ei∆β

′d/2x̂+ e−i∆β
′′d/2ŷ

)
. (2.3)

For convenience, we have defined ∆β′ = ko∆n
′ and ∆β′′ = ko∆n

′′ and ko =

ω/c. The polarization angle θ (with respect to the x̂ axis) and the ellipticity
χ ∈ [−π/4, π/4] can be immediately extracted from the complex elements in
the Jones vector (2.3). For a Jones vector with elements

(
|Ex|eiϕx , |Ey|eiϕy

)T ,
the angles are given by equations (1.16) and (1.17), defined earlier in the
previous chapter. Due to the explicit use in the forthcoming sections, we
reiterate these angles here as

tan 2θ =
2r

1− r2
cosϕ (2.4)

sin 2χ =
2r

1 + r2
sinϕ. (2.5)

where r = |Ey|/|Ex| and ϕ = ϕy − ϕx. Applying these equations to the state
in (2.3), we obtain closed form expressions for the angles

tan 2θ = − cos (∆β′ d)

sinh (∆β′′d)
(2.6)

sin 2χ =
sin (∆β′ d)

cosh (∆β′′d)
. (2.7)
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Hence the net magneto-optic rotation affected by the element will be |θ−π/4|
(since the initial polarization is π/4). In the limit of small MLD and MLB,
∆β′d,∆β′′d≪ 1, we deduce

tan 2θ ≈ −1/(∆β′′d), and (2.8)

sin 2χ ≈ ∆β′d, (2.9)

indicating that the rotation is exclusively caused by MLD and ellipticity by
MLB. Interestingly, this is opposite to what is observed in conventional Fara-
day rotation experiments wherein the rotation is caused by MCB (i.e. Q′) and
the ellipticity originates from MCD (i.e. Q′′) as derived in the Sections 1.3.1
and 1.3.2 of the previous chapter, respectively. Equations (2.8) and (2.9) in-
deed quantify the rotation and variation in the ellipticity caused by the Voigt
effect but the discussion will be incomplete without investigating the intermix-
ing of these effects. The next section will investigate the intermixing of linear
birefringence and dichroism.

2.2.2 Intermixing of Magnetic Linear Birefringence and
Dichroism Effects

Following the experimental geometry illustrated in the Fig. 2.1, we can pass
the state in (2.3) through an analyzer oriented at an angle α with respect
to x̂ and measure the signal on a subsequently placed detector. Using Jones
calculus we predict an output intensity

I(α) = Io

(
cosh (∆β′′d) + sinh (∆β′′d) cos (2α) + cos (∆β′d) sin (2α)

)
(2.10)

where Io is a proportionality factor measured at zero magnetic field and α =

0. The terms ∆β′d and ∆β′′d represents the magnetic linear birefringence
and dichroism respectively. The form of the intensity shows that MLD and
MLB are intertwined with one another. It is relevant to point the reader
towards two important corollaries. First, suppose the input polarization makes
an angle of (π/4 + δ) with the magnetization which could arise due to the
slight misalignment of polarizer or birefringence of optical elements, thereby
modifying the input field, (2.2) to

E1 = Eo
(
cos (π/4 + δ)x̂+ sin (π/4 + δ)ŷ

)
. (2.11)

59



2.2. THEORY

Following an analogous calculation based on Jones analysis, the output inten-
sity is determined as

I(α) = Io

(
cosh (∆β′′d)

{
1− sin (2δ) cos (2α)

}
+ sinh (∆β′′d)

×
{
cos (2α)− sin (2δ)

}
+ cos (∆β′d) sin (2α)

{
cos(2δ)

})
(2.12)

where the modified terms are highlighted through their placement inside curly
brackets. As a verification, expression (2.10) is correctly reproduced for δ = 0.
This scenario is highly relevant to probing the magnetic structure of antifer-
romagnets, which by virtue of their compensated magnetization, have largely
remained elusive for magneto-optic investigations.

The second corollary is the presence of circular effects concomitant with the
linear ones. In the previous chapter, Section 1.3.3 elaborated the intermixing
of pure magnetic circular and linear birefringence. Here, we further extend the
analysis to a more general case where linear and circular magneto-optic effects
merges with the linear and circular dichroism.

2.2.3 Intermixing of Linear and Circular Effects

Clearly a nonzero axial magnetization (Mz ̸= 0, Q ̸= 0) modifies the results
discussed so far. For example, this scenario can arise out of a stray component
in the axial direction. For the complete solution to the full tensorial problem we
observe that the normal modes of the magneto-optic tensor are the elliptically
polarized states,

w⃗1 =
1√
2

(
−i(1 + sin ξ), cos ξ

)T
and w⃗2 =

1√
2

(
cos ξ,−i(1 + sin ξ)

)T
(2.13)

with the respective refractive indices

γ1 =

(
n2 +

√
Q2 + ζ2

)1/2

and γ2 =

(
n2 −

√
Q2 + ζ2

)1/2

. (2.14)

In (2.13), we have defined the parameter ζ = (n2
1 − n2

2)/2 ≈ n∆n which
characterizes the asymmetry in the linear direction and tan ξ = ζ/Q which
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determines the mixing of the linear and circular effects. The input state (2.2)
can now be resolved into the eigenmodes, (2.13), each mode picks up a phase
eikoγid, (i = 1, 2) inside the crystal and the output electric field vector in
{w⃗1, w⃗2} basis will be

Eo
∣∣
w⃗1,w⃗2

=

((√
1− sin ξ + i

√
1− sin ξ

)
eik◦γ1d( cos ξ√

1−sin ξ − i cos ξ√
1+sin ξ

)
eik◦γ2d

)
. (2.15)

Implying a similar approach we used earlier in conjunction with Eq. (1.26),
this state can be transformed back to the rectilinear coordinates by a transfer
matrix P given by

P =
1

2

(
−i

√
1 + sin ξ i cos ξ√

1+sin ξ√
1− sin ξ cos ξ√

1−sin ξ

)
. (2.16)

Consequently, the state in equation (2.15) will get transformed as

Eo
∣∣
x̂,ŷ

= PEo
∣∣
w⃗1,w⃗2

(2.17)

=
1

2

(
−i

√
1 + sin ξ i cos ξ√

1+sin ξ√
1− sin ξ cos ξ√

1−sin ξ

)(
ei tan−1(f)eik◦γ1d

ei tan−1( 1
f
)eik◦γ2d

)
(2.18)

where f =
(
1 + sin ξ

)
/ cos ξ. After some algebra it can be shown that the

emergent state in the x̂, ŷ basis is

Eo
∣∣
x̂,ŷ

=
1

2

1√
1 + sin ξ

(
−ieiθ1(1 + sin ξ) + eiθ2 cos ξ
eiθ1 cos ξ +−ieiθ2(1 + sin ξ)

)
, (2.19)

where θ1 = tan−1(f) + koγ1d, θ2 = tan−1(1/f) + koγ2d. This form does not
provide much physical insight in a straightforward way but becomes the basis
for calculating the rotation and ellipticity. Subsequently, the components of
output electric field can be readily obtained by implying trigonometric manip-
ulations on equation (2.19) and are given by

|E◦x| =
1√
2

(√
1− cos ξ cos

(
tan−1(f)− tan−1(

1

f
) + k◦(γ1 − γ2)d

))
(2.20)

|E◦y| =
1√
2

(√
1 + cos ξ cos

(
tan−1(f)− tan−1(

1

f
+ k◦(γ1 − γ2)d

))
(2.21)

Hence the rotation θ and ellicpticty angle χ is calculated using the recipe in
(2.4) and (2.5).

tan 2 θ =
cot (θ1 − θ2)

cos ξ (2.22)

sin 2χ = −sin ξ sin (θ1 − θ2). (2.23)
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These expressions provide a quantitative relationship for the magnitude of an-
gle of rotation θ and elliptcity χ when a medium exhibits all of these magneto
optic effects i.e., MLD, MLB, MCD and MCB. It also highlights the fact that
these effects are inextricably linked together and jointly determine the rotation
and ellipticity.

This completes the discussion of intermixing of linear and circular effects.
The next task is to measure the rotation and ellipticity angles in the Voigt ge-
ometry. The measurement of magnetic linear birefringence (the Voigt effect)
can be approached in several ways outlined by several authors [1, 22] but we
adopted a more comprehensive approach (which we will discuss shortly) based
on the measurement of the Stokes vector.

2.2.4 The Stokes Vector

For perfectly polarized light, Jones calculus suffices the need for determination
of characteristics of polarization ellipse as discussed in the previous Chapter
(section 1.2). However, Jones vectors cannot be used to describe partially
polarized beam of light. Another set of parameters is required for the de-
scription of partially polarized light, a combination of totally polarized and
unpolarized components, which could encompass the complete characteriza-
tion of polarizaiton ellipse. The Stokes vector (I,M,C, S) constitute such a
set of parameters [22]. The Stokes parameters provides the advantage and
convenience of polarization measurement as each parameter corresponds to
measurable intensities. The Stokes parameters in a fixed basis are given by

I =
〈
E2
x

〉
+
〈
E2
y

〉
M =

〈
E2
x

〉
−
〈
E2
y

〉
C =

〈
E2
d

〉
−
〈
E2
a

〉
S =

〈
E2
l

〉
−
〈
E2
r

〉
(2.24)

where the subscripts represent different bases, x̂, ŷ are the Cartesian axes, b̂, â
are the Cartesian axes rotated by ±45◦ and the circular bases are defined by
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l̂ = (x̂+ iŷ)/
√
2 and r̂ = (x̂− iŷ)/

√
2. For convenience, the Stokes parameters

are represented by a column vector
I
M
C
S

 . (2.25)

The first parameter I represents the total intensity of the beam, M describes
the degree of polarization with respect to the two orthogonal axes, x and y

axes and parameter C embodies the plane polarization oriented at 45◦ with
respect to the x-axis and S shows the degree of circular polarization, i.e.,
S = −1 for left circular polarization and +1 for right ciruclar polarization. It
is pertinent to note that for perfectly polarized light, only three parameters
are independent since the relation

I2 =M2 + C2 + S2 (2.26)

holds true for completely polarized light. Whereas for partially polarized light
I2 ≥M2 +C2 + S2 wherein the inequality arises due to the presence of unpo-
larized components of light1.

Therefore for completely unpolarized components of light, the Stokes vector
can takes the form 

1
0
0
0

 . (2.27)

Since the Stokes parameters are dependent on the choice of axes [23], there
must exist some rotation matrix which transforms the Stokes vector from one
coordinate system to another. The transformation can be written as

I ′

M ′

C ′

S ′

 = R


I
M
C
S

 (2.28)

1In Chapter 4, we’ll change gears to using another definition of Stokes parameters wherein
I ↔ S◦, M ↔ S3, C ↔ S1 and S ↔ S2. This is to conform to a quantum mechanical
description which matches the conventional Bloch sphere representation of quantum states.
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Figure 2.2: The description of Poincare sphere where a) a transfer matrix
R(β) rotates the point P1(M , C, S) to another point P2(M ′, C ′, S ′) by an
angle β and b) the illustration of different commonly encountered polarization
states on the sphere.

where the transformation matrix R

R(β) =


1 0 0 0
0 cos 2β sin 2β 0
0 − sin 2β cos 2β 0
0 0 0 1

 , (2.29)

and β is the rotation angle. The rotation in the opposite sense changes the
sign of the sine function.

Furthermore, Eq. (2.26) represents an equation for a sphere of radius I with
co-ordinate axes M , C and S. This scenario is visualized in Fig. 2.2. The
three dimensional graphical approach offers a more convenient method for the
description and manipulation of polarized light and is known as the Poincare
sphere [22]. Each point on the surface of Poincare sphere represents a polar-
ization state with particular Stokes parameters (M , C, S). The action of the
rotation matrix (2.29) for an arbitrary polarization state can be visualized by
means of Poincare sphere and is illustrated in Fig. 2.2(a) where a point P1

with particular set of Stokes parameter, is being rotated through an angle β
to another point on the Poincare sphere.
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All linear polarization states lie on the equator and circularly polarized states
are listed at the poles as depicted in the Fig. 2.2(b). Whereas intermediate el-
liptical states are continuously distributed between the equator and the poles.
Any two orthogonal states are represented on the antipodal points of Poincare
sphere2.

The relationship between the Stokes vector and spherical orientation and ellip-
ticity, θ and χ, can be obtained by the projection of point P on the coordinate
axis of the Poincare sphere as depicted in the Fig. 2.2(a) and is given by [1]

M = I cos 2χ cos 2θ (2.30)

C = I cos 2χ sin 2θ (2.31)

S = I sin 2χ (2.32)

The characteristics of polarization ellipse, from the Poincare representation of
Stokes vector is given by [22]

θ =
1

2
tan−1

( C
M

)
0 ≤ θ ≤ π (2.33)

χ =
1

2
sin−1

(S
I

)
− π

4
≤ χ ≤ π

4
(2.34)

The shape of the ellipse is given by S/I and handedness can be inferred from
the sign of S [24].

The aim of this discussion was to familiarize the reader with the Stokes vec-
tor which form the bases of our experimental investigation and how they are
related to our variables of interest, i.e., rotation θ and ellipticity χ. Once
the Stokes vector are determined, the estimation of rotation and ellipticity is
straight forward, as dictated by equations (2.33) and (2.34). The next section
will lay the theoretical background for the Stokes vector estimation from the
intensity measurement of light.

2In Chapter 4, we employ the Bloch sphere, sometimes also called the polarization sphere
[24], in line with quantum terminology.
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2.2.5 Stokes Polarimetry

For measurement of the Stokes vector, the intensity measurement needs to be
determined at different orientations of polarimetry elements. We setup the
discussion with the experimental arrangement as illustrated in the Fig. 2.3.
In this configuration, for polarized light impinging on a retarder with fast axis
at angle δ with the x-axis, followed by an analyzer at an angle α, the intensity
measured at the detector can be determined by Mueller’s calculus [22]

I ′

M ′

C ′

S ′

 = AR(α− β) δ R(β)


I
M
C
S

 (2.35)

where R(β) is given by Eq. (2.29) which transform the Stokes vector (I,M , C,
S) to the retarder frame of reference and δ captures the effect of retarder and
P is the polarizer. The transformation back to the analyzer frame of reference
is achieved by the rotation matrix R(α − β). The Mueller matrices for the
retarder δ and the polarizer A are given by

δ =


1 0 0 0
0 1 0 0
0 0 cos 2δr sin 2δr
0 0 − sin 2δr cos 2δr

 and A =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 . (2.36)

The emerging intensity to be measured is given by

I
′

out(α, β, δr) =
1

2

(
I + [M cos 2β + C sin 2β] cos 2(α− β) (2.37)

+ [(C cos 2β −M sin 2δr) cos δr + S sin δr]× sin 2(α− β)

)
.

Eq. (2.37) is a general intensity expression which can be utilized in several
configurations, facilitating an experimenter with various degrees of freedom to
choose from. Different approaches used for the Stokes parameter estimation are
enumerated in [22], however, we adopted a fixed analyzer and rotating retarder
(QWP) technique presented in [25]. For a rotating retarder, Eq. (2.37) can be
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Figure 2.3: The experimental arrangement for the determination of Stokes
parameters.

rewritten as

I
′

out(α, β, δr) =
1

2

[
I +

(M
2

cos 2α +
C

2
sin 2α

)]
+

1

2

[
S sin δ sin(2α− 2β)

+
1

4
[(M cos 2α− C sin 2α) cos 4β + (M sin 2α + C cos 2α)

× sin 4β](1− cos δ)
]
,

(2.38)

where the retardation plate angle β = ωt. Here ω represents the angular ve-
locity of the retarder and t is the time.

It can be clearly seen that Eq. (2.38) represents a Fourier series of the form
given by

I ′(β) = C◦ + C2 cos 2β + C4 cos 4β + S2 sin 2β + S4 sin 4β (2.39)

which can be inverted in a finite and discrete Fourier transform. The relation-
ship between the Fourier coefficients C◦, C2, C4, S4 and the measured intensity
at the detector, for even number of data points, i.e., N = 2L (36 in our case)
is given by [25]

Cωk =
2

N

1

1 + δk,0 + δk,L

N∑
1

Ii
′(β) cos(ωkβi), (2.40)

Cωk =
2

N

1

1 + δk,0 + δk,L

N∑
1

Ii
′(β) sin(ωkβi), (2.41)
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where k = 0, 1 · · · , L and δk,j are Kronecker delta functions and

ωk =
2π

N
.
k

∆β
and βi = (i− 1)∆β.

Here∆β is the step size for the rotating QWP. Once the Fourier coefficients are
extracted from the measured intensity, the determination of Stokes parameters
from the coefficients is straightforward and can be readily obtained by [25]

I = Co −
1 + cos δr
1− cos δr

[C4 cos(4α + 4βo) + S4 sin(4α + 4βo)] (2.42)

M =
2

1− cos δr
[C4 cos(2α + 4βo) + S4 sin(2α + 4βo)] (2.43)

C =
2

1− cos δr
[S4 cos(2α + 4βo)− C4 sin(2α + 4βo)] (2.44)

S =
−S2

sin δr cos(2α + 4βo)
(2.45)

where βo is the initial angle between the fast axis of the retarder and the x-axis.

The envisaged scheme for Stokes polarimetry can be understood in the fol-
lowing steps. Linearly polarized light is subjected to pass through a magneto
optical element (TGG crystal). The radiation is then followed by a retarder
(QWP) and for a known value of analyzer angle α, the intensity variation
is measured as the QWP is being rotated in steps of size ∆β, which are a
small fraction of 360◦. The measured intensity is processed through discrete
Fourier transform to extract the Stokes vector. Finally, the rotation θ and el-
litpcitiy angle χ are determined using equations (2.33) and (2.34), respectively.

As stated earlier in Section 2.1, magnetic linear birefringence is a weaker effect
than circular and the rotation caused by pure linear birefringence is usually
very small. One possible way to address this problem is to increase the local
magnetization of the medium in conjunction with the phase sensitive detec-
tion scheme discussed earlier in the first Chapter. This can be achieved either
by increasing the magnitude of applied magnetic field B or by decreasing the
temperature of the magneto optic medium. For all practical purposes, the
magnitude of magnetic field required is too high to be implemented. There-
fore we adopted the latter approach and the following section will discuss the
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experimental scheme for determination of Stokes parameters and details for
achieving the cryogenic temperatures.

2.3 Experimental Setup

The experimental setup can be divided into two components: the mechanical
and optical. The mechanical part of the setup is solely comprised of instru-
ments necessary for achieving cryogenic temperatures. The system is called a
closed cycle helium refrigeration system and is illustrated in Fig. 2.4. The op-
tical part includes the light source, detectors, polarizers, waveplates mounted
in rotation stages and home-built stages for optical elements housing designed
according to the constraint imposed by measurement geometry.

2.3.1 Refrigeration Cycle

The block diagram of the mechanical part of the setup is shown in Figure 2.4.
The major components of the closed cycle cryostat are the expander, compres-
sor, vacuum-pump station, and radiation shield. The expander (Janis, CS-
350S), commonly referred to as the coldhead, is where the Gifford-McMahon
refrigeration cycle takes pace. It is connected to a compressor by two gas lines
and an electrical power cable. One of the gas lines supplies high pressure he-
lium gas to the expander, the other gas line returns low pressure helium gas
from the cold head.

The compressed helium is allowed to expand which provides cooling to the
two stage refrigeration cycle. The vacuum shroud surrounds the cold end of
the expander in a vacuum limiting the heat load on the expander, caused
by conduction and convection. The radiation shield is actively cooled by the
first stage of the expander and insulates the second stage from the room tem-
perature thermal radiation being emitted from the vacuum shroud [26]. The
vacuum chamber is fitted with non-magnetic quartz windows.

The heat generated by the compressor is carried by the cooled water supplied
by the chiller (Polyscience, 6550) at 4.2 liter per minute (lpm). For optimum
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Figure 2.4: Block diagram of the mechanical setup for achieving cryogenic
temperatures. TMP= turbo molecular pump and RVP = rotary vane pump.

performance of this whole setup, the ambient temperature must not exceed
20◦ and so these experiments are always carried out in an air conditioned en-
vironment. The cryostat assembly is fixed on the optics table. For purpose
of microscopy, G-M cryo-coolers are not suitable as the vibration produced by
them are of the order of 5 microns perpendicular to the cold head. However,
the magnitudes of these vibrations are marginal in our case. The complete
mechanical setup is depicted in Fig. 2.5.

a)
b)

c)

d)

Figure 2.5: a) Chiller b) compressor c) rotary vane pump and turbo molecular
pump unit d) the complete cryostat assembly placed alongside the optical
table.
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2.3.2 Temperature Measurement

Traditional silicon diodes for temperatures below 60 K are not suitable when
magnetic fluxes are involved. Therefore, we mounted a specialized GaAlAs
diode sensor (temperature range 1.4-500 K) at the cold finger surrounded by
low temperature thermal grease (Apiezon) for good thermal contact. The
voltages across the four terminals of diode sensor are read by a temperature
controller (Model 331, LakeShore). A 25 W heater installed inside the cryo-
stat is also controlled by the temperature controller which implements a PID
control to vary the temperature.

The cryostat is connected with a flange line to the turbo molecular pump
(TMP) which is backed by a rotary vane pump (Edwards RV-8) as depicted in
Fig.2.5(b). The pressure is measured by wide range pressure guage (Edwards-
WRG) installed at the junction of flange line connecting the TMP with cryo-
stat. The pressure inside the cryostat during the experiment is well below 10−6

torr. The minimum temperature achieved inside the cryostat was 7 K.

2.3.3 Sample Holder

For mounting the crystal we devised a clamping assembly made out of 99.9
percent pure copper due to high thermal conductivity. The picture of the
designed sample holder is shown in the Figure 2.6. A cylindrically shaped TGG
crystal of width 3 mm and length 1 cm is acquired. Its long axis lies along
the [111] crystallographic direction and is mounted inside the cryostat. TGG
crystal is mounted on the sample holder using a homebuilt clamp as shown in
the Fig. 2.6. The design and dimensions of the sample holder assembly are
listed in the Appendix B.1.2.

2.3.4 Electromagnets

For generation of uniform magnetic field transverse to the propagating light,
an electromagnet (GMW-3470) is used. The magnitude of magnetic field is
changed by varying the current through the electromagnet coils with current
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Cryostat Cold Finger
GaAs sensor TGG crystal

Figure 2.6: Home-built sample holder assembly attached to the cryostat cold
finger.

controlled power supply. The distance between the poles is adjusted to ac-
commodate the optical window of cryostat which is 40 mm wide.

The magnetic field strength is determined ex-situ and measured by a Gauss-
meter (410-SCT, LakeShore). Figure 2.7 represents the graph for B vs I. The
maximum field produced by the magnets is 250 mT for a current of 5 A and
calibration factor estimated by linear curve fitting is (50± 0.5) mT/A.
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T

)
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Figure 2.7: Current through electromagnet coils vs magnetic field produced.
The slope is found by linear curve fitting.

2.3.5 Optical Setup

The schematic of optical part of setup is displayed in the Figure 2.8, whereas
Fig. 2.9 illustrates the optical components arranged in the experimental setup
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Computer

Chopper

Controller 

Temperature

Controller

Lockin

Amplifier 

QL O P A D
Electromagnet

Cryostat

C

Figure 2.8: The experimental arrangement including L = laser, O = optical
chopper, P = polarizer, C= crystal, Q = quarter waveplate, A = analyzer, D
= photodetector. The perceived beam path is shown in red.

for Stokes polarimetry. This completes the discussion of experimental section
and the next section enumerates the steps for Stokes parameters estimation.

a) b)

Figure 2.9: The optical setup displaying a) the cryostat placed between the
poles of electromagnet and b) the path of light beam highlighted in the red.

The entirety of the experiment, lockin signal outputs, control of the rota-
tional stages mounting the quarter wave plate and analyzer and current driven
through the electromagnetic coils, is integrated and interfaced with computer
within Labview environment (??). We have utilized data acquistion card (Na-
tional Instruments, PCI-6221) for digitization of analog input and for gener-
ating the output signal.
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2.3.6 Determination of the Stokes Vector

A helium-neon laser beam of wavelength 633 nm passes the optical window of
the cryostat and makes normal incidence on the cross sectional face of TGG.
A 633 nm quarter wave plate (WPMQ05M-633, Thorlabs) was used as the
retarder Q mounted in a precision motorized rotation stage (PRM1/MZ8E,
Thorlabs) allowing the angular displacement β to be varied with a resolution
better than 0.1o. The retardation δr at 633 nm was pre-determined as follows:
IT vs β was measured for light with known Stokes parameters, the Fourier co-
efficients for the data were determined and δr was calculated using Eq. (9) [25].
The transmission axis of the analyzer A was fixed at α = 0.

The transmitted intensity IT of the laser, after passing through all the afore-
mentioned components, was measured by a silicon photodetector. The signal
from photodetector was connected to the input of a lock-in amplifier (SR830,
Stanford Research Systems) allowing phase sensitive detection. The data was
taken over a wide range of temperature 8–100 K. To avoid any temperature
gradient at the crystal, we allowed the system to equilibrate at each tempera-
ture for 20 min prior to the intensity measurement from photodetector.

The Stokes parameters (I, M , C, S) are extracted from the Fourier decom-
position of the detected intensity signal from Eqs. (2.42)–(2.45), as a quarter
wave plate inserted before the analyzer is synchronously rotated in a motorized
stage. The angular displacement for the retarder in one set of measurement is
π with equal step size, i.e., ∆β = 5.

The foregoing discussion is important as Stokes parameters estimation is im-
perative to the measurement of signal of interest, i.e., rotation θ and ellipticity
angle χ which will be discussed in the next section. To give the reader an
overview of the data processing involved we have plotted the measured Stokes
parameters against the applied magnetic field in the Fig. 2.10 and Matlab
codes are presented in Appendix B.1.1. Furthermore, virtual program writ-
ten for Stokes polarimetry, realized in Labview environment, is given in the
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Figure 2.10: The Stokes parameters a) I, b) M , c) C and S extracted from
the discrete Fourier transform of measured intensity.

Appendix B.1.

2.4 Results and Discussion

The rotation θ and ellipticity angle χ are determined by Equations (2.33) and
(2.34) respectively. Equation (2.9) predicts a quadratic dependence of the el-
lipticity on the field. Indeed this is the observed behavior and is elucidated in
Fig. 2.11(a). The ellipticity is measured to be ≈ 7◦ at 250 mT and 8 K. Using
Eqs. (2.8) and (2.9), we can also deduce the magnetically induced asymmetries
∆n enabling quantitative estimates of MLB and MLD. The estimates of MLB,
∆n′, are simply proportional to χ and are therefore identified on the right
axis of Fig. 2.11(a). These asymmetries are of the order 10−6, and increase by
increasing B and lowering T .

Similarly Fig 2.11(b) shows the variation of the polarization angle θ. For
zero field, all curves coincide at θ = 45◦ which is a control baseline. The
overall rotations can approach ≈ 12◦ for fields of 250 mT at a temperature of
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8 K. Nonetheless, the rotations are indeed much smaller than the convention-
ally observed for Faraday rotation which could approach ≈ 300◦ under similar
conditions [11].
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Figure 2.11: (a) The ellipticity χ and magnetic linear birefringence ∆n′ with
respect to the square of magnetic field. (b) Angle θ plotted with respect
to the square of magnetic field showing correspondence with the theoretical
predictions (solid lines) based on intertwined linear and circular birefringence.
Uncertainties in angles θ are of the order of ±0.6◦ and solid lines are guide to
the eye.

Similar amplitudes are measured for the MLD as well and are illustrated in
Fig. 2.12. The phase sensitive measurement technique is capable of revealing
these minute asymmetries whose magnitudes are in close agreement with sim-
ilar paramagnetic materials [3, 5]. Furthermore, the method for estimation of
uncertainties is outlined in the supplementary information 2.6.1.

We also notice that for θ, we obtain a quadratic dependence on B only for
temperatures ≥ 30 K. These results are explicable by the intermixing of the
strong circular components due to tiny misalignments of the applied field away
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from the Voigt, and towards the Faraday geometry. The effect is accentuated
at lower temperatures and stronger magnetic fields when the Faraday rotation,
even stemming from slight axial components can leave a significant impact on
the observed rotation angle. In fact, equation (2.23) describes the presence of
concomitant circular effects.

0.00 0.02 0.04 0.06
−0.5

−0.4

−0.3

−0.2

−0.1

 

 0.0

Δn
΄΄ 

(×
10

-5
)

B2  (T2) 

100 K
80 K
60 K
50 K
40 K
30 K
20 K
15 K
10 K
 8 K

Figure 2.12: Magnetic linear dichroism, ∆n′′ plotted with respect to the square
of magnetic field B2. Solid lines are only visual guides

.

The experimental data is fit to this expression and drawn as solid lines in
the Figure. Suppose the field’s skew angle is θs away from the x̂-ŷ plane and
towards the axial direction. The component B sin θs causes Faraday rotation
due to MCB; is proportional to B, and gives rise to Q = Qo(B sin θs) where
Qo = 2θf/(Bkod) is a constant derived from the Faraday angles θf determined
in other experiments [11]. The other parameter required in the analysis is
ζ = n∆n = ζo(B cos θs)2 which, originating from MLB and MLD, shows a
quadratic dependence on B. Here n = 1.9535 is the isotropic refractive index
of TGG.

A nonlinear fitting procedure determines best estimates of ζo and the skew
angles, and the former are in excellent agreement with our measurements of
MLB and MLD. The data is presented in Table 2.1 and for a single experimen-
tal setting, provides an estimate of the skew angle: (3.0± 0.5)◦. Furthermore,
Fig. 2.13 elucidates the intermixing of circular and linear effects where angle
of rotation θ given by Eq. (2.23) is simulated against the applied magnetic

77



2.4. RESULTS AND DISCUSSION

Table 2.1: Data showing the temperatures T , asymmetries Q0 and values of
the fitted parameters ζo and θs.

T Qo ζo θs
(K) (×10−4 rad T−1) (×10−6 T−2) (◦)
8 5.6 7.8 3.4
10 4.3 7.3 3.7
20 2.6 4.7 3.6
40 1.4 1.7 2.5
80 0.6 0.6 2.5

field B and square of the magnetic field B2 for different temperatures.
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Figure 2.13: Eq. (2.23) is plotted in Matlab for temperature dependent angle
of rotation against a) magnetic field B and b) square of the magnetic field B2.
The strength of different parameters used are enumerated in Table 2.1.

The field independent temperature dependence of the polarization angles can
in fact be captured by defining the coefficients, Vχ = ∆n′/B2 and Vθ = ∆n′′/B.
For TGG, these coefficients respectively approach values of 4× 10−5 T−2 and
−1.7 × 10−6 T−1 at 8 K and their complete temperature dependence can be
seen in Fig. 2.14(a) and (b). These coefficients are estimated through the
slopes of the χ versus B2 (Fig. 2.11(a)) and θ versus B (Fig. 2.15(b)).

For completeness, Fig. 2.15(a) depicts the variation of χ with the magnetic
field B. The coefficient Vθ is predominantly caused by the strong Faraday ro-
tation and is similar to the Verdet constant though intermixed with a minute
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Figure 2.14: Temperature dependence of the Voigt coefficients (a) Vχ and (b)
Vθ. The solid lines are fits to hyperbolic curves showing an inverse temperature
dependence.

Voigt component. The smallness of the MLB that gives rise to the coefficient
Vχ, for example, can be appreciated from the guesstimate that achieving a
birefringence of 1% in TGG at 8 K would require a magnetic field of strength
200 T. The inverse temperature relationship indicates proportionality with the
paramagnetic nature of the magnetic susceptibility of TGG [27].

Fitting the two kinds of Voigt coefficients to the Curie-Weiss law V = C/(T −
TW ) also yields Curie-Weiss constant TW estimates of−8.7K and−7.3K which
are in excellent agreement with data acquired by magnetic susceptibility [27]
or pure Faraday effect measurements [28]. Furthermore, |TW | > TN = 0.35 K
also corroborates the existence of a strongly frustrated spin system inside the
TGG crystal for the temperature range [TN , |TW |] where TN is the Neél tem-
perature. We consider this being the first reported instance of the Curie-Weiss
constant derived from magneto-optic measurements based on the Voigt effect.

Finally Figure 2.16 depicts the temperature dependence of the angles of the
polarization ellipse at values of B. The rotation and ellipticity are relatively
small at temperatures above 30 K and become pronounced only at low tem-
peratures and strong fields. For example, no detectable rotation and ellipticity
were observed at room temperature up to fields of 1 T.
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Data is shown for various settings of the magnetic field.

2.5 Conclusion

We have conducted a complete characterization for magneto-optical effects for
TGG in the Voigt geometry. With the help of a Fourier decomposition of the
signal and phase-sensitive detection it is possible to detect minute asymmetries
in the refractive indices. In particular, we show that ideally MLB imparts el-
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lipticity to the emergent light while MLD rotates the polarization ellipse. The
simple decoupling of rotation and ellipticity, however, breaks down in the pres-
ence of circular magneto-optic effects. This intertwining can be tackled from
a theoretical perspective and our experimental data is systematically analyzed
and seen to corroborate theoretical predictions. We can perform temperature
dependent measurements of the polarization ellipse, helping us to quantify co-
efficients for ellipticity and rotation in the Voigt geometry, determining the
Curie-Weiss constant as well as the direction of a magnetic field misaligned
from the nominal.

Applying uniform axial fields as in the Faraday configuration, may sometimes
become restrictive with magnet pole pieces intervening the optical beam path.
Furthermore, in the area of integrated magneto-photonic circuits, single-sided
magnetic geometries, or on-chip surface coils are preferred. The Voigt config-
uration may become useful in these scenarios and especially when reciprocal
and non-reciprocal components are integrated for building optical circulators
or polarization preserving isolators. But at the same time, we should be wary
that the ellipticity is large and comparable to the rotations, which limits the
usefulness of this geometry for practical applications [29]. Several other useful
ideas, however, have been surveyed in this Chapter. The recent study deter-
mining the Néel vector in an antiferromagnet through MLD could reinvigorate
the practical utilization of the Voigt effect [14].
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2.6 Supplementary Information
2.6.1 Method for calculation uncertainties in the FFT

data, Stokes parameters and angles of the polar-
ization ellipse

We outline the method employed to quantify uncertainties from intensity of
light, collected at the photodetector after emerging from some birefringent
element, in our case the TGG crystal. Following the experimental scheme
visualized in Fig. 2.8, the polarization state of transmitted intensity of light
can be completely characterized by Stokes parameters (I,M,C, S) [25]. The
transmitted intensity IT is given by [22, 25]

I
′

out(α, β, δr) =
1

2

[
I +

(M
2

cos 2α +
C

2
sin 2α

)]
+

1

2

[
S sin δ sin(2α− 2β)

+
1

4
[(M cos 2α− C sin 2α) cos 4β + (M sin 2α + C cos 2α)

× sin 4β](1− cos δ)
]
,

(2.46)

where α is the analyzer angle, β is the retarder angle of QWP and δ is the re-
tardation. By virtue of the discrete FFT, the uncertainty propagates from the
intensity IT into each Fourier coefficient, and hence into the Stokes parameters
and derived quantities, including θ and χ. The uncertainties in the Fourier
coefficients labeled Ck and Sk are (using the notation ∆x for the uncertainty
in x)

∆Ck =
2

N

1

1 + δk,0 + δk,L

(
(∆IT1 cos(ωkβ1))

2

+ (∆IT2 cos(ωkβ2))
2 + ...+ (∆ITN cos(ωkβN))2

)1/2 (2.47)

∆Sk =
2

N

1

1 + δk,0 + δk,L

(
(∆IT1 sin(ωkβ1))

2

+ (∆IT2 sin(ωkβ2))
2 + ...+ (∆ITN sin(ωkβN))2

)1/2 (2.48)

where βi = (i − 1)∆β and ωk = 2πk
N∆β

, and ∆β is the step size of the rotating
QWP. We are particularly interested in the coefficients (C0, C2, C4, S2, S2).
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Subsequently, the uncertainties in the Stokes parameters I,M,C, S are
given by

∆M =
2

1− cos δ

√
(C4 cos(2α + 4βo)∆C4)

2 + (S4 cos(2α + 4βo)∆S4)
2 (2.49)

∆C =
2

1− cos δ

√
(C4 cos(2α + 4βo)∆C4)

2 + (S4 cos(2α + 4βo)∆S4)
2 (2.50)

∆S =

√(
1

sin δ cos(2α + 4βo)
∆S4

)2

(2.51)

∆I =

(
∆Co

2 +

(
1 + cos δ
1− cos δ

)2(
C4 cos(2α + 4βo)∆C4

)2
+(S4 cos(2α + 4βo)∆S4)

2

)1/2
(2.52)

Finally, the uncertainties in rotation θ and ellipticity χ of the light are
determined as,

∆θ =

√(
−0.5C

C2 +M2

)2

+

(
0.5M

C2 +M2

)2

(2.53)

∆χ =
1

(C2 +M2 + S2)

((
0.5

√
C2 +M2∆S

)2
+

(
0.5MS√
C2 +M2

∆M

)2

+

(
−0.5CS√
C2 +M2

∆C

)2)1/2
(2.54)

∆ tan(2θ) = C

M

√(
∆C

C

)2

+

(
∆M

M

)2

. (2.55)
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2.6.2 Supplementary Experimental Data
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Figure 2.17: Plot of tan(2θ) as a function of B−2 showing correspondence of
experimental data with (2.8)
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Chapter 3

Ultrafast Magnetization
Dynamics

In the first two chapters, we have investigated how polarized light can be
used to probe magnetization. This interaction is the standard magneto-optic
phenomenon. In the current chapter, we explore another facet of this discipline,
i.e., how light can be used as a control switch to steer the magnetization.
The considered physical system is a nanostructured composite of a rare-earth
and transition metal element which exemplifies these opto-magnetic dynamics,
whose typical timescales are found to be in the femtosecond to picosecond
timescale—hence the name ’ultrafast magnetization dynamics’. These studies
have immense technological importance as we will describe.

3.1 Introduction

The manipulation of spin and charge degrees of freedom has been an active
area of research since decades and is essential for data storage and informa-
tion processing. A bit of information is rewritten when the magnetization
of a recording unit is reversed by 180◦. The ultimate limit for the magneti-
zation reversal in recording media and the underlying physical processes are
also of prime importance from a technological point of view. The quest for
high density and fast speed recording media have triggered new frontiers in
condensed matter physics. Some examples of the phenomena being investi-
gated include magnetization control with spin polarized currents [1], current
pulses [2], temperature gradients [3], spin-orbit torque induced switching [4]
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and more recently THz switching [5, 6]. These proposed methods operate at
different timescales and involve different physical mechanisms for magnetiza-
tion switching. Magnetization control can be achieved by various methods but
the distinction based on the underlying physical mechanisms are depicted in
Fig. 3.1 and can be explained as follows.
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Figure 3.1: Various methods for the manipulation of magnetization which in-
clude a) conventional method by applying magnetic field antiparallel to the
magnetization direction, b) precessional switching where magnetic field is ap-
plied perpendicular to the magnetization vector, c) thermomagnetic switching
which is realized by femtosecond laser in conjunction with applied magnetic
field and d) all optical helicity dependent switching where σ+ and σ− represents
right and left circularly polarized light, respectively.

1. Magnetic field induced magnetization reversal is one of the earliest meth-
ods in which the magnetic state of the medium remains in a quasistatic
equilibrium and magnetization control is achieved by means of an ap-
plied magnetic field as depicted in Fig. 3.1(a). The magnetic system
follows the minimization of energy by aligning itself in the direction
of applied field and is evidenced by hysteresis previously discussed and
demonstrated in the Section 1.4.7.
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2. Precessional switching presents an alternative to quasistatic switching
which has pushed the magnetization switching time into the picosecond
regime [7, 8]. Precessional switching is still triggered by external stimuli
such as magnetic field, yet the route taken for magnetization reversal
is slightly different than that of quasistatic switching mechanism and
is shown in Fig. 3.1(b). The underlying mechanism for precessional
switching is spin-lattice interaction and a phenomenological description
is based on Landau-Lifshitz-Gilbert equation which will be discussed in
the forthcoming Section. The ultimate limit for precessional switching
lies between 100 ps–10 ns [8].

3. Thermomagnetism offers the data writing on a timescale of 1–100 ps
[9]. In this technique, a permanent magnet is heated locally with op-
tical means to reduce the coercivity of the medium. Once the nucle-
ation starts, the new state of equilibrium magnetization opposite to the
prior direction is favored by the application of a bias magnetic field.
Electron-phonon, phonon-phonon and spin-lattice interactions prevail at
this timescale. A similar approach is employed in heat assisted magnetic
recording (HAMR) technology [10]. The schematic of thermomagnetic
switching is shown in Fig. 3.1(c).

4. Photo-induced effects utilizes ultrashort laser pulses for the manipulation
of spin. The category is further sub-divided into opto-magnetism (all-
optical helicity dependent switching) and femto-magnetism (all-optical
switching). All-optical helicity dependent (AO-HDS) [11] and all-optical
switching (AOS) [12] magnetization reversal involves altogether different
mechanism. In AO-HDS, circularly polarized light interacts with atoms
via first order magneto-optic effect (the inverse Faraday effect or mag-
netic circular dichroism) as shown in Fig. 3.1(d), whereas femtosecond
laser generated thermal non-equilibrium processes (electron-electron and
electron-phonon interactions) are at play in the case of AOS. The present
chapter investigates the latter phenomenon.
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Thermally induced magnetic switching by laser in synthetic materials is now a
topic of extraordinary importance due to its practical applications in magnetic
recording media [13–16]. A femtosecond pulsed laser can switch or alter the
magnetic states of a material by thermally induced ultrafast changes in spin
states without any applied external magnetic field [17, 18]. In addition, laser
induced thermal heating is a non-destructive route for magnetic switching in
nanostructures having potential utilization [19, 20]. This makes the mecha-
nism of ultrafast magnetic switching a hot topic of discussion.

GdFeCo or GdFe alloys are considered trademark composites for the inves-
tigation of all optical magnetization switching phenomenon AO-HDS was first
observed in 2007 when Stanciu et.al demonstrated the magnetization switching
in GdFeCo alloy with femtosecond circularly polarized light [21]. The magneti-
zation switching is dependent on the helicity of incident light, hence the name
all-optical helicity dependent switching. The quest for finding new synthetic
materials for AO-HDS is a hot topic of contemporary research [22–25].

Later on, Radu et.al [26] showed the deterministic reversal of magnetization
in GdFeCo and GdFe alloys with femtosecond linearly polarized light in a
pump probe experiment, circumventing the helicity dependence of incident
femtosecond light. This in turns raised the question of how and how fast, the
magnetization can be reversed. It was generally assumed that heating alone
(a scalar field) cannot result in deterministic switching of magnetization, how-
ever it may assist the reversal process [27]. Several phenomena attributed to
the magnetization reversal include the inverse Faraday effect [28], symmetry
breaking [29] and transfer of angular momentum between electron and spin
reservoirs [26]. However, the microscopic origin of deterministic switching of
magnetization is still under debate and requires a tangible explanation.

It is well established that the size, design, type and composition of a material
are directly associated with which ultrafast magnetic switching mechanism is
actualized [30–33]. In this context, the systems of binary alloys optimized by
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using transition metals (TM) with minute concentration of rare earth (RE)
elements could be potentially investigated to work at room temperature (RT)
for data storage applications [34–37]. For example, by suitably optimizing the
concentration content of RE metals in these binary alloys, efficient systems
for ultrafast thermally induced magnetic switching systems could promise to
fulfill the future demands.

The present chapter describes the simulation work for magnetic nanostruc-
tures performed on an opensource software Vampire which utilizes a finite
element approach [38]. The dynamical simulation is based on the classical
spin Hamiltonian and makes use of Landau-Lifshitz-Gilbert equation to pre-
dict magnetization, hysteresis loop, a Monte-Carlo algorithm for equilibrium
magnetization (Curie temperature over a dynamic temperature range) and the
two temperature model to study the response of magnetic system when excited
with ultra-short laser pulses.

The present work is built upon two of our previously published articles. In one
of works [39], we studied the DyFe magnetic nanostructures with concentra-
tion of 5 % Fe in Dy element in the form of bilayer, coreshell and random alloy.
However the temperature dependent magnetization investigations revealed a
lack of magnetization at room temperature for this particular composition of
materials, which is an essential characteristic for efficient and economically
viable magnetic recording media. These results will be discussed in context of
our experimental investigation of DyFe bilayer nanostructures in the Section
3.4. Consequentially, here we alter the composition of nanocomposites with
varying content of Dy concentration % in host element Fe and compute the
temperature dependent magnetization and ultrafast magnetization dynamics.
We investigate and analyze the magnetic dynamics, demagnetization time and
thermally induced magnetic switching in these nanostructures.

Furthermore, we start off with the assumption that concentration of RE ions
in the host TM could alter the magnetization switching time as exchange con-
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stant are different for RE and TM lattices. For this purpose, we also perform
atomistic spin model simulations of novel RE-Fe alloys (RE= Tb, Gd) for dif-
ferent concentration of RE ions and peak electron bath temperature in order
to manipulate the switching time.

The present chapter is divided into the following sections. Section 3.2 intro-
duces the reader with different types of magnetic materials which is imperative
to understand the origin of magnetism and interactions among magnetic enti-
ties which further lead to the actualization of magnetic recording media. This
section also elaborates the emergence of different magnetic quantities (mag-
netic anisotropy, uni-axial magnetic anisotropy) and interactions (exchange
interaction) which form the basis of our atomistic spin simulation. Section
3.3 is based on the phenomenological description of Landau-Lifshitz-Gilbert
(LLG) equation and also discusses the dynamics of atomistic spin simulator
we have employed in our work. Finally, we present the results for our simula-
tive investigations followed by a discussion in Section 3.4.

3.2 Types of Magnetism

The most primitive unit of magnetism is magnetic dipole moment—an idea
which stems from the efforts of scientist of to understand the magnetic forces
at the atomic level. A magnetic dipole moment µ is associated with an electron
orbiting around a nucleus, i.e., µ = IA where I is the current and A is the area
of the loop. It is straightforward to derive the relationship between magnetic
moment and angular momentum and is given by [40]

µ =
q

2me

L.

A similar relation µ = (e/me)S also holds for spin angular momentum S and
magnetic moment. In the presence of magnetic field H, the energy of the
magnetic moment is given by the expression E = −µ · H. The minimization
of energy gives rise to a torque which is perpendicular to both µ and H and
tends to align the magnetic moment in the direction of applied field. The
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torque acting on a magnetic dipole moment in a magnetic field is given by [41]

τ = µ× H. (3.1)

The sum of all magnetic moments taken over the volume of magnetic solid is
called the magnetization M [41]. We have already explored the relationship
between applied magnetic field H and magnetization M in the Section 4.7 of
first Chapter. Additionally, for a linear and homogeneous magnetic material
M = χH, where χ is the magnetic susceptibility and for this special case, mag-
netic flux density B and magnetic field H are also related by the constitutive
relationship

B = µ◦(1 + χ)H, (3.2)

where µ◦ is the permeability of free space. The classification of magnetic mate-
rials is based upon the interaction of these magnetic moments inside a material
in conjunction with temperature effects. The commonest types of magnetic
materials are depicted in Fig. 3.2 and can be enumerated as diamagnetic,
paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetism.

Diamagnetism is attributed to the change in orbital motion of electrons due to
an applied magnetic field. It is rather a weak effect and occurs in all atoms but
is often overshadowed by the presence of much stronger effects [41]. Magnetic
susceptibility for diamagnetic material is negative, i.e., χ < 0 and is largely
independent of temperature [42].

Paramagnetism corresponds to the presence of a net magnetic moment in-
side a material. However the magnetic moments are randomly oriented due to
thermal fluctuations and either independent (isolated) or only weakly coupled
to each other. Magnetic susceptibility for paramagnetic materials is positive
(χ > 1) and temperature dependence is generally captured by the famous
Curie law, i.e., χ = C/T , where C is the Curie constant and T is the temper-
ature [43]. As the temperature is lowered the magnetic susceptibility increases
and below a certain critical temperature, a paramagnetic material undergoes
a phase transition—para to ferro.
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Figure 3.2: An illustration of different orientations of magnetic dipole moments
in a) paramagnetic, b) ferromagnetic, c) antiferromagnetic and d) ferrimag-
netic materials whereas e) represents an ellipsoid system with magnetization
along the long axis.

Ferromagnetic materials possess a spontaneous magnetization even in the ab-
sence of magnetic field and are distinguished by high and positive magnetic
susceptibility (χ ≫ 1). The presence of spontaneous magnetization was first
explained in terms of mean field which aligns the magnetic moments parallel
to each other [41], whereas in antiferromagnetic material, this molecular field
tends to align the neighbouring magnetic moments in an antiparallel config-
uration as depicted in Fig. 3.2(c). The magnitude of magnetic moments are
equal but opposite hence the spontaneous magnetization in antiferromagnetic
materials is completely washed out. Ferrimagnetic materials refer to a similar
class yet a non-zero net magnetization arises due to the unequal magnitudes
of the oppositely oriented magnetic moments [42].

The presence of spontaneous magnetization can be explained by intrinsic fields
Hi and Bi inside a magnetizable media. This in turns require a careful differen-
tiation between the applied field Ha and magnetic field inside a material Hi. In
the special case of an ellipsoid, when the applied field lies along the principal
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axis b as shown in Fig. 3.2(e), the relationship between applied and intrinsic
field can be expressed through the equation

Hi = Ha −NM. (3.3)

The correction term here represents a demagnetizing field, i.e., Hd = −NM
which plays an important role in determining the magnetization state of mag-
netic medium with susceptibilities χ ≫ 1. The materials with spontaneous
magnetization (ferro or ferri-magnetic) are central to the upcoming discussions
in the chapter, therefore for historical perspective and pedagogical reasons it is
important to take a closer look at the interactions among magnetic moments
inside a ferromagnetic materials. The next section discusses this particular
aspect, i.e., exchange interaction which is responsible for long range ordering
in ferromagnets.

3.2.1 Exchange Interaction

In 1907, Weiss presented a phenomenological model for ferromagnetism which
assumes the presence of a molecular field Bmf = λM, arises out of the strong
interaction between localized moments in a ferromagnet and responsible for the
magnetization of substance even in the absence of external magnetic field [41].
Here λ parameterize the strength of molecular field as a function of magne-
tization. However, the value of constant λ needs to be very large to agree
with large values of Tc for materials like Fe (Tc = 1043 K) and Co (Tc = 1390

K). Even though, the Weiss theory agrees with experimental results in some
cases yet the origin of this molecular field remained ambiguous until Heisen-
berg explained the phenomenon in terms of a quantum mechanical exchange
interaction [42].

The exchange interaction is a direct consequence of Pauli’s exclusion principle
and symmetrization postulates [43]. In plain words, the origin of exchange in-
teraction is coulombic interaction between electrons [44]. The exchange energy
Hamiltonian for a system of interacting spin moments is given by [42]

Hexc = −
∑
i̸=j

JijSi · Sj. (3.4)
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where Jij is the exchange interaction, Si and Sj are spin moments of atoms
at i’th and j’th site, respectively. If Jij is positive, then exchange energy
will be minimum when spins are parallel, which leads to ferromagnetic order
of the system. If Jij is negative then an antiparallel alignment of spins will
lower the energy, hence antiferromagnetic ordering. In most of the cases, Jij
is considered isotropic, i.e., interaction between spin depends only on relative
orientation, not their direction. In case of anisotropic exchange interaction,
Jij is represented by a tensor [38]

Jij =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz,

 (3.5)

where exchange tensor components can be obtained phenomenologically or via
ab initio methods [38]. For a magnetic system having z nearest neighbours, the
exchange constant (measure of the strength of coupling between neighbouring
magnetic moments) is given by [38, 41, 45]

Jij =
3kBTc
εz

(3.6)

where Tc is the Curie temperature, kB is Boltzmann’s constant and ε is a cor-
rection factor emerging from the mean field expression [45].

At this juncture, we would like to address another relevant phenomenon which
determines the suitability of a magnetic material in a particular application.
All magnetic moments in an isolated environment respond identically to the
applied magnetic field. However in a crystal lattice, these magnetic moments
may tend to align in a preferred direction and give rise to an anisotropy. We
have already discussed the optical anisotropies (MCB, MLB, MCD and MLD)
induced by the extrinsic agent (magnetic field) in the first two chapters. Here
we discuss the magnetic analogue of anisotropy which has its origin in energy
minimization, shape and environment of crystal lattice or can be induced ex-
trinsically by careful conditioning of magnetic materials—magnetic anisotropy.
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3.2.2 Magnetic Anisotropy

Magnetic anisotropy is the energy required to rotate the magnetization direc-
tion from the preferred direction (easy axis) to the hard direction. For a cubic
crystal, the anisotropy energy Eani can be expanded as direction cosines αi,
where αi are the angles between saturation magnetization and crystal axes and
is given by [42]

Eani = K1

(
α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

)
+K2

(
α2
1α

2
2α

2
3

)
+ · · · . (3.7)

For hexagonal structure with single easy axis (c-axis) oriented at an angle
θ with respect to the magnetization vector M , anisotropy energy is given
by [41, 44]

Eani = K1(sin2 θ) +K2(sin4 θ) +K3(sin6 θ) + · · · , (3.8)

whereKi(i = 1, 2, 3 · · · ) are anisotropy constants with dimensions of energy per
unit volume. It is also customary to represent the anisotropy energy Eani with
an effective magnetic field Hani to simulate the effect of magnetic anisotropy
and will be actualized in the forthcoming section 3.3.

The first order term K1 in both Eqns. (3.7) and (3.8) can be represented as
K1 = Ku+Ks, whereKu andKs are magnetocrystalline and shape anisotropies,
respectively. In case of thin films, if (Ku+Ks) > 0, the film will preferentially
get magnetized perpendicular to its plane. For (Ku +Ks) < 0, the easy axis
will be in plane. These scenarios are often called out-of-plane and in-plane
magnetizations.

Shape anisotropy arises due to structural constraint of the system and its
origin is magnetostatic. Magnetocrystalline anisotropy is the spin system’s
tendency to align itself in a preffered crystallographic orientation. When an
external field is applied to reorient the direction of spin in the system, electron
orbit must also be reoriented due to the coupling between spin and angular
momentum, called the spin-orbit coupling.
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The exchange field does not act on the orbital moment or on the nuclear
magnetic moment. This is of great importance because in the presence of
the exchange interaction, the spin system still remains independent from the
orbital angular momentum which is locked to the crystal lattice [44]. Once
the magnetization is established by the exchange interaction, the coupling of
the spin moment to the orbital moment is mediated through the weaker spin–
orbit interaction. It is this coupling which leads to the magnetocrystalline
anisotropy by locking the spin to the orbital moment which itself is locked to
the lattice [8, 44]. In solids, the spin–orbit interaction determines the magne-
tocrystalline anisotropy [44]. This scenario is highly relevant with the MOKE
study of permalloy thin film in Section 1.4.7. It is worth mentioning here that
area of the hysteresis loop1 for Ni80Fe20 is different for L and P-MOKE which
marks the presence of an easy axis inside the material. i.e., magnetocrystalline
anisotropy.

Uniaxial anisotropy refers to the magnetic moment’s preference to align in
one single direction, the easy axis. An anisotropy field Hani needed to saturate
the material in the hard direction is given by [43]

Hani = 2
Ku

Ms

(3.9)

where Ku is usually derived experimentally from a typical ferromagnetic reso-
nance experiment [41].

This concludes our survey about different types of magnetism and the interac-
tions between magnetic moments. The next section deals with the phenomeno-
logical description of the mathematical equations which govern the evolution
of magnetization in a magnetic medium when subjected to an external stimuli
such as dc magnetic field. The interactions are important parameters of the
system determining the specifics of the magnetization in dynamics.

1Area of hysteresis loop determines the work done required to magnetize or demagnetize
a ferromagnetic material.
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3.3 Magnetization and Spin Dynamics
3.3.1 Landau-Lifshitz-Gilbert Equation

A magnetic moment µ placed inside a magnetic field H experiences a torque
given by Eq. (3.1). According to Newton’s classical equation of motion, torque
can be defined in terms of of rate of change of angular momentum, i.e., τ =

dS/dt. Therefore Eq. (3.1) can be rewritten

dµ

dt
= −γµ× H, (3.10)

which governs the precession of magnetic moment around the magnetic field.
Here γ represents the gyromagnetic ratio. It is important to mention here that
we have only assumed that spin angular momentum S contributes to the mag-
netic moment. The rationale for this assumption has its origin in the quenching
of orbital angular momentum in transition metals (TM) due to crystal field
effect [45].

Assuming H to be spatially uniform and taking the volume average of all
magnetic moments in a system, Eq. (3.10) further simplifies to give Bloch
equation which represents the trajectory of an uncoupled and undamped mag-
netization of the system as

b)a)

θ θ

Figure 3.3: (a)Bloch Equation which predicts the presence of precessional
torque which acts perpendicular to both µ and M. (b) Landau-Lifshitz equa-
tion explains the existence of an additional damping torque which tends to
align the magnetization in the applied field direction.
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dM
dt

= −γM × H. (3.11)

The equation predicts the continuous precession of magnetization vector M
around the magnetic field H. Fig. 3.3(a) shows the dynamics of M oriented
at an angle θ with an effective magnetic field Heff. The motion of magnetic
moment around magnetic field is called precession. There is no reason at
all why magnetization should align with Heff which is the actual observation.
Consequentially in 1935, Landau and Lifshitz proposed a correction to the
Bloch equation on an entirely phenomenological basis. The correction term
introduces a damping torque τD which tends to align the magnetization vector
in the applied field as shown in Fig. 3.3(b). The Landau-Lifshitz (LL) equation
can be written as

dM
dt

= γ

(
M ×

(
Heff +

λ′

Ms

(M × Heff)
))
, (3.12)

where damping torque τD is given by the term

τD =
γλ′

Ms

(
M × (M × Heff)

)
,

and Heff is the sum of all the magnetic fields (intrinsic or extrinsic) present in
the medium

Heff = Hext + Hexch + Hd + Hani. (3.13)

The term Hext is an externally applied magnetic field, Hexch is exchange inter-
action field, Hd is the demagnetization field and Hani is the anisotropy field.
Eqn. (3.12) can only be used for small damping and refers only to intrin-
sic contribution (spin-lattice and spin-electron interactions) to the relaxation
mechanism. In 1955, Gilbert suggested to add a correction term to LL equation
for a strongly damped system and Eq. (3.12) then takes the form

dM
dt

=
γ

1 + α2
(M × Heff) +

γα

(1 + α2)Ms

(
M × (M × Heff)

)
, (3.14)

where α is phenomenological Gilbert damping parameter (10−3–10−1) related
to both intrinsic and extrinsic (surface inhomogeneties, doping, demagnetiza-
tion field) relaxation mechanisms [7]. This equation describes the evolution of
magnetization M and referred to as Landau-Lifshitz-Gilbert equation (LLG).
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Eqn. (3.12) and (3.14) are similar from a mathematical point of view and
produce identical results for small damping parameters (α, λ′ → 0) as they
belong to same class of damped gyromagnetic precession equations [7]. The
difference in the predicted dynamics of both LL and LLG equation is amplified
when larger damping terms are considered.

The LLG equation can be decomposed into its rectangular components as
follows:

(1 + α2)

(
dMx

dt

)
= γ(myHz −mzHy) +

αγ

m

(
mxmyHy +mxmzHz

−Hxm
2
z −Hxm

2
y

)
(3.15)

(1 + α2)

(
dMy

dt

)
= γ(mzHx −mxHz) +

αγ

m

(
mxmyHx +mymzHz

−Hym
2
x −Hym

2
z

)
(3.16)

(1 + α2)

(
dMz

dt

)
= γ(mxHy −myHx) +

αγ

m

(
mxmzHx +mymzHy

−(m2
x +m2

y)Hz

)
, (3.17)

where H = (Hx, Hy, Hz) and m = (mx,my,mz) are vector fields. The equations
(3.15)–(3.17) present a set of coupled non-linear differential equations. For a
magnetic field applied in the z-direction (0, 0, Hz), the equations can be further
simplified and take the form

(1 + α2)

(
dMx

dt

)
= γ(myHz) +

αγ

m

(
mxmzHz

)
, (3.18)

(1 + α2)

(
dMy

dt

)
= −γmxHz +

αγ

m

(
mymzHz

)
, (3.19)

(1 + α2)

(
dMz

dt

)
= −αγ

m

(
m2
x +m2

y

)
Hz. (3.20)

Figure 3.4 represents the temporal evolution of magnetization vector compo-
nents simulated in Matlab for different damping coefficients α with different
initial conditions such as magnetization vector and strength of magnetic field.
Fig. 3.4(a) and (b) draw a comparison between heavily and lightly damped
system. The time taken by magnetization to get aligned in the direction of
applied field are 3 ps and 14 ps respectively. For a negative damping param-
eter, the magnetization switches to the direction antiparallel to the applied
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Figure 3.4: The evolution of different components of magnetization according
to LLG equation for different initial conditions such as damping parameter,
magnetization vector and different strengths and directions of applied magnetic
field where a) α = 0.1, m = (1, 0, 0) and Hz = 100 T, b) α = 0.02, m = (1, 0, 0)
and Hz = 100 T, c) α = −0.1, m = (0.5, 0.5, 0) and Hy = 5 T and d) a heavily
damped system, α = 0.15, m = (0, 0, 1) and Hz = 50 T.

magnetic field as shown in Fig.3.4(c), a phenomenon known as precessional
switching. A clearer picture for precessional switching of magnetization vec-
tor M is presented in Fig. 3.5 where magnetization components are plotted on
unit magnetization sphere with similar parameters used previously for the Fig.
3.4. The role of demagnetizing field, anisotropy field in precessional switching
can be understood in the following discussion.

3.3.2 Few Words on Precessional Switching

In our previous discussion on the LLG equation, we have already seen how
the magnetization can switch its direction. We explore this concept further
here. Precessional switching of magnetization can be initiated in two ways.
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Figure 3.5: A simulation of LLG equation for evolution of magnetization vector
on a unit magnetization sphere. The initialization parameters are similar to
what were used in Fig. 3.4 in the respective order.

One method is to apply a magnetic pulse antiparallel to the prior state of
magnetization [46]. However the second method has proven to be more effi-
cient in terms of energy and time which involves the application of a magnetic
pulse perpendicular to the magnetization. We’ll discuss the second approach
in the following discussion. The mechanism for precessional switching can be
explained on the basis of three step model.

For simplicity, we limit our discussion only to uniaxial magnetic thin films
where the magnetization easy axis lies in the plane of the film. For a thin film
placed in a co-ordinate system x-y plane, we assume that the magnetization
easy axis is parallel to x-axis. The z-axis is perpendicular to the plane of film
and an external magnetic field Hext is applied in the −y direction. As the
pulse arrives, magnetic moment starts recessing out of the film plane due to
the torque defined by Eq. (3.1) and is illustrated in Fig. 3.6(a). In the second
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step, M start precessing about the demagnetization field which is generated
due to out of plane component of magnetization and M follows the direction
of demagnetizing field by traversing through an angle ϕ. In the last step, as
depicted in Fig. 3.6(c), the anisotropy field (which lies in-plane) comes at play
and M starts oscillations about the anisotropy field given by Eq. (3.9) before
getting aligned in the −x-axis direction, hence completing the precessional
switching mechanism [44, 47].

M

M

M MH
ext

γ

Ф

H
demag

H
ani

a) b) c)

x

y
z

Figure 3.6: Three step model for precessional switching a) In response to an
external magnetic field pulse Hext, magnetization M start precessing at angle
γ given by γ = ωt where t is the duration of pulse, b) M traverses an angle
ϕ due to the demagnetization field and c), finally the anisotropy fields aligns
the magnetization M antiparallel to the prior state.

Apparently, the LLG equation explains the evolution of macro-magnetization
M of the system but doesn’t incorporate temperature effects which are crucial
for determining the magnetic state of the system. This particular aspect is ex-
plored in the following section which will provide the reader a general overview
of the implementation of LLG equation and other schemes in atomistic spin
simulation software for determination of temperature dependent magnetiza-
tion in a magnetic medium.

3.3.3 Dynamics of Atomistic Spin Simulator—Vampire

This section is based on the popular atomistic spin simulation software Vam-
pire2 developed by Evans et.al [38]. A typical atomistic spin dynamic software
generally utilizes the LLG equation to simulate magnetization dynamics as

2https://vampire.york.ac.uk/
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a function of magnetic field and ultrafast changes in the magnetization and
a Monte-Carlo based approach for modeling of magnetization with tempera-
ture. We will skim through the assumptions and key features of the simulation
whereas the detailed discussion can be found here [38].

As stated earlier, the LLG equation explains the evolution of macro magnetiza-
tion dynamics where damping parameter α captures both intrinsic (spin-lattice
and spin-electron interactions) and extrinsic (spin-spin interaction arising due
to demagnetizing field, surface defects and doping) contributions. Our choice
of software applies the LLG on atomic spin moment. Without any loss of
generality, Eq. (3.14) can be rewritten for the spin magnetic moments as [38]

dSi

dt
=

γ

1 + λ2
(Si × Heff) +

γλ

(1 + λ2)

(
Si × (Si × Heff)

)
, (3.21)

where Si represent a unit vector for spin magnetic moment at site i which
interacts with an effective field Heff and damping coefficient is re-defined as λ,
merely to differentiate from Gilbert damping parameter α [38]. Furthermore,
the temperature dependent effects can be efficiently included in the LLG equa-
tion by introducing a stochastic thermal field Hth to the Heff in Eq. (3.13).
The stochastic thermal field Hth has the form [38]

Hth = Λ

√
2λkBT

γµs∆t
, (3.22)

where λ is microscopic damping parameter, T is the temperature, kB is the
Boltzmann’s constant, γ is gyromagnetic ratio, µs is the magnitude of atomic
magnetic moment, ∆t is the integration time step and Λ represents thermal
fluctuations by a three-dimensional Gaussian distribution [38]. This in turns
modifies the effective field to Heff → Heff + Hth.

The LLG equation can be analytically solved only in a handful of few spe-
cial cases, however numerical methods have been extensively employed to ob-
tain the solution for physical systems. The presence of the stochastic thermal
field in LLG makes it a Langevin dynamics problem which can be solved with
Stratonovich calculus. However any numerical method opted to solve LLG

107



3.3. MAGNETIZATION AND SPIN DYNAMICS

must obey the underlying physics and keep the properties realizable, particu-
larly the modulus of the magnetization must remain constant. Vampire uses
the Heun corrector-predictor scheme [38, 48, 49] to solve stochastic LLG which
ensures the convergence to Stratonovich solution. However, the Heun scheme
does not preserve the spin length which necessitates to renormalize the spin
unit vector length Si after both the predictor and corrector steps [38].

Furthermore, vampire utilizes LLG with Heun integration scheme in conjunc-
tion with two temperature model to simulate the ultrafast magnetization dy-
namics of magnetic nanostructures. The next section will present a brief review
of the two temperature model.

3.3.4 Two Temperature Model

All optical switching mechanism involves non-equilibrium transport and tem-
perature dynamics of electrons and lattice degree of freedoms. The dynam-
ics of electrons and phonons are based on the two temperature model which
consists of two stages. The first stage is the absorption of laser energy by
electron-phonon interaction. The temperature of the electron system reaches
a maximum Te depending on the laser fluence within ≈ 0.3 ps. The temporal
dynamics is also illustrated in Fig. 3.7.

The second stage involves the transfer of heat energy to the lattice through
electron-phonon interaction. The electron and phonon temperature equili-
brates within 1–2 ps. Two temperature model is valid only for low laser flu-
ences in which the electronic temperature does not crosses the threshold 0.1

Tf , where Tf is the Fermi temperature (typical range for metals, Tf > 20000

K) [50]. The mathematical expressions for the two temperature model has the
following form:

Ce
∂Te
∂t

= −G(Te − Tp) + S(r, t), (3.23)

Cp
∂Tp
∂t

= G(Te − Tp), (3.24)
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where Te and Tp represent the instantaneous temperatures for electrons and
phonons (crystal lattice degree of freedom) and Ce and Cp are electron and
phonon heat capacities, respectively, while G is the electron-phonon coupling
constant. The term S(r, t) represent the heat flux which is added only to the
Eq. 3.23 as thermal energy is directly transferred only to the electron system.
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Figure 3.7: Temporal evolution of electron Te and phonon temperature Tp in
response to a laser pulse of 50 fs. The data presented here is taken from one
of the simulation we performed on Vampire for ultrafast magnetization.

Furthermore, in order to characterize the temperature dependent magnetiza-
tion of the magnetic sub-systems, our choice of software Vampire uses a Monte
Carlo (MC) algorithm to measure the observable, i.e., magnetization and the
Curie temperature Tc. To measure the Curie temperature, the program per-
forms a step-wise loop over temperature, performing equilibration and aver-
aging steps and calculating the mean magnetization before incrementing the
temperature. As the system experiences a change in temperature, it takes a
finite amount of time (integration steps in the case of Monte Carlo integra-
tion) to reach thermal equilibrium. It is therefore important to make sure that
thermal equilibrium is reached before taking an average of the magnetization

In Vampire, the Curie temperature program includes both equilibration and
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averaging loops variables to ensure the thermodynamic equilibrium. Addi-
tionally, the use of MC instead of LLG equation for temperature dependent
magnetization is motivated due to the advantage of reduced computational
effort. The detailed discussion about Monte Carlo method is beyond the scope
of this thesis and can be found elsewhere [38, 51]. We end this discussion with
a short note on the specification of key parameters to be parsed to the software
for initialization.

3.3.5 Running the Vampire Software

Input parameters are drafted in two different files to be utilized by Vampire:
a) a Material file and b) an Input file. The material file contains the infor-
mation of elements, exchange energies, anisotropy energies and initial state of
the system (randomly oriented spins or aligned in a specific direction). It also
incorporates the doping percentage and structural information for a proposed
hetero-structure. The input file, on the other hand, consists of boundary con-
ditions, type and dimensions of crystal structure. It also registers the data
for magnetic measurement to be performed on the structure proposed in the
material file. The choice of simulation algorithm and integrator (LLG-Heun
for magnetic hysteresis and Monte Carlo for equilibrium magnetization M -T
curve) or ultra-fast thermally induced magnetization switching dynamics pa-
rameters are also accommodated in the input file.

The preceding discussion covers the theoretical basis which is employed in
determining different magnetization dynamics. The next section discusses
simulation results for temperature dependent magnetization studies of dif-
ferent materials and alloys. First we performed the simulation for transition
metals, rare-earth elements and alloys to corroborate with the experimental
findings. These results also offer a testing ground for the correct estimation
of the exchange energy constant Jij which will be utilized in the subsequent
measurements and analysis of magnetization dynamics in the forthcoming sec-
tions. Subsequently, we present the results for RE-TM alloys where RE= Tb,
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Gd and finally describe the temperature dependent magnetization curves for
the proposed DyFe magnetic nanostructures.

3.4 Results and Discussion

For an alloy or a nanostructure based on more than two constituent elements,
one of which for example is Fe, Eq. (3.4) will be modified as

H = −
∑
i̸=j

JX−XSi · Sj −
∑
i̸=j

JX−FeSi · Sj −
∑
i̸=j

JFe−FeSi · Sj

−(Ku
X

∑
i

(Si · e)2 − (Ku
Fe

∑
i

(Si · e)2
(3.25)

where X = RE or TM, JX−Fe describes the exchange interaction between ele-
ment X and Fe and Ku

X represents the uniaxial magnetic anisotropy constant
for the element X. The input parameters for the crystal structure and lattice
parameters for the respective elements are tabulated in Table 3.1.

We performed the field cooled magnetization vs temperature simulation of the
native rare earth, native transition metals and the alloys (Ni80Fe20, Co35Fe65)
to corroborate simulated results with experimental data. The volume of the

Figure 3.8: The crystal structure data generated by the Vampire is visualized
in the JMOL software. a) Random alloy for Ni80Fe20 and Co35Fe65 b) Co, Fe,
Dy magnetic structures.
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Table 3.1: Input File parameters for rare earth, transition metals and alloys.
Element Crystal Structure Lattice Parameters (Å)

Dy hcp a = 3.58, c = 5.65
Co hcp a = 3.58, c = 4.069
Fe bcc a = 2.86
Ni fcc 3.524
Ho hcp a = 3.58, c = 5.62
Gd hcp a = 3.64, c = 5.78
Tb hcp a = 3.60, c = 5.69

Ni80Fe20 fcc a=3.524
Co35Fe65 bcc a=2.856

magnetic structures for these analysis was kept constant at 25 nm3 and ex-
change energy Jij is estimated by mean field expression Eq. (3.6). The ap-
plied magnetic field strength is 1 T and the effective damping constant value
is 1. [13, 15, 38]. Field cooled M-T curve for various materials and alloys are
shown in Fig. 3.9 and Curie temperatures are estimated by least square curve
fit of equation [40]

m(T ) = (1− T

Tc
)β (3.26)

where m(T ) is the normalized magnetization Tc is the Curie temperature and
β is the critical exponent. The estimated Curie temperatures are in excellent
agreement with experimentally known results.

For Permalloy (Ni80Fe20) and permendur (Co35Fe65), an additional exchange
interaction occurs between Ni-Co and Fe-Co elements in their respective al-
loys and is denoted by JX−Fe in Table 3.2. The sign of JX−Fe, positive in
the current case illustrating that the coupling between elements in an alloy
is ferromagnetic. This results in higher Curie temperatures for Ni80Fe20 and
Co35Fe65.

This brings us to our next topic of discussion which deals with the magneti-
zation of rare earth-transition metal (RE-TM) alloys as a function of temper-
ature, similar to several extensive studies done by various groups due to their
distinctive magnetic properties [7, 29, 38, 52–54]. For a magnetic composite to
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Figure 3.9: Field cooled temperature dependent magnetization curves for dif-
ferent transition metals and alloys.

Table 3.2: Parameters for materials file and Curie temperature calculated from
M-T curves where Jexc and Ku denotes the exchange and anisotropy energy,
respectively.

Element Jexc (J/link) Ku (J/atom) JX−Fe (J/link) Tc (K)
Dy 1.6× 10−23 1.58× 10−23 - 90
Fe 7.050× 10−21 5.65× 10−25 - 1043
Co 11.2× 10−21 6.69× 10−24 - 1388

Ni80Fe20 - - 4.5× 10−21 843
Co35Fe65 - - 7.5× 10−21 1210

be used in magnetic recording media, one of the essential properties for a ma-
terial is to possess magnetization at room temperature, i.e., Tc > 300 K. This
analysis will help us choose the right composition of alloys or nanocomposites
for ultrafast magnetic switching.

3.4.1 Curie and Compensation Temperature

RE-Fe alloys (with RE= Tb, Gd) are ferrimagnetic in nature, i.e., the two met-
als with distinct magnetic moments are coupled antiferromagnetically which
has its origin in the hybridization of 5d and 3d orbitals of the constituent el-
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ements [55], respectively. We first report results of an atomistic simulation
obtaining field cooled M -T curves for different concentration of RE (Gd,Tb)
in the host element Fe.
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Figure 3.10: Temperature dependent magnetization curves for different con-
centration of a) Gd ions in GdFe alloy and b) Tb ions in TbFe alloy. Solid
lines are guide to the eye.

We have used the same exchange parameters for RE and TM ions as reported
in Section 3.4 which predict the accurate Curie temperatures for respective
elements. The exchange value for inter-sublattice exchange JX−Fe is opti-
mized to reproduce the key static magnetic properties, i.e., temperature de-
pendent magnetization. The values for inter sublattice exchange coupling are
JGd−Fe = −1.09×10−21 and JTb−Fe = −1.25×10−21 (J/link). The magnitudes
of magnetic moments are 7.6 µB, 9.21 µB and 2.21 µB for Gd, Tb and Fe ions,
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respectively [43]. The crystal structure dimension along each axis is 5 nm with
periodic boundaries.

Fig. 3.10(a) illustrates the magnetization curves with temperature for vary-
ing Gd concentrations in the range of 20 to 40 %. A similar simulation is
performed for Tb-Fe alloys for different concentrations of Tb ions in the host
element Fe and results are depicted in the Fig. 3.10(b).

It is evident from Figures. 3.10(a) and (b) that the normalized magnetiza-
tion approaches zero at two distinct temperatures. The first point at lower
temperatures where magnetization meets the temperature axis is referred as
the compensation temperature where the net magnetization due to the op-
positely aligned RE and Fe magnetic moments is zero. The second point at
higher temperatures is attributed to the Curie temperature where material
undergoes a transition from ferro to para.

The temperature dependence of the compensation temperature and Curie tem-
perature on Gd and Tb ion concentrations are summarized in Fig. 3.11. With
the increase of RE concentration, the magnetization follows a decrease in the
Curie temperature Tc which is attributed to magnetic softening due to addi-
tion of more RE nearest neighbors as RE-RE has a smaller exchange coupling
as compared to Fe-Fe [55]. For small changes in Gd concentration, variance in
Curie temperature is almost negligible as shown in Fig. 3.11. Meanwhile for
Tb, Tc decreases monotonically.

Additionally, the compensation points Tm shift towards higher temperature
with the increase in RE ions concentration. However, for a critical value of
RE concentration, i.e., 30% for Gd and 45% for Tb, no compensation point
was observed. The reason for this behavior is the contest between inter sub-
lattice exchange coupling. As the RE concentration increases, more atoms
contribute to the net magnetization of RE sublattice, hence net magnetization
is greater than Fe [55].
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Figure 3.12 shows a similar behavior for Dy-Fe alloy for the range 20–40 % Dy
ion concentration in the host element Fe. No compensation point was observed
however for Dy ion concentration less than 24%.
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Figure 3.11: Magnetic compensation temperature TM and Curie temperature
Tc for amorphous GdFe and TbFe alloys for different concentrations of Gd and
Tb respectively.

We further extended the temperature dependent magnetization studies, par-
ticularly for the Dy28Fe72 which has a compensation point just above room
temperature. We simulate the Dy28Fe72 nanostructures in the form of random
alloys, bilayers and core-shell whose structures are depicted in Fig. 3.13. All
input parameters for Dy and Fe used were the same as previously mentioned
in Tables 3.1 and 3.2. The value of the exchange integral JDy−Fe for 28 at %
of Dy content, due to an additional exchange interaction among Dy-Fe atoms
was calculated using the equation described by Talbot et.al [56] in their work
for magnetization reversal in Dy/Fe multilayers:

JFe−Dy(AFe)

kB
= 8− 198(1− AFe). (3.27)

Here AFe presents the concentration of Fe ions. The value of JFe−Dy was cal-
culated to be −2.49 × 10−21 J/link. It is evident from the Fig. 3.14 that no

116



3.4. RESULTS AND DISCUSSION

T (K)

0 200 400 600 800 1000

 M

0.1

0.2

0.3 Dy
24

Fe
78

Dy
26

Fe
75

Dy
28

Fe
72

Dy
30

Fe
70

Dy
32

Fe
65

Dy
35

Fe
62

0.0

Figure 3.12: Temperature dependent magnetization curves for the DyFe alloy
with different Dy ion concentrations in the host element Fe. Solid lines are
only meant to be guides to the eye.
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Figure 3.13: Different nanostructures of Dy28Fe72 are visualized. a) Coreshell
with Fe as core, b) coreshell with Fe as shell, c) Dy28Fe72 random alloy and d)
bilayer.
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compensation temperature is observed for the nanostructures in case of bi-
layer and coreshell with Fe as core. The Curie temperature estimated from
the curves are tabulated in Table 3.3.
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Figure 3.14: M -T curves for Dy28Fe72 magnetic nanostructures in the form of
random alloy, bilayer and coreshell with Fe and Dy core. Solid lines are guide
to the eye.

Table 3.3: Curie temperature estimated from M-T curves for different Dy-Fe
magnetic nanostructures.

Dy-Fe Bilayer Coreshell- Fe Core Coreshell-Dy Core Alloy
Tc (K) 1040 1020 990 790

Prior to the study of ultrafast magnetic switching of these magnetic struc-
tures, we start with the preliminary analysis of demagnetization in transition
metals and their alloys.

3.4.2 Sub-lattice Resolved Ultrafast Demagnetization

To study thermally induced magnetic switching and demagnetization by the
femtosecond laser, a pulsed laser program with LLG-Heun integrator under
two temperature profile with a time step of 0.1 fs was applied. The laser flu-
ence for an optical pulse of 50 fs was adjusted to generate a peak electronic
temperature Te = 1492 K, unless stated otherwise.
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As a background preparatory study, Fig. 3.15 illustrates the result of ultrafast
demagnetization for Ni when subjected to thermally induced heating by the
50 fs optical pulse. In response to a femtosecond pulse, the system undergoes
a thermal non-equilibrium state. The magnetization of the material follows a
local minima before magnetization equilibrates to a newer value as shown in
Fig. 3.15. The time taken for the magnetization to achieve this minima is
known as demagnetization time τD whereas the time required for magnetiza-
tion to adapt to the equilibrium value is referred to relaxation time τR. The
demagnetization time constant of pure Ni is τD=150 fs [57] and is extracted
from the non linear least square curve fitting of the following bi-exponential
function [26]:

f = g ×
(
a− b e

(
−τ
τR

)
+ ce

(
−τ
τD

))
(3.28)

where τR and τD are demagnetization and relaxation time constants and a, b,
c, g are other fit parameters. It is rewarding that demagnetization time con-
stants returned from our simulation are in well agreement with experimental
results [26, 57]. Similarly, Fig. 3.16 depicts the elemental demagnetization
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Figure 3.15: Ultrafast demagnetization of metallic Ni in response to a fem-
tosecond laser pulse of 50 fs.

curve for Fe, Co and Ni which are ferromagnetically coupled in host permalloy
(Ni80Fe20) and permendur (Co35Fe65). The data presented here is again curve
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fitted using Eq. (3.28) and demagnetization time constants deduced are 180 fs
for Ni and 330 fs for Co. However Fe exhibits different demagnetization rates
in different host elements, 220 fs in permalloy and 330 fs in permendur. The
difference arises due to different inter sublattice exchange values. Consequen-
tially, the magnitude of demagnetization for Fe in host permalloy is smaller
and demagnetization rate of Ni is faster than Fe as is evident from Fig. 3.16
(a), whereas in Co35Fe65, two sublattices decay at equal rates as shown in Fig.
3.16 (b).
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Figure 3.16: Sublattice resolved ultrafast demagnetization of metallic Ni80Fe20
and Co35Fe65.

This characteristic demagnetization time [27, 58] for each magnetic sublattice
in a multi lattice structure scales with:

τi =
µi

2λiγikBT
(3.29)

where µi is the moment at site i, γi is gyromagnetic ratio, λi is coupling to
thermal bath and T is the temperature. Consequentially, if a magnetic struc-
ture with two or more sublattice with different magnetic moments µ1 ̸= µ2

is subjected to high temperatures, despite the strong exchange coupling, two
sublattice will undergo different demagnetization dynamics. In permalloy, the
Ni magnetic moment is 3.6 times less than that of Fe, hence a rapid decrease
in magnetization.
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We conclude this section with a short note that no magnetization reversal
was observed in ferromagnetic metals and alloys. For extreme electron tem-
peratures, i.e., Te > 2000 K, magnetization is found to decreases sharply to
zero and did not recover until for long period of time.

The next section discusses the RE-TM alloys (Gd-Fe and Tb-Fe) which are
signature composites for both AOS and AO-HDS switching of magnetiza-
tion [14, 16, 26, 52, 55]. Here we extend the studies with different concentration
of Gd ion concentration in host Gd-Fe alloy in conjunction with different peak
electron temperatures. The variation of magnetization switching time against
peak electron bath temperature is also investigated for the Tb-Fe alloy. Fi-
nally, we explore the Dy-Fe magnetic nanostructures which could serve as
potential candidates for ultrafast magnetization switching.

3.4.3 All-Optical Thermal Switching

The spin system for simulation was excited with a 50 fs laser pulse and was
initialized at room temperature. We chose the concentration of RE element
for which the compensation temperature is above room temperature, as dis-
cussed in Section 3.4.1. The anisotropy energy of Gd and Fe was neglected
in the Hamiltonian and we assumed the same damping parameter α = 0.02,
for both RE and TM lattices. Only temperature effects from the laser pulse
were considered and we adopted the two temperature model, discussed earlier
in Section 3.3.4.

Fig. 3.17 presents the results of simulated magnetization dynamics for Gd24Fe76
with different laser fluences which correspondingly produce different peak elec-
tronic temperatures. In Fig. 3.17, all optical switching time is computed as a
function of peak electron bath temperature. The selection for this particular
choice of variable, i.e., is twofold. One is to observe the influence of peak
electron temperature or laser fluence on switching time which can be used to
gauge the switching time and second is the verification of the previous find-
ings by Chimata et.al [55] which suggested a minimum temperature threshold
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Figure 3.17: Sub-lattice resolved evolution of magnetization switching time for
the Gd24Fe76 alloy at different peak electron temperature. The solid lines are
visual guides.

alongwith an upper bound for all optical switching to occur. Additionally,
the simulated curves depict different demagnetization rates for each magnetic
sublattice which has also been verified by XMCD experiments [26, 55] and are
in accordance with Eq. (3.29).

It is noticeable in Fig. 3.17 that initially both Gd and Fe sublattice demagne-
tizes but Fe sublattice reverses its magnetization first, so that for a short period

122



3.4. RESULTS AND DISCUSSION

of time both Fe and Gd sublattice have parallel magnetization and exhibit a
transient ferromagnetic state. The results also show that the magnetization
for Fe immediately equilibrates in a direction opposite to the initial direction.
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Figure 3.18: All-optical switching time dynamics for different concentration of
Gd ion in host Gd-Fe alloy (a–b) Gd24Fe76, (c–d) Gd27Fe73 and (e–f) Gd30Fe70
at two different peak electron bath temperature. Dashed lines are drawn for
comparison of switching time.
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At higher electronic temperature, for example Fig. 3.17(d), we find excel-
lent agreement with the previous findings [27]. It also emphasizes the role of
electron temperature Te for all optical switching of RE-TM alloys. It is worth
noting that in Fig. 3.18(a–f), Te is always greater than Curie temperatures of
alloy and the constituent elements as well.

At lowest electron temperature Te = 1680 K, all optical switching time TOS for
Gd and Fe are 2.2 ps and 1.8 ps. With further increase in Te, TOS decreases
for both Gd and Fe sublattice as shown in Fig. 3.17(b). However, the switch-
ing time for Fe decreases monotonically while for Gd sublattice, it shows a
decrease at first but then increases for temperature greater than 1774 K. The
minimum TOS observed for Fe sublattice is 0.9 ps.

Additionally, we investigated the role of Gd concentration in host Gd-Fe alloy
and the results are depicted in Fig. 3.18. It is observed that increasing the Gd
ion concentration, the switching time for Gd sublattice decreases and for Fe
sublattice, magnetization reversal shift towards shorter times. The minimum
switching time estimated for Gd is 1.8 ps for Te = 1472 K as shown in Fig.
3.18(b), whereas for Fe the minimum TOS = 1 ps as depicted in Fig. 3.18(d).

Fig. 3.19 illustrates the sub-lattice resolved magnetization switching for the
Tb25Fe75 alloy. For the lowest Te = 1680 K, Tb and Fe sublattice magne-
tizations decay approximately at the same rate and optical switching occurs
at 1.85 ps for Fe and 2.1 for Tb. A further increase in electron tempera-
ture demonstrates the decrease in TOS for Fe whereas for Tb, the switching
time increases as shown in Fig. 3.19(b–d). The minimum TOS observed for
Fe and Tb sublattices are 1.2 ps and 2.0 ps respectively for a peak tempera-
ture of 2034 K. Finally we present the result of all-optical thermally induced
magnetization switching for Dy-Fe magnetic nanostructures. The damping
parameter was kept constant α = 0.02 to draw a comparison of switching time
among different RE-TM alloys as discussed above. Fig. 3.20 presents the
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Figure 3.19: All optical switching time dynamics against different electron bath
temperature for Tb25Fe75 alloy. The damping constant for this simulation was
kept at α = 0.02. The solid lines are visual guides.

results for Dy28Fe72 alloy and coreshell-Fe core. In case of Dy28Fe72 bilayer
and coreshell-Dy core, no magnetization switching was observed for the entire
range of electronic temperatures investigated, i.e., 1000 ≤ Te ≤ 2300 K.

We observed faster switching time TOS = 1.1 ps for Dy in host alloy as com-
pared to switching time estimated for Gd-Fe and Tb-Fe alloys. In case of
coreshell-Fe core, the magnetization switching occurs for peak electron tem-
perature Te = 2034 K, where Fe reverses its magnetization at 1 ps and Dy
switches the magnetization at 3.5 ps.

The scenario of reversal can be understood as follows. An ultrashort laser
pulse increases the thermal energy of the electrons in the alloy, creating a
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thermal bath for spins with a temperature much higher than the Curie point.
The rapid increase in thermal energy of the system leads to a very fast energy
transfer into the spin system. This results in the Fe and RE sublattices de-
magnetizing on very different timescales mainly because of differing magnetic
moments. The temperature of electronic system starts decreasing rapidly as
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Figure 3.20: All optical switching magnetization dynamics for a) Dy28Fe72
alloy and b) coreshell-Fe core. The respective electron bath temperature are
labelled in the insets.

a result of electron-lattice interaction and temperature falls below Curie tem-
perature within 1 ps. After this the initial sharp increase of the temperature of
electronic heat bath, the magnetization of the sublattices is still changing due
to exchange relaxation [55]. The non-equivalence of the sublattices combined
with the exchange relaxation means that Fe reaches zero magnetization be-
fore that of RE, eventually leading to the onset of the ferromagnetic like state
where two sublattice align parallel. The magnetization of the Fe sublattice is
then increasing while the RE is decreasing because of exchange relaxation.

The foregoing discussion elicits the complete characterization of ultrafast mag-
netization RE-TM alloys (RE=Tb, Gd, Dy) and DyFe nanostructures in re-
sponse to femtosecond laser pulse. The ultrafast magnetization response of
GdFe and TbFe alloys demonstrate different switching time as the concentra-
tion of RE ions in host TM and electronic heat bath temperatures are varied.
Furthermore, DyFe magnetic nanostructures in the form of random alloy and
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coreshell with Fe as core offer faster switching than traditional composites of
GdFe and TbFe alloys.

This concludes our discussion on ultrafast magnetization dynamics of RE-TM
alloys. We now briefly summarize the computational and experimental inves-
tigations of magnetic nanostuctures carried out as a collaborative work [59].

In this work, we proposed and actualized experimentally the synthesis of nano-
dimensional magnetic media consisting of patterned arrays of DyFe bilayer
structure. As stated earlier, the presence of spontaneous magnetization in a
composite at room temperature is essential for magnetic storage applications.
In this context, we first simulated the magnetic response of the DyFe bilayer
where we have assumed the input parameters as prescribed earlier in Tables.
3.1 and 3.2. The composition of DyFe nanostructures is varied by decreasing
Dy thickness from 100 nm to 75 nm (Fe content increases from 0–25 nm).
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Figure 3.21: Temperature dependent magnetization curves as the thickness of
Fe layer is varied in DyFe bilayer structure.

Fig. 3.21 represents the magnetization curves for different compositions of
DyFe bilayers. It is obvious from M -T curves that the Curie point shifts to-
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wards higher temperatures as the thickness of Fe is increased from 0–25 nm.
The minimum thickness of Fe which results in a room temperature magneti-
zation of the bilayer system is 10 nm (Dy90Fe10). This preliminary analysis
helped us to choose the suitable composition and served as a commencing point
for our experimental exploration.

The experiemental scheme can be stated in the following way. In the first
step, nano-structures are patterened on Si substrate using E-beam lithography.
The DyFe bilayer structures were deposited on E-beam exposed patterened
structurral arrays through DC (Dy) and RF (Fe) magnetron sputtering. The
thickness of each layer (90 nm for Dy and 10 nm afor Fe) is monitered and
controlled by STM thickness monitor.

The subsequent measurements which involve structural, chemical, optical and
magnetic characterizations of patterened bilayer structures, are perfromed us-
ing field emission scanning electron microscope (FE-SEM, Nova NanoSEM-
450), energy dispersive X-ray spectroscopy (EDX, Oxford Instruments) and
vibrating sample magnetometer (VSM, Cryogenics), respectively. We only
cite here key results of our experimental study whereas the detailed optimiza-
tion process for NSs and analysis can be found here [59].

We focused on the synthesis of nano-dimensional Dy90Fe10 bilayer structured
arrays in cylindrical geometry using E-beam lithography. The diameter of
cylindrical nanostructures is kept fixed at 100 nm with the same height while
the center to center spacing between NSs is 200 nm. In order to achieve the
desired size and height of patterned structured arrays, we have optimized vari-
ous E-beam exposure parameters such as E-beam driving potential, dose factor
etc. We obtain good results for 20 kV of E-beam voltage with the dose factor
equals 1.

The surface morphology and structural analysis was performed using field
emission scanning electron microscope (FE-SEM) and results are displayed
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3.4. RESULTS AND DISCUSSION

in Fig. 3.22. The surface of NSs appears to be round in shape and well
patterned with a separation distance of 95 ± 5 nm, both vertically and hori-
zontally. Furthermore, the diameter of these NSs was found to be 105± 5 nm,
showing a continuous and homogeneous overall morphology. The results of

Figure 3.22: FE-SEM images of 100 nm NSs with a) magnification 200,000x
and b) 300,000x, respectively.

elemental profiling using EDX are presented in the Appendix Our simulation
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Figure 3.23: Magnetization curves of Dy90Fe10 bilayer (100 nm thickness)
against magnetic field applied a) parallel and b) perpendicular to the (100)
plane of Fe.

results predicted the ferrimagnetic behaviour of Dy90Fe10 bilayer structure at
room temperature. In order to experimentally investigate the magnetic prop-
erties of these NSs, hysteresis measurements are performed for magnetic fields
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B directed parallel (in-plane) and perpendicular (out-of-plane) to (100) plane.
Fig. 3.23 shows the variation in normalized magnetization as a function of
magnetic field.

The results clearly reveal the presence of uniaxial magnetic anisotropy as core-
civity changes for different direction of applied magnetic fields. The estimated
coercivities are 700 Oe and 1340 Oe for in-plane and out-of-plane applied
magnetic field, respectively and easy axis lie in-plane (100) plane of the body
centered cubic (bcc) Fe for the deposited NSs. The presence of uniaxial mag-
netic anisotropy is a highly desirable feature for a nano-composite to be used
in HAMR application.

We conclude this chapter with a short note that DyFe NSs are proposed as a
suitable candidate for HAMR application however these structures can be po-
tentially investigated experimentally for the ultrafast magnetization switching
as well.
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Chapter 4

Faraday Rotation and Ellipticity
of the Single Photon

The first three chapters revolved around the interaction of magnetism and
light where light is considered as wave—classical light. Though this notion
was never spelled out explicitly yet the rationale for this assumption devel-
oped through Maxwell’s equations which led us to the wave equation, together
with the material properties, become the defining principle for phenomena that
were observed.

The present chapter focuses on Faraday rotation for polarized quantum light.
Though the magnitude of Faraday rotation for light remains the same for
both classical and quantum light (conditioned to the same wavelength), yet
the demonstration of Faraday rotation with quantum light throws light on
the peculiar and non-intuitive picture painted in the quantum realm and ne-
cessitate the need to invoke quantum mechanics for a satisfactory explanation.

The theory of quantum mechanics owes itself to many distinct efforts by physi-
cists spanned over the time of over century [1]. With the quantum body of
knowledge, has the emerging fields of quantum optics, quantum information,
quantum cryptography [2] and quantum computing [3, 4], to name a few.

The concept of polarization is generally understood as the confinement of the
electric field vector of light in a certain plane which reinforces the wave picture
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of light. However for single photons, often realized as particle or granular in
nature, it is extremely difficult to imagine or comprehend the concept of po-
larized photon. Furthermore, Faraday rotation which is defined as the plane
of polarization of rotation, one is driven to viewing light as a classical wave.
But a single photon, quantum field does have polarization and it can be ma-
nipulated through Faraday rotation. This chapter aims to demonstrate this
very facet.

To further our discussion, it is useful to differentiate between classical and
quantum light. The definition of classical light stems from the Maxwell’s
equations and was discussed in detail in Chapter 1. Formally, the distinction
between quantum light and classical light is based on different criteria. For ex-
ample the distinction may be defined on the basis of the statistics of photons [5],
writing states in Galuber-Sudarshan basis weighted by quasi-probability dis-
tribution functions [6] and the degree of second order coherence [7].

Generally, there are certain states which fulfills one of the above mentioned
criteria and qualifies as quantum light. Fock states, squeezed light and single
photons are all termed quantum whereas the light from thermal sources (black-
body, discharge lamps or laser) are deemed classical. In summary, quantum
light shows sub-Poissonian statistics whereas classical light shows Poissonian
or chaotic statistics [8]. Quantum light’s signature is antibunched photons,
whereas classical light exhibits bunching of photons [9]. Finally. for the quan-
tum light, the second-order degree of coherence g2(0) < 1 whereas it is ≥ 1

for classical light [10]. Therefore, non locality tests dubbed as Bell’s tests are
unequivocal proofs of non-classical signatures [11]. This is not a thesis on
quantum optics, yet our work [12] shows that the light source used in these
experiments has the full quantum signatures.

It is noteworthy that unlike classical optics experiments, visualized in the
earlier chapters, the quantum light requires an altogether new approach and
special tools for both the experimental and theoretical investigations. Keeping
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this in mind, the current chapter is structured into three major parts. First
part presents a brief overview of quantum mechanics which encompasses the
introduction to state representation, operators and measurements aspect of
quantum state.

The second part will lay down the theoretical background for characterization
of polarization state of single photons, i.e., quantum state tomography. In the
third part, we demonstrate the generation of single photons through sponta-
neous parametric downconversion (SPDC) and subsequently their detection.
Finally, we present the experimental results and analysis for extracting the
variable of interest—the Faraday rotation angle θ.

4.1 Mathematical Preliminaries

This section is not meant to be an exhaustive review of the mathematical
foundations of quantum mechanics, rather it is a collection of tools which will
be required for understanding quantum state tomography which is the basis
of our measurement scheme for the Faraday rotation of single photons.

4.1.1 Quantum State Vector, Qubits and the Density
Matrix

In quantum mechanics, a physical system can sometimes be completely char-
acterized by a state vector |ψ⟩ defined in a complex vector space (Hilbert
space) [13]. In general, any state vector can be expanded as a linear combina-
tion of basis vectors {|ui⟩}

|ψ⟩ =
∑
i

ai |ui⟩

where ai’s are complex amplitudes and can be evaluated by the inner product
(signifies the overlap between two vectors) of the state vectors as ai = ⟨ui|ψ⟩
[14]. The inner product of a state vector with itself is always real and positive
and the state vector is said to be normalized if

⟨ψ|ψ⟩ = 1.
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The orthonormality condition for basis vectors is defined by

⟨um|un⟩ = δmn, (4.1)

where δmn is the Kronecker delta function. The superposition of states, (say
|ψ1⟩ and |ψ2⟩) is also an admissible state of the same Hilbert space and can be
expressed as [15]

|ψ⟩ = a |ψ1⟩+ b |ψ2⟩ . (4.2)

Here a and b are the probability amplitudes but more physically meaningful
quantities are |a|2 and |b|2 which present probabilities of finding the system
in states |ψ1⟩ and |ψ2⟩, respectively. Furthermore, |a|2 + |b|2 = 1 which is
simply interpreted as the sum of all probabilities must be equal to unity. The
conjugate counterpart of the state |ψ⟩ is represented by ⟨ψ| and is known as a
dual vector, which lives in the dual space.

Note that the state vector |ψ⟩ only describes a limited set of states, called
pure states. Most states achieved or measured in real experiments are ‘non-
pure’ or mixed. They are described by density matrices as we’ll explain shortly.
In our context, the polarization of a qubit is the relevant degree of freedom
qualifying to define the quantum state.

With this brief partial introduction of state representation, we now like to
introduce the reader to the concept of a qubit which will be employed fre-
quently throughout this chapter.

4.1.2 Qubit

The idea of a bit surfaced in the previous chapter where we utilized the notion
of magnetization to describe the 1 and 0 states of the magnetic system which
form the basic unit of classical information. Similarly a quantum bit (qubit)
is the basic unit for quantum information [16]. However, unlike the classical
bit which could only assume one of the two possible states (0 or 1, written as
|0⟩ and |1⟩ in state vector representation), a coherent superposition of states
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(|0⟩ and |1⟩) is also an admissible state for a qubit.

|ψ⟩ = α |0⟩+ β |1⟩ . (4.3)

A qubit is simply a two level quantum system and could be realized in many
different physical systems. For example, the electron spin has two levels, con-
ventionally called spin up and spin down, the polarization encoding of light
with horizontal and vertical polarization or a 2-level artificial atom [16]. Ta-
ble 4.1 illustrates few examples of qubits. Here we are interested in using the

Table 4.1: Few examples of qubit states realized in physical systems with
characteristic properties which is being utilized for quantum information.

Physical system Property |0⟩ |1⟩

Photon Polarization |H⟩ |V ⟩

Fock states vacuum single photon

Path after a
beamsplitter |reflected⟩ |transmitted⟩

Electron Spin |↑⟩ |↓⟩

Atomic nucleus Spin |↑⟩ |↓⟩

Superconducting
charge qubit Charge |absent⟩ |present⟩

photon polarization for the description of qubit and therefore Eq. (4.3) can be
relabeled as [17]

|ψ⟩ = α |H⟩+ β |V ⟩ , (4.4)

where |0⟩ and |1⟩ basis representation is replaced by horizontal |H⟩ and ver-
tical |V ⟩ polarization states of photon, respectively. From a mathematical
perspective, this is merely a relabeling. The basis states {|H⟩ , |V ⟩} can be
written in the matrix form as [17]

|ψ⟩ = α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
. (4.5)
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The matrix representation of Eq. (4.5) seems similar to the Jones vector dis-
cussed earlier in Chapter 1, yet the elements of two matrices elicit an altogether
different meaning. In case of the Jones vector, α and β contains the ampli-
tude and phase information for horizontally and vertically polarized light [18]
whereas, in the case of single photons, the relevant quantity is squared modu-
lus of |α|2 or |β|2, which determines the probability of finding the horizontal or
vertical state as a result of some measurement which can sort out the photon
into horizontal and vertical channels. In most labs, a polarizing beam splitter
achieves this.

4.1.3 The Density Matrix

The alternative to the state vector representation is the density operator (or
matrix) formalism. In order to understand the concept of the density matrix,
we consider an example of an apparatus which randomly prepares a quantum
system in particular states, say horizontally and vertically polarized photons.
We also assumes that the apparatus is imperfect and it does not always produce
the same state, i.e., horizontal polarization |H⟩ is produced with a probability
q1 and vertical polarization |V ⟩ with probability q2. For this particular case
where the system is a statistical mixture of two possible states and assuming
that there are no interference effects, the density matrix can be written as

ρ = q1 |H⟩ ⟨H|+ q2 |V ⟩ ⟨V | =
(
q1 0
0 q2

)
. (4.6)

The above expression implies that the density matrix is a sum of the proba-
bilistic weighting (called the convex sum) of pure states. This definition can
further be generalized for two or more states leading to the mathematical form

ρ =
∑
i

qi |ϕi⟩ ⟨ϕi| (4.7)

where qi’s are the classical probabilities, 0 ≤ qi ≤ 1 for preparing the system in
the normalized |ϕi⟩. Moreover, the sum of all probabilities must equal unity,
i.e.,

∑
i qi = 1. The density operator for a pure state is given by

ρ = |ψ⟩ ⟨ψ| . (4.8)

Furthermore, a legitimate density matrix must obey the following properties.
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1. The density operator must be Hermitian i.e., ρ = ρ†.

2. Tr(ρ) = 1 i.e., the sum of all diagonal elements must equal unity.

3. For any state vector |ψ⟩, ρ is a positive operator ⟨ψ|ρ|ψ⟩ ≥ 0.

The off diagonal terms of a density matrix (ρmn,m ̸= n) are called coherences
which originate from the interference effects among different states and diago-
nal terms are called populations. The distinction between a mixed and a pure
state is made clearer by invoking the trace property of the density matrix.
This leads to the definition that for a pure state Tr(ρ2) = 1, whereas for a
mixed state Tr(ρ2) < 1.

These preliminaries acquaint the reader to the various representations of a
quantum system. How the information of physical quantities can be extracted
from these states and how these states will evolve with time or when they are
subjected to various transformations, is now discussed.

4.1.4 Observables, Operators and Measurements

In quantum mechanics, any measurable physical quantity is represented by an
observable [15]. For any observable A, there exists a mathematical object Â
which maps one state vector (say |ψ⟩) into another state vector |ϕ⟩ which is
described by Â |ψ⟩ = |ϕ⟩. For any state |ψ⟩, if

Â |ψ⟩ = a |ψ⟩

then |ψ⟩ is said to be an eigenstate of Â and a is known as the eigenvalue of
Â [14]. This mathematical object Â is called an operator. An eigenvalue is the
outcome of a measurement on a physical system, so for an observable, it must
be real. Additionally, a linear operator Â can also be represented by a matrix
and the matrix elements Aij for a given operator Â in the basis state {|ψj⟩}
are given by the expression [19]

Aij = ⟨ψi|Â|ψj⟩ . (4.9)
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An operator when transported to the dual space becomes a Hermitian adjoint:

Â |ψ⟩ → ⟨ψ| Â†. (4.10)

For a state vector chosen to be its own dual vector, we can define the projection
operator in the following way

P̂ = |ψ⟩ ⟨ψ| , (4.11)

where P̂ obeys the property

P̂2 = |ψ⟩ ⟨ψ|ψ⟩︸ ︷︷ ︸
1

⟨ψ| = |ψ⟩ ⟨ψ| = P̂ .

The action of the projection operator can be realized by placing a polarizer
in the path of a beam of photons followed by detection or counting with a
photodetector. Such measurement is classified as a projective measurement.

Suppose we have a single photon polarized at 45◦, for which we write the
quantum state as

|ψ⟩ = 1√
2

(
|H⟩+ |V ⟩

)
. (4.12)

The action of a polarizer oriented parallel to the horizontal axis will collapse
the superposition state. The act of projective measurement can be described
mathematically as

P̂H |ψ⟩ = |H⟩ ⟨H|ψ⟩ = 1√
2

(
|H⟩ ⟨H|H⟩+ |H⟩ ⟨H|V ⟩

)
=

1√
2
|H⟩ . (4.13)

Now if we apply ⟨ψ| from left to obtain the expectation value, we obtain

⟨ψ|H⟩ ⟨H|ψ⟩ = | ⟨H|ψ⟩ |2 = 1

2
. (4.14)

Eq. (4.14) is narrated as the probability of finding the state |H⟩ when |ψ⟩
is being subjected to a horizontally oriented polarizer—the Born’s probability
rule [13]. In other words, a detection placed after the polarizer will click with
a probability, on average, of one-half! A similar argument for the polarizer
with transmission axis oriented along the vertical axis also holds. Prior to
the measurement, the system was in state |ψ⟩ and the act of measurement
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collapsed the state to |H⟩, a scheme known as the Von Neumann measurement
postulate [14]. Now if the same measurement is repeated on the basis state
|H⟩, the probability of observing the state |H⟩ will be

P ′
i = | ⟨H|H⟩ |2 = 1.

We now would like to introduce the reader to another important class of op-
erators, i.e., unitary operators which become extremely important and useful
while discussing operations on a qubit. Unitary operators are defined as [15]

Û Û † = Û †Û = Î (4.15)

where Î represents the identity operator and Û † is the adjoint of the operator
Û . Unitary operators are special kind of operators which preserve the norm
of the state vector. Assume that |ψ′⟩ is obtained by the action of unitary
operator on state |ψ⟩, then we can write

|ψ′⟩ = Û |ψ⟩ . (4.16)

Taking the dual state, we have

⟨ψ′| = ⟨ψ| Û †, (4.17)

and therefore
⟨ψ′|ψ′⟩ = ⟨ψ|Û †Û |ψ⟩ = ⟨ψ|ψ⟩ , (4.18)

showing that the norm for the states |ψ⟩ and Û |ψ⟩ remains unchanged by
a unitary operation. For a polarization encoded photon qubit system, the
unitary operations is realized by waveplates which rotate the polarization of
the quantum state. Table 4.2 enlists the waveplates commonly used in an
experiment setting [20].

So far we have surveyed the mathematical description of a quantum system
for a single qubit. The following section extends the description of a quantum
state for a two qubit system. We will revisit these operators when we discuss
qubits being represented on the Bloch sphere.
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Table 4.2: Operators for commonly used waveplates for manipulation of the
polarization state of light. Waveplates perform a unitary operation.

Optical Element Operator

Rotation of polarization
through an angle θ

(
cos θ − sin θ
sin θ cos θ

)
Quarter waveplate (fast axis
at θ w.r.t horizontal)

(
cos θ2 + i sin θ2 (1− i) sin 2θ
(1− i) sin θ cos θ sin θ2 + i cos θ2

)

4.1.5 Composite Systems

We extend the discussion of single particles to two particles in terms of photon
polarization states. In order to describe a two particle system, it is necessary
to construct a Hilbert space H which is a composite of independent Hilbert
spaces H1 and H2 of individual particles [21]. Let |ϕ1⟩ ∈ H1 and |ϕ2⟩ ∈ H2 be
two state vectors, then a new vector |ψ⟩ ∈ H can be constructed by the tensor
product and be represented as [22]

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ = |ϕ1ϕ2⟩ (4.19)

where |ψ⟩ ∈ H. Furthermore, the dimension of the composite Hilbert space H
would be the product of dimensions of the individual Hilbert spaces [16]. In
case of photon polarization states, the two vectors are usually two beams of
photons and the composite states may take the form |HH⟩, |HV ⟩, |V H⟩ or
|V V ⟩ and the density matrix for such a system would be a 4× 4 matrix. The
state |HV ⟩ means that one photon is in state |H⟩ whereas the second photon
is in the state |V ⟩.

Similar to the single qubit case, the superposition principle also holds true
for the two qubit system. It is the superposition of the two qubit system
which in fact brings the bizarre nature of quantum world to the surface for the
presence of correlation—entanglement, between different states of a superposi-
tion state is purely a quantum mechanical phenomenon which has no classical
counterpart [16, 22]. States which cannot be expressed as a product state are
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entangled states. For completeness, we only cite here the four famous Bell’s
entangled states as extent of this chapter would be insufficient to capture the
entirety of the subject. For a two qubit system realized as two beam of pho-
tons generated through SPDC and considering their polarization degrees of
freedom, Bell states are given by [16]

|ϕ+⟩ = 1√
2

(
|HH⟩+ |V V ⟩

)
, (4.20)

|ϕ−⟩ = 1√
2

(
|HH⟩ − |V V ⟩

)
, (4.21)

|ψ+⟩ = 1√
2

(
|HV ⟩+ |V H⟩

)
, (4.22)

|ψ−⟩ = 1√
2

(
|HV ⟩ − |V H⟩

)
. (4.23)

The density matrix for one of the Bell’s state is given by [17]

ρ = |ϕ+⟩ |ϕ+⟩

=
1

2

(
|HH⟩ ⟨HH|+ |HH⟩ ⟨V V |+ |V V ⟩ ⟨HH|+ |V V ⟩ ⟨V V |

)
=

1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (4.24)

The entangled state |ϕ+⟩ represents that the two photons are in a superposi-
tion state. Now if a measurement is performed and the first photon is found
in state |H⟩, it can be instantly known that the other photon is in state |H⟩
as well. In other words, knowing the polarization state of one photon deter-
mines the state the other photon. This violates the classical world view of
local realism [11] and has far reaching consequences, philosophically as well as
technologically.

This concludes our discussion and brings us to the next section which gives
a brief overview of the process for measuring the density matrix, known as
quantum state tomography. As stated earlier, in the case of incomplete in-
formation about the quantum system (mixed state), we resolve to the density
matrix formalism for the description of the state. The following discussion will
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explore the working of the tomographic method for the construction of density
matrix from unitary and projective measurements.

4.2 Quantum State Tomography

In order to experimentally determine the density matrix, we need to perform
several measurement in different bases to completely characterize the polariza-
tion state of the photons. Furthermore, if a quantum state has a single copy,
it is impossible to construct the density matrix with a single measurement.
This in turns necessitates to perform the measurement in successive stages
on many identical ensembles of the quantum state. Since there can never be
an infinite supply of particles, so we can only make an informed guess of the
quantum state. Different approaches are outlined by several authors for such
an estimation [23–26].

Quantum state tomography is a method for the complete characterization of
a quantum state of a particle or particles through successive measurements
on many identical copies of the quantum system. Tomographic methods have
been widely employed for measurements in diverse and complex quantum sys-
tems. One of the successful adaptation of the tomographic method is for qubit
based on polarization entangled beams of single photons generated through
SPDC.

The main focus of this section is to introduce the reader with the basics of to-
mographic method we employed in our work to characterize and consequently
analyzed to extract the variable of interest—the Faraday rotation, as well as
the ellipticity acquired by the single photon as it negotiates with the magneto-
optic element.

In Chapter 2, we demonstrated the complete characterization of classical light
with the Stokes polarimetry based on the Fourier decomposition of intensity
measurements. However, for quantum light, we deal with the probabilities of a
particular measurement—photon counts. In the next section, we will see how
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these Stokes parameters emerge naturally while discussing the measurement
perspective of tomography process.

4.2.1 Single Qubit in the Bloch Sphere Picture

In Chapter 2, we mapped different polarization states of classical light on a
unit radius sphere known as the Poincare sphere. The polarization was also
described by the Stokes parameters {I, M , C, S}. However, for a two level
quantum system or qubit, the geometrical representation of quantum states
as points on a unit sphere is traditionally given by the Bloch sphere which is
isomorphic (totally equivalent to the Poincare picture).

σ1

σ2

σ3

ρ

^

^
^

S1

S3

|H>

|V>

|D>

|A>

|R>

|L>

ɵ

ɸ

|ψ>

(b)(a)

S2 axis
S1 a

xis

S3 axis

Figure 4.1: (a) Geometrical representation of an arbitrary state |ψ⟩ on the
Bloch sphere. (b) An arbitrary mixed state, represented by density matrix ρ
can be located merely by projection along each axis of the Bloch sphere. The
axes are relabeled as Pauli matrices.

Fig. 4.1 shows the representation of an arbitrary state |ψ⟩ on the surface
of Bloch sphere where {|H⟩ , |V ⟩} basis states are assigned to the poles. This
arbitrary pure quantum state |ψ⟩ can be characterized by the angle θ, ϕ (sup-
pressing the global phase factor) and is given by

|ψ⟩ = cos θ
2
|H⟩+ eiϕ sin θ

2
|V ⟩ . (4.25)

These angles are defined in the Bloch sphere and later in the chapter will also
be designated as θB and ϕB. The other two axes of the Bloch sphere are iden-
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tified as |D⟩ = 1/2
(
|H⟩ + |V ⟩

)
and |R⟩ = 1/2

(
|H⟩ + i |V ⟩

)
. The antipodal

points on these axes represent their orthogonal counterpart polarization de-
noted by |A⟩ and |L⟩, respectively. It is important to mention here that the
polarization states along each axis |H⟩ , |D⟩ , |R⟩ are not mutually orthogonal
yet they are represented by orthogonal axes only in the geometry of the Bloch
sphere picture.

This particular visualization of the pure state is more intuitive and becomes
useful when a unitary rotation is performed on a qubit. Another important set
of unitary operators which become imperative while discussing the rotation of
single qubit on the Bloch sphere is the set of Pauli matrices. Pauli matrices
along with the identity matrix are defined as

σ̂◦ =

(
1 0
0 1

)
, σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (4.26)

In the canonical basis {|H⟩ , |V ⟩}, it can be readily seen that Pauli matrices
take the form

σ̂◦ = |H⟩ ⟨H|+ |V ⟩ ⟨V | , (4.27)

σ̂1 = |D⟩ ⟨D| − |A⟩ ⟨A| , (4.28)

σ̂2 = |R⟩ ⟨R| − |L⟩ ⟨L| , (4.29)

σ̂3 = |H⟩ ⟨H| − |V ⟩ ⟨V | . (4.30)

Note that in each of the latter three equations, we have the difference of two
projection operators, e.g., σ̂1 = P̂D − P̂A etc. Therefore each Pauli operator
is called a polarization operator, showing whether a state is pointing in one
direction or its antipodally opposite direction. We will also use σ̂1 = σ̂x,
σ̂2 = σ̂y and σ̂3 = σ̂z.

4.2.2 Rotation on the Bloch Sphere

Pauli operators are useful in another way too. Unitary rotations are generated
by taking the exponential of Pauli matrices. A rotation about the σ̂i axis on
the Bloch sphere through an angle θ is defined as

eiθ
σ̂i
2 = cos θ

2
σ̂◦ + i sin θ

2
σ̂i (4.31)
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For instance, the rotation about y and z-axis can be written in matrix form as

Ry(θ) = e−iθ
σ̂y
2 = cos θ

2
σ̂◦ − i sin θ

2
σ̂y =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
, (4.32)

whereas

Rz(θ) = e−iθ
σ̂z
2 = cos θ

2
σ̂◦− i sin θ

2
σ̂z =

(
e−i

θ
2 0

0 ei
θ
2

)
= e−i

θ
2

(
1 0
0 eiθ

)
. (4.33)

It is noticeable that Eq. (4.32) is similar to the expression (though not exactly
equal) for an arbitrary rotation defined earlier in Table 4.2. The rotation in
Table 4.2 has an argument θ whereas in the Bloch sphere description, a rota-
tion through θ about the y-axis yields an angle θ/2 in the matrix. Therefore a
physical rotation through θ is equal to a rotation through 2θ about the y-axis
in the Bloch sphere picture.

Furthermore, the HWP and QWP also perform unitary operations If the angle
of the HWP or QWP is θ in the lab frame, the HWP or QWP performs rotation
about the axis which is aligned at 2θ with the north pole of the Bloch sphere.
For HWP, the amount of rotation is π and for QWP the amount of rotation
is π/2. For completeness, the expressions for quarter and half waveplates can
also be rewritten in terms of Pauli matrices as

ÛHWP = exp
(
− iπ

( σ̂z
2

cos 2θ + σ̂x
2

sin 2θ
))
, and (4.34)

ÛQWP = exp
(
− i

π

2

( σ̂z
2

cos 2θ + σ̂x
2

sin 2θ
))
. (4.35)

4.2.3 Towards Tomography

For a single qubit arbitrary mixed state, the expression for the density matrix
is given by Eq. (4.7) and in general has the following form

ρ =

(
a b+ ic

b− ic 1− a

)
, (4.36)

where a, b and c are real and non-negative numbers. The Pauli matrices
alongwith the identity matrix, span the space for 2 × 2 Hermitian operators.
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Table 4.3: Correspondence between definitions of Stokes parameters from Ch.
2 and 4.

Notation from Ch. 2 Notation from Ch.4
I S◦
M S3

C S1

S S2

Hence, any density matrix for a single qubit can also be decomposed into the
linear combination of Pauli matrices and Eq. (4.36) can be rewritten as

ρ =
1

2

3∑
i=0

Siσi, (4.37)

where the coefficients Si are given by

Si = Tr(σiρ). (4.38)

We have previously learned that for a pure state Tr(ρ2) = Tr(ρ) = 1. Using
the definition of density matrix in (4.37), it can be readily seen that

Tr(ρ2) =
1

2

(
1 + S2

1 + S2
2 + S2

3

)
(4.39)

where S0 = 1 due to normalization. By invoking the trace property for a le-
gitimate density operator, it can be clearly seen that S2

1 + S2
2 + S2

3 = 1 for a
pure state whereas, for a mixed state S2

1 + S2
2 + S2

3 < 1. Note that definitions
similar to these, i.e.,

∑3
i=1 S

2
i ≤ 1 have been previously used in Chapter 2

while discussing the Stokes parameters. Indeed the coefficients Si’s are the
Stokes parameters. Furthermore, S2

1 + S2
2 + S2

3 = 0 refers the center of sphere
which represents the maximally entangled state.

This chapter uses an alternate description of Stokes parameters {S0, S1, S2, S3}
instead of {I, M , C, S}, introduced in Chapter 1, since we like to conform to
the quantum picture traditionally used in the form of the Bloch sphere. The
correspondence is highlighted in Table 4.3.
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Fig. 4.1(b) represents the Bloch sphere where each axis is relabeled in terms
of Pauli matrices or the “Stokes axes”. Density matrices can also be mapped
to the Bloch sphere. A point represented by ρ for example, lies in the σ̂1-σ̂3
plane inside the Bloch sphere. The projection along axes σ1 and σ3 will result
in the respective Stokes parameters S1 and S3. For this particular choice of
state, S2 = 0.

In Chapter 2, the Stokes parameters are related with the measurement of
intensity of classical light whereas for quantum light or in the case of single
photons, intensities are replaced by the photon-counts. Here we need a recon-
ciliation of previous definitions for Stokes parameters {I, M , C, S} with the
new definitions {S0, S1, S2, S3} and this can be summarized as

S0 = P|H⟩ + P|V ⟩ I =
〈
E2
x

〉
+
〈
E2
y

〉
,

S1 = P|D⟩ − P|A⟩ C =
〈
E2
d

〉
−
〈
E2
a

〉
,

S2 = P|R⟩ − P|L⟩ S =
〈
E2
r

〉
−
〈
E2
l

〉
and S3 = P|H⟩ − P|V ⟩ M =

〈
E2
x

〉
−
〈
E2
y

〉
. (4.40)

Here P|ψ⟩ represents the probability of measuring the photon in the polarization
state |ψ⟩ and can be evaluated as

P|ψ⟩ = ⟨ψ|ρ|ψ⟩ = Tr(|ψ⟩ ⟨ψ| ρ) = Tr(P̂|ψ⟩ρ). (4.41)

Furthermore, the expression for the Stokes parameters given by Eq. (4.38) can
also be restated using equations (4.30) and (4.41)

S1 = Tr(ρσ1) = Tr
(
ρ |D⟩ ⟨D| − |A⟩ ⟨A|

)
= P|D⟩ − P|A⟩ (4.42)

S2 = Tr(ρσ2) = Tr
(
ρ |R⟩ ⟨R| − |L⟩ ⟨L|

)
= P|R⟩ − P|L⟩ (4.43)

S3 = Tr(ρσ1) = Tr
(
ρ |H⟩ ⟨H| − |V ⟩ ⟨V |

)
= P|H⟩ − P|V ⟩. (4.44)

The expressions above demonstrate the correlation between the Stokes param-
eters and density matrix elements. Hence, quantum state tomography is in fact
the measurement of the Stokes parameters which enables us to reconstruct the
density matrix.
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The next section will discuss the process of determination of density matrix.
We set up the discussion with the simple case of single qubit and assume the
measurement process exhibit no errors and has perfect experimental condi-
tions.

4.2.4 Single Qubit Tomography

The current Section is built upon the pioneering work of Kwiat et.al [27]. The
description of quantum state tomography described here also runs parallel to
the upcoming work soon to be published by our research group [12]. Quantum
state tomography is in fact the measurement of the Stokes parameters (S1, S2,
S3). Prior to measurement, we have no knowledge of the quantum state, yet
it can be said with certainty that the any single qubit state represents a point
on the Bloch sphere and must lie somewhere on or inside the sphere. The act
of measurement of Stokes parameters is precisely to locate the point where it
is located on the Bloch sphere.

Figure 4.1(a) presents an unknown state inside the Bloch sphere. Similar
to the projection of a point on a sphere along three spherical coordinates (r,
θ, ϕ), a set of three independent measurement isolate a single quantum state
in the Bloch sphere. The first projection measurement along {|H⟩ , |V ⟩} basis
will isolate the state in a plane. Further measurements along {|D⟩ , |A⟩} and
{|R⟩ , |L⟩} basis will restrict the unknown state to a line and then to a point,
respectively.

It is obvious from Eqns. (4.42)–(4.44) that we need six probabilities P|H⟩,
P|V ⟩, P|D⟩, P|A⟩, P|R⟩ and P|L⟩ in order to determine the Stokes parameters.
These probabilities are experimentally determined by projecting a state onto
a beam splitter (2-detector scheme) in respective basis {|H⟩ , |V ⟩}, {|D⟩ , |A⟩}
and {|R⟩ , |L⟩}. The outcome of these measurements are utilized to determine
the Stokes parameters and consequentially, the estimation of density matrix.
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|H>

|V>
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Figure 4.2: The projective measurement is performed along (a) {|H, |V ⟩⟩}.
(b) Measurement along {|R, |L⟩⟩} and {|D, |A⟩⟩} basis are realized by trans-
forming the state into {|H, |V ⟩⟩} basis using different setting (q, h) of quarter-
and half wave-plates whereas (c) depicts the action of QWP and HWP on an
arbitrary state in the Bloch sphere.

The projection of state on the canonical basis {|H⟩ , |V ⟩} is straightforward
by placing a polarizing beam splitter (HV polarizer) in the path of light. A
polarizing beam splitter either reflects (|V ⟩) or transmits photons (|H⟩) de-
pending upon the polarization state of the incoming light.

However the projections along the bases {|D⟩ , |A⟩} and {|R⟩ , |L⟩} need a
somewhat different strategy as it’s extremely difficult to manufacture a PBS
which splits light into respective set of orthogonal states {|D⟩ , |A⟩} and {|R⟩ , |L⟩}.

The workaround this problem is to rotate the incoming state by unitary opera-
tion. These unitary operations can be performed by waveplates (QWP, HWP)
with suitable orientations which will project the states |D⟩ → |H⟩, |A⟩ → |V ⟩,
|R⟩ → |H⟩ and |L⟩ → |V ⟩. See Fig. 4.2(b) which shows the placement of QWP
and HWP with orientation angles q and h. For analysis along {|D⟩ , |A⟩}, we
require q = 45◦, h = 22.5◦ whereas for {|R⟩ , |L⟩} basis, the setting is q = 45◦,
h = 0. This concludes our discussion on single qubit tomography. The next
Section will extend the single qubit description to two qubit tomography.
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4.2.5 Two Qubit Tomography

It is generally straightforward to extend the idea of single qubit tomography
to two qubit or multiple qubit tomography. In the context of our experimen-
tal needs, we’ll restrict our discussion only to the two qubit tomography. A
two qubit system can be realized in terms of photon pairs generated through
spontaneous parametric downconversion (SPDC, we will discuss this shortly).
The two photon system lives in a four dimensional space and the state vector
representation for a pure state is given by

|ψ⟩ = a1 |HH⟩+ a2 |HV ⟩+ a3 |V H⟩+ a4 |V V ⟩ =


a1
a2
a3
a4

 (4.45)

with ai being a complex number and
∑

i |ai|2 = 1. However in case of a mixed
state, the density matrix has the following general form for two qubit system

ρ =


A1 B1e

iϕ1 B2e
iϕ2 B3e

iϕ3

B1e
−iϕ1 A2 B4e

iϕ4 B5e
iϕ5

B2e
−iϕ2 B4e

−iϕ4 A3 B6e
iϕ6

B3e
−iϕ3 B5e

−iϕ5 B6e
−iϕ6 A4

 , (4.46)

where ρ follows the characteristics of a legitimate density matrix. Here we have
16 unknown parameters (A1, · · · , A4, B1, · · · , B6, ϕ1, · · · , ϕ6) however with unit
trace property, i.e., A1 + A2 + A3 + A4 = 1, we are left with 15 parameters
to be determined for complete characterization of the state. Moreover, the
relationship between the Stokes parameters and density matrix, analogous to
Eq. (4.37), in case of two qubit will take the form

ρ =
1

4

3∑
i,j=0

Sijσi ⊗ σj, (4.47)

where the Sij coefficients are given by the tensor product of single qubit Stokes
parameters and

Sij = Si ⊗ Sj = (P|ψi⟩ ± P|ψi⊥⟩)⊗ (P|ψj⟩ ± P|ψj⊥⟩). (4.48)

Here P|ψi⟩ denote the probability for projecting the single qubit state along
different basis. For normalization, S00 = 1 and hence we need 16− 1 = 15 real
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parameters are needed for locating the point in the two qubit, four dimensional
space. The tensor product notation in the expression (4.48) can be further
spelled out

S00 = (P|H⟩ + P|V ⟩)⊗ (P|H⟩ + P|V ⟩) = P|HH⟩ + P|HV ⟩ + P|V H⟩ + P|V V ⟩

S01 = (P|H⟩ + P|V ⟩)⊗ (P|D⟩ − P|A⟩) = P|HD⟩ − P|HA⟩ + P|V D⟩ − P|V A⟩

S02 = (P|H⟩ + P|V ⟩)⊗ (P|R⟩ − P|L⟩) = P|HR⟩ − P|HL⟩ + P|V R⟩ + P|V L⟩

S03 = (P|H⟩ + P|V ⟩)⊗ (P|H⟩ − P|V ⟩) = P|HH⟩ − P|HV ⟩ + P|V H⟩ − P|V V ⟩

S10 = (P|D⟩ − P|A⟩)⊗ (P|H⟩ + P|V ⟩) = P|DH⟩ + P|DV ⟩ − P|AH⟩ − P|AV ⟩

S11 = (P|D⟩ − P|A⟩)⊗ (P|D⟩ − P|A⟩) = P|DD⟩ − P|DA⟩ − P|AD⟩ + P|AA⟩

S12 = (P|D⟩ − P|A⟩)⊗ (P|R⟩ − P|L⟩) = P|DR⟩ − P|DL⟩ − P|AR⟩ + P|AL⟩

S13 = (P|D⟩ − P|A⟩)⊗ (P|H⟩ − P|V ⟩) = P|DH⟩ − P|DV ⟩ − P|AH⟩ + P|AV ⟩

S20 = (P|R⟩ − P|L⟩)⊗ (P|H⟩ + P|V ⟩) = P|RH⟩ + P|RV ⟩ − P|LH⟩ − P|LV ⟩

S21 = (P|R⟩ − P|L⟩)⊗ (P|D⟩ − P|A⟩) = P|RD⟩ − P|RA⟩ − P|LD⟩ + P|LA⟩

S22 = (P|R⟩ − P|L⟩)⊗ (P|R⟩ − P|L⟩) = P|RR⟩ − P|RL⟩ − P|LR⟩ + P|LL⟩

S23 = (P|R⟩ − P|L⟩)⊗ (P|H⟩ − P|V ⟩) = P|RH⟩ − P|RV ⟩ − P|LH⟩ + P|LV ⟩

S30 = (P|H⟩ − P|V ⟩)⊗ (P|H⟩ + P|V ⟩) = P|HH⟩ + P|HV ⟩ − P|V H⟩ − P|V V ⟩

S31 = (P|H⟩ − P|V ⟩)⊗ (P|d⟩ − P|a⟩) = P|HD⟩ − P|HA⟩ − P|V D⟩ + P|V A⟩

S32 = (P|H⟩ − P|V ⟩)⊗ (P|R⟩ − P|L⟩) = P|HR⟩ − P|HL⟩ − P|V R⟩ + P|V L⟩

S33 = (P|H⟩ − P|V ⟩)⊗ (P|H⟩ − P|V ⟩) = P|HH⟩ − P|HV ⟩ − P|V H⟩ + P|V V ⟩. (4.49)

In this notation, P|HR⟩ determines the joint probability of first photon in |H⟩
basis and second photon in the |R⟩ basis. This is true for all other definitions
in the above expression.

In order to construct the density matrix, we need to measure 16 Stokes pa-
rameters. For four detector scheme where two detectors are reserved for each
qubit, we can use three settings corresponding to the projections along the
three bases {|H⟩,|V ⟩}, {|D⟩,|A⟩} and {|R⟩, |L⟩}. This implies that there are
total 3×3 = 9 settings and in each setting, we measure four (22 = 4) probabil-
ities at the output channels |HH⟩, |HV ⟩, |V H⟩ and |V V ⟩. Hence 9× 4 = 36
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measurements will suffice to construct the density matrix. This means that
we have more measurements, precisely 36, than unknown parameters which
account to 15. It is obvious that we have an over-determined system.

Conventionally, the estimated density matrix can be used as a measure of
purity of a state, or the degree of mixedness and also utilized to quantify the
magnitude of entanglement [27]. In our case, we will use the estimated density
matrix to quantify the magnitude of the Faraday rotation θ.

This concludes our discussion on quantum state tomography where we have as-
sumed exact measurements, i.e., no errors associated and perfect experimental
conditions. However, it goes without saying that no experimental investiga-
tion is imperceptible to the errors which needed to be accounted for while
analyzing the outcome of a particular experiment. The next section will dis-
cuss briefly about the types of errors which could lead to non-physical outcome
while performing the quantum state tomography.

4.2.6 Errors and Compensation

The estimated density matrix from the tomographic measurement must be
semi-definite positive, Hermitian and has unit trace [26]. However, in a phys-
ically realizable system, as an outcome to a measurement it is not necessary
that these conditions are met.

The errors propagating in the density matrix are categorized into three types:
errors in the measurement basis, errors originating from the counting statistics
and errors due to lack of experimental stability [27]. The first and third type
of errors are systematic in nature which could be minimized by using accurate
apparatus and by modifying detection scheme (2n detector), respectively. A
more detailed discussion about the use of 2n detector scheme can be found
here [27]. Meanwhile, the second type of errors can be reduced by taking mea-
surements (detection of photo-counts) for a longer period of time.
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Moreover, there are additional errors which need to be compensated. For
example, accidental coincidence counts due to background light. Dark counts
which are present even in the absence of light. These errors can be compen-
sated by subtraction from the total measured counts. With all these errors
been compensated, it is still possible that the estimated density matrix is not
legit. This leads us to our next topic of discussion—maximum likelihood esti-
mation.

4.2.7 Maximum Likelihood Estimation

The current section closely follows the description of maximum likelihood esti-
mation made by Kwiat et.al [27]. Maximum likelihood estimation is an effec-
tive technique which accommodates for imperfect measurements. The problem
of illegal density matrix is resolved by searching for the density matrix which
most likely has returned the experimentally measured coincidence counts. In
practice, the analytical calculations for this maximally likely state is non-
trivial and requires a numerical search. Three elements required for MLE are
the parameterization of density matrix, a likelihood function which could be
maximized and a numerical method which searches for the maximum over the
space of density matrix’s parameters. Any matrix written in the form T †T

fulfills the criteria for a legitimate density matrix, i.e., the inner product of
⟨ψ|T †T |ψ⟩ ≥ 0 is positive, T †T is Hermitian and for normalization, we can di-
vide by the trace. Thus a physically realizable density matrix is parameterized
and is given by

ρ =
T †T

Tr
(
T †T

) (4.50)

where T defined for a two qubit system has the following form

T =


t1 0 0 0

t5 + it6 t2 0 0
t7 + it8 t9 + it10 t3 0
t11 + it12 t13 + it14 t15 + it16 t4

 . (4.51)

For a four detector scheme, total number of measurements for complete char-
acterization account to 36 coincidences counts whose expectation values are
given by n̄i = N ⟨ψi|ρp|ψi⟩ (for i = 1, 2, · · · , 36) and N is a normalization
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factor equal to the size of ensemble per measurement. Now, if we assume the
a Gaussian distribution for the coincidences counts, the problem is reduced to
finding the minimum of the log likelihood function [27]

L =
36∑
i=1

[
N ⟨ψi|ρ|ψi⟩ − ni

]2
2N ⟨ψi|ρ|ψi⟩

(4.52)

where ni represents the result of i’th measurement, N is for normalization. The
final piece in the puzzle is to define an optimization routine. The maximum
likelihood estimation technique for a two qubit photon system is implemented
by Kwiat et.al [27] which utilizes non linear least square quadratic function
implemented in Matlab (lsqnonlin). In our experiments, we have explicitly
utilized the online interface developed by Kwiat1 for estimation of density
matrices. The preceding discussion completes the theoretical background im-
perative to our experimental investigation. The next section will lay down the
details of our experimental investigation.

4.3 Experimental Details

The current Section will present brief details of our experiments which aim
at finding the Faraday rotation and ellipticity of a single photon. The follow-
ing section will discuss and analyze results. The source of single photons is a
non linear crystal which generates two non-collinear beam of single photons
(named as signal and idler). One of the photon beam (idler) is allowed to pass
through an isotropic medium (TGG crystal) which acts as our Faraday rotator,
placed between the poles of an electromagnet. As the magnetic field is turned
on, medium becomes birefringent and manifests as the change in polarization
state of idler beam—the famous Faraday rotation.

Meanwhile the other photon beam (signal) passes through optical elements
and registers a detection at the respective detector. If both photons register
a detection at their respective detectors simultaneously within a specific time
window, a coincidence count is observed. Hence the registration of one idler

1http://tomography.web.engr.illinois.edu/TomographyDemo.php
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photon coincident with the signal photon is the fiducial signature of a single
photon. This scheme of generating single photons is dubbed as heralded [28].

The workflow of our subsequent analysis is simple. These counts are in fact
probabilities of observing this composite system in certain state as mentioned
earlier. For example, these are the terms (P|HV ⟩, P|DA⟩) etc. in Eq. (4.49).
We further use these counts (probabilities) to extract the Stokes parameters
according to equation (4.48). Finally the density matrix is estimated from
the Stokes parameters given by Eq. (4.47) in conjunction with maximum like-
lihood technique (4.52) which ensures the legitimacy of the received density
matrix.

LaserM1

M2

BBO

crystal

q h

q h

Coincidence

Count Unit

Power

Supply

Temperature 

Controller

A

AB
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RS-232
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Figure 4.3: The schematic illustration of the experiment involving spontaneous
parametric down conversion (SPDC) in BBO crystal, optical elements, single
photon count detectors, coincidence counting unit, cryostat and temperature
controller interfaced with the computer in Labview environment. Here q=
quarter waveplates, h= half waveplate, P= polarizer, EM= electromagnet,
MOE= magneto-optic element and Di= avalanche photodetectors.

As stated earlier in Chapter 1, Faraday rotations are usually minuscule and
can be measured with phase sensitive detection in conjunction with lowering
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the temperature of birefringent medium. We will make use of both of these
methods in our experimental investigation.

4.3.1 Experimental Methods

Figure 4.3 gives a comprehensive view of the equipment involved in the experi-
ment. We divide the experimental setup into two major aspects: optical setup
and mechanical setup for achieving cryogenic temperatures which is already
described in Chapter 2 in detail. Prior to the discussion of the details of optical
setup, we would like to present the phenomenological description of sponta-
neous parametric downconversion process which is of paramount importance
in experiments related to quantum light as being the element generating single
photons from a pump laser beam.

4.3.2 Spontaneous Parametric Down Conversion

Spontaneous parametric downconversion, schematically illustrated in Fig. 4.4,
is a non linear optical process where a high energy photon of frequency ωp an-
nihilates, creating two low energy photons (signal) ωs and (idler) ωi under the
laws of conservation of energy ωp = ωs + ωi and momentum kp = ks + ki [29].
The process is said to be spontaneous as there is no signal or idler field to
stimulate the process [29]. Furthermore, SPDC is parametric in nature as it
depends on electric fields rather than the light intensities. This also implies
that there exists a phase relationship between input and output beams. Down-
conversion is referred to the fact that output beams have lower frequency than
the incident beam.

The direction of propagation of signal and idler beams depends upon many
key factor such as their respective frequencies, conservation laws and most
importantly the angle between the crystal optic axis and direction of pump
beam, known as the phase matching angle θm [30].

The phenomenon of SPDC is categorized into type-I and type-II, based on
the polarization state of the signal and idler beams. If both the outgoing
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Figure 4.4: An illustration of spontaneous parametric downconversion of light
where h̄ times the (kj, ωj) denotes the momentum and energy of the incoming
and outgoing light whereas θj signifies angle between the pump beam and
outgoing photon beam. The subscripts p, s and i are attributed to the pump,
signal and idler and χ(2) presents the non-linear electric susceptibility.

photons are produced with linear parallel polarization but perpendicular to
the incident pump beam, the process is deemed as type-I, whereas in type-II
downconversion, the outgoing photon beams are orthogonal to each other [31].
The definition could be restated in terms of ordinary and extraordinary po-
larization of signal and idler. In type-I downconversion, both the photons are
ordinarily polarized whereas in Type-II, one photon is polarized extraordinar-
ily while other is ordinary2.

In type-I SPDC, signal and idler are ordinarily polarized. This means that
they are polarization correlated but they do not exhibit any entanglement.
For the generation of entangled photons, two type-I crystals can be utilized
placed back to back [29].

In our case, we used two stacked β-Barium Borate (BBO, BaB2O4 ) crystals
mounted in a kinematic mount such that the optic axis of one of the crystal is
orthogonal relative to the other. This particular arrangement of crystal allows
for the conversion of both horizontally and vertically polarized photons. The
BBO crystal are cut for type-I parametric down conversion to produce photon
pairs of parallel polarization but perpendicular to the pump beam polarization.

2Light rays polarized along the optic axis of uniaxial crystal is termed extraordinary ray
and perpendicular to the optic axis as ordinary ray

164



4.3. EXPERIMENTAL DETAILS

ω
s

i

Energy

Conservation
Momentum

Conservation

p

ω

ω

Pump Beam

Non Linear

Crystal
kp

ks i

(a) (b)

k

Figure 4.5: (a) An illustration of type-I spontaneous parametric downcon-
version. The downconverted photons are emitted at different range of angles
distributed over the cross-section of a cone. Different pair of colors are used
to represent the fact that each photon pair appear at antipodal points of the
cone. (b) The description of momentum and energy conservation in SPDC
process where kj, ω denotes the wavevector and frequencies.

We can summarize this scenario mathematically as

|H⟩ → |V V ⟩ ,

|V ⟩ → |HH⟩ ,

where the two transformations are achieved by one crystal of the pair. For an
input state polarized at 45◦, we get one of the Bell’s states and the transfor-
mation can be written as

|H⟩+ |V ⟩√
2

→ |HH⟩+ |V V ⟩√
2

.

4.3.3 Phase Matching the Downconversion Process

For the signal and idler photons making angles θs and θi with the pump beam,
respectively, as shown in Fig. 4.4, the resolution of wavevectors into rect-
angular components and applying the law of conservation of momentum will
yield

npωp = nsωs cos θs + niωi cos θi (4.53)

0 = nsωs sin θs + niωi sin θi (4.54)
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The downconverted photons are emitted from the crystal at range of wave-
lengths and angles. However, for our case where we consider the photons for
which ωs = ωi = ωp/2 and θs = θi = θc, Eq. (4.53) will be simplified as

npωp = ns cos θc (4.55)

For an isotropic medium, it is not possible to satisfy the equation (4.55) as
np > ns when λp < λs. However the problem can be overcome in case of
uniaxial birefringent crystal which offers two different refractive indices for light
parallel or perpendicular to the optic axis (ordinary n◦ and extraordinary ne).
For light beam polarized along the optic axis, the effective index of refraction
neff depends upon the phase matching angle θm and given by

neff(θm) =

(
cos θm2

n2
◦

+
sin θm2

n2
e

)− 1
2

(4.56)

In case of type-I SPDC, the pump photon has the effective index of refraction
neff and down-converted photons have the ordinary index of refraction n◦. In
order to make the signal and idler beam to form a laboratory angle (θL) with
the pump beam outside the crystal, we can use Snell’s law (sin θL = n◦ sin θc) to
obtain θc and extract the phase matching angle θm which satisfies Eq. (4.55).
In our case θL = 3◦ and the phase matching angle calculated is 29.24◦. This
phase matching angle is as communicated to the manufacturer while ordering
the crystal.

The next section will present a brief description of optical components of our
experimental setup employed to execute quantum state tomography.

4.3.4 Optical Setup

Figure 4.3 depicts the arrangement of optical components involved in the ex-
periment. As stated earlier that special tools and instruments are required
for the generation, measurement and detection of the quantum light, here we
present a brief introduction of these components.

The idea is to generate single photons. These photon beams are routed through
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two physical paths with half wave and quarter wave plates manipulating the
polarization of photons in each path. Additionally, the MOE is placed in one
beam. It is the change in properties of photons while traversing through MOE,
we are interested in determining. The photon beam’s polarization states are
measured by letting them fall on single photon counting modules (SPCM).
The SPCM’s accept photons coupled through an optic fiber. Hence some-
where along the line, the photon beams propagating in free space need to
be efficiently focused into the fiber. The electronic signals from the SPCM
are then digitally analyzed on a field programmable-gate array (FPGA) and
a computer. Coincidence counts are measured from which the analysis work
flow, described earlier, launches off.

A beam of vertically polarized light (pump beam, λ = 405 nm) passes through
a half wave plate (HWP) before falling on a downconversion crystals β-Barium
Borate (BBO, BaB2O4). The half waveplate controls the polarization of the
pump beam. Down converted photon pairs (signal and idler) of wavelength 805

nm are generated by the two stacked BBO crystals, cut for type-I downconver-
sion. Thereafter, signal and idler beams passes through optical components
(HWP, QWP) before getting collected at the fibre coupling lenses coupled
with multimode fibre optic cables. In front of the fibre coupling lens, long
pass filters RG-780 filters are mounted to block the light of wavelength shorter
than 780 nm. They also serve the purpose of blocking the ambient light which
not only alters the photon statistics but can also cause damage to the single
photon counting modules (SPCM).

The other end of the optical fibre is connected to a fibre to fibre coupler which
couples the light into another fibre as shown in Fig. 4.6(a). This particular
arrangement is useful for swapping the connection between the coupling lenses
and different detectors. Finally, the distal end of this second optical fibre is
connected to the single photon counting module (SPCM) where photons are
detected.
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Voltage 

Divider

(b)(a)

Figure 4.6: (a) Fiber to fiber coupler receives light from collection lenses and
couples to the input of SPCM. (b) FPGA based coincidence counting unit
with the capability of four single count detections and four coincident photon
detection. The potential divider steps down the 5 V signal from SPCM to 3.3
V. The FPGA read out is achieved through RS-232 communication protocol.

We used SPCM (SPCM-AQ4C) with four independent channels of avalanche
photodiodes (APDs). APDs can detect the photons in wavelength range of
400–1060 nm. They produce an output pulse (TTL, 5 V) of about 20–25 ns
for each photodetection. The APDs also have dead time of ≈ 50 ns between
pulses and are powered by three power supplies of 2 V, 5 V and 30 V, which
are meant for powering the in-built Peltier coolers, providing high voltage to
the detectors and biasing the electronic circuitry.

The pulses generated by APDs in response to photon beams (signal and idler)
detection are ANDed together, producing an output only if the two pulses over-
lap in time. Such a single output is known as coincidence count, i.e., detection
of two or more particles simultaneously at two different detectors (APDs). A
coincidence counting unit based on FPGA (Nexys 2) is used for counting of
pulses generated by APDs and is shown in Fig. 4.6(a). FPGA has an internal
clock of 50 MHz which provides an effective coincidence window of (2×20 ns).
The FPGA was programmed by my colleague Hamza Waseem working in our
research group [12].
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Figure 4.7: Single photon counting module (SPCM-AQ4C). single photons
are coupled to the SPCM through input ports and 5 V pulses from output
ports are transmitted via BNC couplers.

Furthermore, the two pulses from APDs can overlap only if one pulse arrives
after the other within the width of first pulse. This also means that coincidence
window is directly proportional to the width of pulses. However, coincidence
window is independent of which pulse arrives first, hence the true coincidence
window is twice the pulse width.

Coincidence counting calculations are performed by hardware logic on FPGA
which is further communicated to the computer through RS-232 communi-
cation protocol and all the counters are being reset every 0.1 s which is the
minimum update period limited by the read-out-rate of the FPGA. The coin-
cidence and single counts are then monitored on computer within a Labview
based interface. The preceding discussion introduces the reader with all the
essential ingredients of the setup and we now are ready to discuss the experi-
mental actualization.
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4.3.5 The Experimental Setting for Quantum State To-
mography

Fig. 4.8 presents the schematics for the tomographic setup where the detection
unit is excluded for clarity. The light from pump laser (λ = 405 nm) is allowed

M1

M2
qi

qs
hs

hi

P

P

D1

D2

Laser

BBO

crystal

EM

BS

HWP

Figure 4.8: The schematic for two qubit tomography measurement setup
where detection unit and mechanical setup has been excluded for conve-
nience. The optical elements (M1,M2)= mirrors installed in kinematic
mounts, BS= beam stopper, HWP= half waveplate, P= Glan-Thompson po-
larizers, D1,D2= detectors and (qs,i, hs,i)=quarter and half waveplates where
subscripts s and i represent signal and idler beam.

to pass through the SPDC crystal which generates non-collinear photon pairs
through spontaneous parametric downconversion. The signal beam is collected
at detector D1 after passing through quarter (qs) wave, half (hs) waveplates
and polarizer P .

The magneto-optical element (TGG-terbium gallium garnet crystal) is mounted
inside the cryostat which is placed between the electromagnet (GMW-3470).
The axial holes through electromagnet poles allow the light to pass through
the TGG crystal. The choice of placing the MOE in idler beam is completely
arbitrary. The idler beam is first aligned to navigate through the axial hole
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of electromagnet prior to pass through the cryostat optical window and subse-
quently the magneto optical element. The light then exits through the opposite
hole of electromagnet and travels through QWP (q), HWP (h) and polarizer
(P) to reach the detector D2.

Instead of four detectors (two detectors after a PBS in each photon beam),
we use only two detectors (with a polarizer in each path). We will explain
shortly how this setting can still achieve the intended probabilities required
for tomography.

The idler beam encounters more optical elements on its path to detector (D2),
therefore the individual counts at detector D2 decreases drastically due to loss
caused by back reflections from the optical elements and optical window of
cryostat. This decrease is apparent in the reduced coincidence counts. Con-
sequentially, we adapted the two detector scheme by replacing the polarizing
beam splitters with Glan-Thompson polarizers as back reflections from PBS
would have further reduced the counts. In this revised scheme we need 16

tomographic settings instead of the 9 required with four detectors.

The various tomographic settings are realized by different orientation of quar-
ter and half waveplates which will project the incoming state ρ along different
polarization bases. The waveplates are mounted in motorized stages whose
control is managed through a Labview based interface. The sixteen measure-
ment settings along with the various orientation of waveplates are tabulated in
Table 4.4. It is worth mentioning that prior to the aligning of complete optical
setup, the magnetic field produced by the electromagnet has been measured by
a Gaussmeter (410-SCT, LakeShore) against the input current. The magnetic
field calibration is measured 59 mT/A. Throughout this chapter, we’ll mention
the current through coils explicitly instead of magnetic field produced.

171



4.4. MEASUREMENT OF FARADAY ROTATION OF A SINGLE
PHOTON

Table 4.4: Different settings of waveplates for complete determination of Stokes
parameters. The hs(hi) and qs(qi) denote the quarter and half waveplates
angles of signal (idler), respectively

Measurement
Basis hs(

◦) qs(
◦) hi(

◦) qi(
◦)

|HH⟩ 0 0 0 0

|HV ⟩ 0 0 45 0
|HD⟩ 0 0 22.5 45
|HL⟩ 0 0 0 45
|V H⟩ 45 0 0 0
|V V ⟩ 45 0 45 0
|V D⟩ 45 0 22.5 45
|V L⟩ 45 0 0 45
|DH⟩ 22.5 45 0 0
|DV ⟩ 22.5 45 45 0
|DD⟩ 22.5 45 22.5 45
|DL⟩ 22.5 45 0 45
|LH⟩ 0 45 0 0
|LV ⟩ 0 45 45 0
|LD⟩ 0 45 22.5 45
|LL⟩ 0 45 0 45

4.4 Measurement of Faraday Rotation of a Sin-
gle Photon

We performed tomographic measurements for two different polarization states:
|HH⟩ and Bell’s states ϕ+ = (|HH⟩ + |V V ⟩)/

√
2. The generation of these

states is controlled by placing a half waveplate before the BBO crystal as
shown in Fig. 4.8. The procedural steps for the experiment can be enumer-
ated in the following way.

For a particular state (|HH⟩ or |ϕ+⟩ = (|HH⟩ + |V V ⟩)/
√
2), we first per-

form the tomographic measurements in the absence of magnetic field. This
is achieved by performing sixteen measurements by setting different angles of
QWP and HWP. At each measurement setting, the individual (also called sin-

172



4.4. MEASUREMENT OF FARADAY ROTATION OF A SINGLE
PHOTON

Table 4.5: Tomographic data obtained for |HH⟩ state at 15K with zero applied
field where channel A (B) represent the individual counts from signal (idler)
beam, respectively and channel AB enumerates coincidence counts.

Measurement
Basis

Single Counts
Channel A

Single Counts
Channel B

Coincidence
Counts (AB)

|HH⟩ 61278 17518 809

|HV ⟩ 5473 17393 76
|HD⟩ 37493 17741 648
|HL⟩ 29223 17355 669
|V H⟩ 61231 2600 71
|V V ⟩ 5400 2550 2
|V D⟩ 37547 2580 46
|V L⟩ 29218 2545 66
|DH⟩ 61348 8150 261
|DV ⟩ 5411 8139 32
|DD⟩ 37507 8171 214
|DL⟩ 29250 8253 199
|LH⟩ 61167 9904 163
|LV ⟩ 5334 9970 12
|LD⟩ 37654 9627 109
|LL⟩ 29153 9973 111

gles) and coincidence counts are measured for a period of 10 s. The measured
counts are then averaged to give one value for single and coincidence counts.
This step is then repeated for all the remaining settings, hence completing the
tomography measurement for a particular state.

In the second step, the magnetic field is turned on gradually from minimum
to a maximum value and the above mentioned step is repeated at each value
of the magnetic field. In order to capture the temperature dependence of
the change in polarization state of photons, the aforementioned steps are per-
formed at different temperatures (8 K, 15 K, 30 K and 100 K). The registered
data, as presented in Table 4.5, is then processed using the toolbox developed
by Kwiat3 which employs maximum likelihood estimation for the construction
of legitimate density matrix which is described in Section 4.2.7.

3http://research.physics.illinois.edu/QI/Photonics/Tomography/
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Figures 4.9 and 4.10 visualizes density matrices at two distinct temperatures
(8 K and 15 K) for the nominal input state ρ◦ = |HH⟩ ⟨HH| and illustrate the
change in magnitude of different elements of density matrices as the magnetic
field is varied. The estimated density matrices at 8 K and 15 K are given by
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Figure 4.9: Experimentally estimated density matrices for different strength of
applied magnetic field. The density matrix (a) ρ◦ corresponds to zero magnetic
field whereas (b)–(i) are the density matrices for magnetic field range (1–3
A) with a step size of 0.25 A. The nominally generated input state is ρ◦ =
|HH⟩ ⟨HH|.
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{ρ|HH⟩}(8K) =

(
0.83 0.17−0.17i −0.13+0.25i 0.03+0.07i

0.17+0.17i 0.07 −0.08+0.02i −0.01+0.02i
−0.13−0.25i −0.08−0.02i 0.09 0.02−0.02i
0.03−0.07i −0.01−0.02i 0.02+0.02i 0.01

)
, (4.57)

and

{ρ|HH⟩}(15K) =

(
0.82 0.17−0.19i −0.14+0.24i 0.05+0.07i

0.17+0.19i 0.08 −0.08+0.02i −0.01+0.03i
−0.14−0.24i −0.08−0.02i 0.10 0.01−0.03i
0.05−0.07i −0.01−0.03i 0.01+0.03i 0.01

)
, (4.58)

respectively. The density matrices and plots for higher temperatures (50 K
and 100 K) are provided in the supplementary information 4.5.1 and 4.25.

Similarly, we employed the tomography process for Bell’s state ϕ+ = (|HH⟩+
|V V ⟩ /

√
2) at different temperatures under the action of different strengths

of applied magnetic field. The estimated density matrices are plotted and
are shown in Figs. 4.11 and 4.12 for two temperature (8 K and 15 K) and
respective density matrices are given by

Re{ρϕ+}(8K) =


0.37 0.04 −0.06 −0.11
0.04 0.10 −0.08 0.04
−0.06 −0.08 0.13 −0.13
−0.11 0.04 −0.13 0.40

 (4.59)

Re{ρϕ+}(15K) =


0.45 0.06 −0.04 0.24
0.06 0.08 −0.06 0.07
−0.04 −0.06 0.06 −0.03
0.24 0.07 −0.03 0.42

 (4.60)

It is evident from the figures that elements of the density matrix changes in
response to the variation in current through coils. Furthermore, comparing
Fig. 4.11(a) with (i) also depicts the oscillatory behavior of the polarization
state, showing the cyclic evolution of the density operator as a result of the
magneto-optic rotation, providing justification to the largely coherent and uni-
tary process involved.

However, the quantification of θ is not straightforward as different elements of
density matrix exhibit different magnitude of rotation due to dissimilar depen-
dence on trigonometric functions. We approach this problem in two distinct
ways: an exhaustive search approach and a non-linear Levenberg-Marquardt
based optimization.
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Figure 4.10: The density matrices reconstructed from tomography measure-
ments at 15 K as a function of magnetic field. The density matrix (a) ρ◦
corresponds to zero magnetic field whereas (b)–(i) are the density matrices
for magnetic field range (1–3 A) with a step size of 0.25 A. The nominally
generated input state is ρ◦ = |HH⟩ ⟨HH|.

4.4.1 Estimating Faraday Rotation by Exhaustive Search

The first method employs an exhaustive search methodology for the task at
hand. To understand this, let’s assume that the measured density matrices as
a result of tomography measurement are represented by ρexp◦ and ρexpi , where
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Figure 4.11: 3D plots of density matrices for Bell’s state |ϕ+⟩ with differ-
ent applied current through electromagnet’s coils. The density matrix a) ρ◦
corresponds to the original state generated through SPDC in the absence of
magnetic field whereas for (b)–(i), the magnitude of applied current are 1 A,
1.25 A, 1.50 A, 1.75 A, 2.0 A, 2.5 A, 3.0 A, 3.5 A and 4.0 A, respectively.

ρexp◦ is the density matrix at zero magnetic field and ρexpi at some particular
value of magnetic field. As a first step, the density matrix ρexp◦ is subjected
to an arbitrary rotation θ by a rotation operator R(2θ) which satisfies the
property of unitary operator, i.e., RR† = Î. The unitary state evolution will
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Figure 4.12: 3D plots of Bell’s state |ϕ+⟩ at T= 015 K where (a) ρ◦ corresponds
to zero magnetic field whereas for (b)–(i), the current through the EM coils is
varied from 1–5 A with a step size of 0.5 A.

have the mathematical form

ρthi = Ri(2θ)ρ
exp
0 R†

i (2θ) (4.61)

where the index i refers to the distinct magnetic fields (currents). Please note
that Ri(2θ) = R(2θi). Equation (4.61) follows naturally from the Schrodinger
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equation
|ψ′⟩ = Û |ψ⟩ ,

which leads to
|ψ′⟩ ⟨ψ′| = Û |ψ⟩ ⟨ψ| Û †.

The rotation operator R is defined in the four dimensional Hilbert space and
is constructed in the following way

Ri(2θ)⊗ 1 = exp(−i2θ σ̂y
2
)⊗ Î , (4.62)

where θ is the purported Faraday rotation. In the Bloch sphere picture, this
means that the idler photon is subjected to a rotation 2θ about the σ̂y-axis,
leading to a physical rotation of the plane of polarization of the single photon
by θ in the lab frame. The tensor product ⊗Î indicates that, nominally, no
operation happens in the Hilbert space of the signal photon. The matrix
expression for the idealized unitary operator is therefore given by

Ri(2θ) =

(
cos θ − sin θ
sin θ cos θ

)
⊗
(
1 0
0 1

)
=


cos θ 0 − sin θ 0
0 cos θ 0 − sin θ

− sin θ 0 cos θ 0
0 sin θ 0 − cos θ


(4.63)

Now if the rotation angle θ is varied from 0◦–180◦ with a step size of 1◦,
this in turn will generate 181 candidate density matrices ρth corresponding to
different rotations. We search the space of ρth’s for the one whose overlap with
ρexpi is the maximum or whose difference from ρexpi is minimum. Therefore
the Faraday rotation angle can be estimated by finding the minimum of the
following function.

θi = min
∑
j,k

(
|ρthi − ρexpi |2

)
j,k

(4.64)

where the subscript i signifies the magnetic field and the notation means that
we subtract ρthi and ρexpi , then square each term in the matrix and find the
sum of all these squares. We identify where the sum hits the minimum. Note
than in Eq. (4.64), ρthi is given by Eq. (4.61) and ρexpi is the experimental
data returned by tomography for the i’th magnetic field. We will use θi and θ
interchangeably, depending on the context.
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This numerical search for both states is performed in Matlab for the complete
range of magnetic fields. The extracted Faraday rotation angles θi for different
temperatures are plotted as a function of current through electromagnet coils
in Fig. 4.13. These tomographic results show excellent agreement with the
prediction of a linear dependence on the magnetic field and match our trends
observed for TGG with classical light; only that now we are probing Faraday
rotation of truly the single photon.
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Figure 4.13: The Faraday rotation angles are plotted as a function of change
in current through coils for two different input states. The input states are a)
|HH⟩ and b) |ϕ+⟩. Solid lines represent linear curve fit of the data.

Furthermore, Fig. 4.14 shows the variation in the magnitude of the Fara-
day rotation angle θ at a particular magnetic field as the temperature of the
TGG crystal is varied. The curves presented in Fig. 4.14 captures accurately
the paramagnetic nature of TGG crystal where the magnetization increase as
the temperature of the material is lowered.

4.4.2 Estimating Faraday Rotation by Constrained Op-
timization

The second method involves the least squares non-linear search for minima
which utilizes the interior point algorithm [32] for estimating the Faraday rota-
tion angle (θ). The key idea in this scheme is to find the minimum of difference
among density matrices, occurring as a result of birefringence induced by the

180



4.4. MEASUREMENT OF FARADAY ROTATION OF A SINGLE
PHOTON

(a)

20 40 60 80 100
0

50

100

150

I (A)

θ
(d

e
g

re
e

s
)

|HH> state
2 A

3 A

1 A

20 40 60 80 100
0

50

100

150

200

I (A)

θ
(d

e
g

re
e

s
)

Bell state |φ+>
2 A

3 A

4 A

(b)

Figure 4.14: The change in Faraday rotation angle θ as a function temperature
for different amplitude of current through magnet coils. The two input states
are a) |HH⟩ and b) |ϕ+⟩. Solid lines are spline fit to the data.

magnetic field. The first step is similar to what was employed in the previous
section, i.e., density matrix ρexp◦ being rotated by the unitary operator Ri(2θ).
In the second step, we measure the change in density matrices which is given
as

∆ρthi = ρthi − ρexp◦ (4.65)

where ρthi is given by Eq. 4.61 and ρexp◦ is the experimental estimated den-
sity matrix at zero magnetic field. Similarly, the change in experimentally
estimated density matrices can be written as

∆ρexpi = ρexpi − ρexp◦ . (4.66)

The rationale for measuring these changes in density matrices (∆ρthi and∆ρexpi )
is that the difference will now reflect purely the change in density matrix in
response to varying magnetic field and eliminates the unwanted noise in off-
diagonal terms which does not contribute to Faraday rotation. Finally, the
Faraday rotation angles can be extracted by minimization of the following
function

θi = min
∑
j,k

(
|∆ρthi −∆ρexpi |2

)
,

= min(fi(θ)). (4.67)

We employed the Matlab optimization toolbox which utilizes the function
fmincon with interior point algorithm for this particular task. The extracted
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rotation angles are plotted as a function of current through coils in Fig. 4.15(a).
To give a comprehensive picture of data processing, we also plotted f(θ) as a
function of θ for different values of field at a particular temperature (T=15 K).

A typical fi(θ) for a field of 3 A is given by

fi(θ)

10−3
=(31 sin 2θ − 8 cos 2θ + 41)2 + (370 cos 2θ + 130 sin 2θ + 74)2

+ (75 cos 2θ + 23 sin 2θ + 1)2 + (31 cos 2θ + 8 sin 2θ + 5)2

+ (370 cos 2θ + 130 sin 2θ + 61)2 + (75 sin 2θ − 23 cos 2θ

+ 150)2 + (31 cos 2θ + 8 sin 2θ − 7)2 + (75 sin 2θ − 23

× cos 2θ + 14)2 + (75 cos 2θ + 23 sin 2θ − 8)2 + (370

× sin 2θ − 130 cos 2θ + 410)2.

. (4.68)

The minimum for this one-dimensional function can also be found from a
simple minimization routine or by analytical differentiation and is given by

θfi|min
= 150◦.

Furthermore, Table 4.6 draws a comparison between density matrices ρexpi

and ρF at the same magnitude of applied current through coils (3 A). Here
ρexpi is experimentally measured density matrix and ρF is the density matrix
evaluated at a particular value of θ and i obtained after the minimization
algorithm. The overlap between the density matrices ρexp and ρF in terms of
fidelity is also presented in Table 4.6. Fidelity between two density matrices ρ1
and ρ2 is defined as Tr(ρ1ρ2). This concludes our discussion for tomographic
measurement of the Faraday rotation for single photon. [h!]

4.4.3 Faraday Rotation of Single Photons by Phase Sen-
sitive Detection

In another version of the experiment, we made use of phase sensitive detection
of the coincidence counts. In the experiments described hitherto, the signal-to-
noise ratio were large. For example, the coincidence counts were in the range
39 to 700 counts per second. Hence, the variations were significant as the
magnetic field is varied. This is because Faraday rotations are relatively large
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Figure 4.15: Temperature dependent Faraday rotation angles as a function of
applied current through electromagnet coils determined by constrained opti-
mization whereas (b) depicts the minimization function f(θ) at T = 15 K.

Table 4.6: Density matrices for |HH⟩ state at two distinct temperatures where
ρexp represents the experimentally measured and ρF describes the density ma-
trix evaluated at a particular value of θ extracted from (4.73).

T(K) ρ|HH⟩(3 A) Fidelity

8 K Re(ρexp) =


0.56 0.11 −0.42 −0.04
0.11 0.06 −0.09 −0.03
−0.42 −0.09 0.35 0.04
−0.04 −0.03 0.04 0.02

 0.79

Re(ρF ) =


0.56 0.11 −0.37 −0.01
0.11 0.04 −0.12 −0.03
−0.37 −0.12 0.35 0.06
−0.01 −0.03 0.06 0.02



Im(ρexp) =


0 −0.17 0.24 0.07

0.17 0 0.02 0.02
−0.24 −0.02 0 −0.02
−0.07 −0.02 0.02 0



Im(ρF ) =


0 −0.10 0.25 −0.03

0.10 0 0.13 0.02
−0.25 −0.13 0 −0.09
0.03 −0.02 0.09 0


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T(K) ρ|HH⟩(3 A) Fidelity

15 K Re(ρexp) =


0.08 0.02 −0.12 −0.07
0.02 0.01 0.03 −0.02
−0.12 0.03 0.84 0.15
−0.07 −0.02 0.15 0.07

 0.77

Re(ρF ) =


0.08 0.01 −0.11 0.03
0.01 0.01 −0.1 −0.01
−0.1 −0.1 0.83 0.17
0.03 −0.01 0.17 0.07



Im(ρexp) =


0 −0.19 0.24 0.07

0.19 0 0.01 0.02
−0.24 −0.01 0 −0.02
−0.07 −0.02 0.02 0



Im(ρF ) =


0 −0.03 0.24 0.08

0.03 0 0.01 0.02
−0.24 −0.01 0 −0.18
−0.08 −0.02 0.18 0


at cryogenic temperatures. One may also like to measure these rotations us-
ing some phase sensitive detection (PSD) technique, which can possibly allow
measurements of even small Faraday rotations of single photons. This section
prescribes how one could do that.

The schematic for PSD in conjunction with measuring coincidence counts is
illustrated in Fig. 4.16. An optical chopper placed just before the BBO crys-
tal modulates the light at the rate of f = 20 Hz. The output signal from the
optical chopper also serves as a reference signal to the lockin amplifier. The
experiment is made simpler by removing the quarter and half waveplates from
signal and idler beam paths which are required for tomographic measurement.

Furthermore, the polarizer axis in both arms (signal and idler) is oriented
along the horizontal (lab frame). A key element is a digital-to-analog con-
verter that converts digital counts from the FPGA based coincidence counter
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to an analog signal which serves as input to the lockin amplifier. This amplifier
is described in Section 1.3.5. The procedural steps and underlying principle
for the measurement is as follows.

M1

M2

P

P

D1

D2

Laser

BBO

crystal

EM

BS

Coincidence

Counts Unit

DAC

Lockin

Amplifier

Optical

Chopper

Ref In

Computer

Figure 4.16: The schematic illustration of phase sensitive detection of single
photons where M= mirrors, BS= beam stopper, EM= electromagnet, P=
polarizer, D= photodetectors and DAC= digital to analog converter.

The idler beam passes through the axial hole of the electromagnet and subse-
quently through TGG crystal placed inside the cryostat. The idler beam then
exits through other hole of the electromagnet and travels through the polarizer
before getting collected at the detector D2. However, the signal beam encoun-
ters only polarizer before registering the counts at detector D1. The coinciding
counting unit registers the singles as well as the coincidence counts.

In the detection part of the single photons, a minimal modification enabled
us to utilize the phase sensitive detection. Prior to read out in the computer,
the digital output of coincidence count signal is converted to an analog signal
through digital to analog converter (DAC). This analog signal is then fed to
the input of lockin amplifier. The lockin amplifier reads the rms value of ana-
log signal which is proportional to the number of coincidence counts.
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We performed this experiment for |HH⟩ state over a wide temperature range
8–250 K. At each temperature, we measured the coincidences counts and lockin
output for zero magnetic field for a period of 20 s. The magnitude of field is
then increased gradually from minimum to a maximum value and the preced-
ing steps are repeated. At each value of applied magnetic field, the recorded
data is averaged to give a single value of coincidence count and voltage.

The change in the number of coincidence counts against the varying current
through electromagnet coils is depicted in Fig 4.17. Similar curves are ob-
tained for intensity as a result from lockin measurement and are presented in
the supplementary information 4.23.
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Figure 4.17: Normalized coincidence counts as function of applied current
through EM coils. Subfigures (a) and (b) show low and high temperature
ranges.

It is worth remembering that single photons are generated in a particular po-
larization state and projection of these states results in coincidence counts.
To put it simply, in our experimental arrangement, each coincidence count is
a representative of a particular polarization state and as the magnetic field
is varied, the change in polarization state is reflected through the change in
coincidence counts. This in turns manifests the Faraday rotation of single
photons. In order to quantify the magnitude of Faraday rotation, one can fit
these oscillating curves with the following function

y = a cos2(bI + c) + d (4.69)
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where a, b, c and d are fitting parameters, I is the current and y represents
the coincidence counts. Finally, the Faraday rotation angle can be estimated
from the time period of cosine function. The time period for the curve at 8

K is estimated to be 3.5 A which corresponds to a 2π rotation. Subsequently,
the Faraday rotation angle at a magnetic field corresponding to the current of
5 A is estimated and yields θ ≈ 462◦.

At low temperatures (8–50 K), the magnitude of rotation is large and exhibit
an oscillatory behavior which perfectly corroborates our theoretical descrip-
tion of Faraday effect explained in Chapter 1 (see, for example Fig. 1.6). The
variation in the coincidence counts is also apparent in the high temperature
data 4.17(b).

In phase sensitive detection scheme, the signal beam does not undergo any
rotation yet it serves as a conditioning element for the idler beam. It is this
conditioning which transcribes photons as quantum light. In the absence of
signal beam conditioning, the light will be deemed as classical and the subse-
quent rotation as the conventional classical Faraday effect. Our experimental
results show that it is perfectly possible to measure Faraday rotation of single
photons which comprise the quantum light.

4.4.4 Ellipticity Measurement of Single Photon as an
Off-Resonant Rotation on the Bloch Sphere

In the preceding discussion for estimation of rotation angles, we have assumed
the pure Faraday rotation is captured by a rotation operator R(2θ). However,
theoretical investigation and experimental results in Chapters 1 and 2 demon-
strates the presence of another important parameter, i.e., ellipticity χ. The
current Section investigates the ellipticity acquired by a single photon as it
traverses through the isotropic magneto-optic medium (TGG) in the presence
of a magnetic field.

In the Bloch sphere picture, the Faraday effect is the rotation of an input state
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Figure 4.18: The action of pure Faraday rotator in the Bloch sphere diagram
is visualized where an input state |H⟩ is rotated about the σ̂y-axis (highlighted
as red) through an angle of θB = π/2 on the Bloch sphere.

about the σ̂y-axis (denoted as |R⟩-axis on the Bloch sphere). This scenario is
presented in Fig. 4.18 where input state ρ◦ is rotated through an angle π/2.
Note the evolution of input state which remains on the surface of the Bloch
sphere (pure state) while traversing through |H⟩ to |D⟩ axis.

Now in order to incorporate the effect of ellipticity, we can modify the ex-
pression (4.62) for rotation operator as following

Ri(2θ) = exp
(
− i2θ

(
σ̂y cos ξ

2
+
σ̂z sin ξ

2

))
⊗ Î , (4.70)

which implies that the input state will now rotate about a new axis which is
tilted at an angle ξ with respect to the σ̂y axis. The above expression in the
matrix form is then given by

R(2θ, ξ) =

 cos θ−i sin θ sin ξ 0 − sin θ cos ξ 0
0 cos θ−i sin θ cos ξ 0 − sin θ cos ξ

sin θ cos ξ 0 cos θ+i sin θ cos ξ 0
0 sin θ cos ξ 0 cos θ+i sin θ cos ξ

 . (4.71)

The rotation through a tilted axis can account for ellipticity in the follow-
ing way. The state nominally initiating as |H⟩ ⟨H| will now rotate not along
the large circle at the ϕB = 0◦ meridian, rather it will traverse the upper
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quadrant away from the σ̂2-σ̂3 plane and tilt towards the σ̂y-axis. The state
will end up at some point whose polar coordinates are (θB, ϕB) from which
the Faraday rotation and ellipticity can subsequently be extracted!. In NMR
literature, such a single qubit rotation is often called an off-resonant pulse [33].

The recipe for extracting the Faraday rotation angle and off-resonant axis
angle ξ with respect to σ̂y-axis is similar to the previous estimation routines
and is redefined here with minimal modification of the rotation operator

∆ρthi = ρthi − ρexp◦ , (4.72)

where
ρthi = R(θ, ξ)ρexp◦ R†(θ, ξ)

is now function of two variables, θ and ξ. These angles can be estimated from
the minimization of the following function

θi = min
∑
j,k

(
|∆ρthi −∆ρexpi |2

)
,

= min(fi(θ, ξ)), (4.73)

where the minimization routine is similar to what were used in Section 4.4.2.

Using this technique, the extracted Faraday rotation and off-resonant axis
angles ξ’s are plotted in Fig. 4.19. The Faraday rotation angles θ’s obtained
from minimization corroborates with the previous findings in Section 4.4.2.
For instance, the Faraday rotation angle for temperature 8 K at a field of 3 A
is ≈ 10◦ less than what was observed previously (4.15). Moreover, the angle
ξ of axis of rotation with respect to σ̂y does not vary much with the applied
field and equals ≈ 45◦ ± 0.6◦.

Furthermore, in order to highlight the minimization process, we have plot-
ted the function Re{fi(θ, ξ)} at a particular temperature (15 K) and magnetic
field (2 A) and is displayed in Fig. 4.20. Moreover, we also plot the trajec-
tory of the input state for the idler photon only ρidler◦ = |H⟩ ⟨H| on the Bloch
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Figure 4.19: The estimated Faraday rotation angles as a function of applied
current through coils at two different temperatures (T= 8 and 15 K). Solid
lines represent the least square curve fit of the data for subfigure (a).

θ
ξ

Figure 4.20: The function Re{fi(θ, ξ)} is plotted for arbitrary values of θ and
ξ.

sphere for different magnetic fields in Fig. 4.21. Each subfigure illustrates the
evolution of input state, being rotated about an axis making an angle ξ with
σ̂y-axis. We are justified in choosing ρidler◦ = |H⟩ ⟨H| as the input state for the
argument for the following reasons. First, the tomography shows that for a

190



4.4. MEASUREMENT OF FARADAY ROTATION OF A SINGLE
PHOTON

nominal |HH⟩ ⟨HH| input state, we obtain

ρ◦ =


0.83 0.17− 0.17i −0.13 + 0.25i 0.03 + 0.07i

0.17 + 0.17i 0.07 −0.08 + 0.02i −0.01 + 0.02i
−0.13− 0.25i −0.08− 0.02i 0.09 0.02− 0.02i
0.03− 0.07i −0.01− 0.02i 0.02 + 0.02i 0.01

 .

(4.74)
If we take the reduced density matrix [16] for the idler photon, this yields

ρreduced◦ =

(
0.90 −0.14 + 0.26i

−0.14− 0.26i 0.10

)
(4.75)

which has a high degree of fidelity (overlap) with

|H⟩ ⟨H| =
(
1 0
0 0

)
.

Our single photon, two qubit states are separable, so we are justified in taking
the reduced density matrices without loss of description. For the estimation
of ellipticity angles, we first need to establish the correlation among Faraday
rotation angle θ, off-resonant axis angle ξ and Bloch sphere coordinates θB,
ϕB. For this, let’s assume we have the single qubit pure input state |H⟩ which
is being rotated by two dimensional unitary operator Rr given by

Rr(2θ, ξ) =

(
cos θ − i sin θ sin ξ − sin θ cos ξ

sin θ cos ξ cos θ + i sin θ sin ξ

)
. (4.76)

The transformation of the input state |H⟩ under the action of this unitary
operation can be summarized as

|p⟩ = Rr |H⟩

= (cos θ − i sin θ sin ξ) |H⟩+ (sin θ cos ξ) |V ⟩ , (4.77)

which can be further simplified with trigonometric manipulations and rewritten
as

|p⟩ =
√

cos2 θ + sin2 θ sin2 ξ) |H⟩+ etan−1(tan θ sin ξ)(sin θ cos ξ) |V ⟩ . (4.78)

We also know that any arbitrary pure state |ψ⟩ on the Bloch sphere can be
characterized by angles θB, ϕB and has the following form [34]

|ψ⟩ = cos θB
2

|H⟩+ eiϕB sin θB
2

|V ⟩ (4.79)
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Figure 4.21: The trajectory of input state ρ◦ = |H⟩ ⟨H| rotated about the off-
resonant axis (represented by red line) which makes an angle ξ w.r.t σ̂y-axis.
In each subfigure, the state rotates from an initial point θ = 0 (along |H⟩-axis)
to a final position θi which is estimated from minimization of function fi(θ, ξ),
where i refers to different magnetic fields varied from 1–3 A with a step size of
0.25 A.

where subscript B is merely to differentiate the Bloch sphere parameters. Com-
paring Eqns. (4.79) and (4.78), the following relations can be readily obtained

θB = 2 tan−1

(
cos ξ sin θ√

cos2 θ + sin2 θ sin2 ξ)

)
, (4.80)

ϕB = tan−1
(
tan θ sin ξ

)
. (4.81)
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Finally, comparing the polarization states description in two pictures pre-
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Figure 4.22: (a) The variation of ellipticity angles against the current through
coils. b) and c) depict the plots for Bloch sphere coordinates (θB), (ϕB) as
magnetic field is varied from minimum to a maximum value. Solid lines are
cubic spline fit to the data.

sented by Poincare sphere in Section 2.2.4 and Bloch sphere, the following
relationship can be obtained to estimate the parameters f the polarization
ellipse [35]

ψ = tan−1

(
cos ξ sin θ√

cos2 θ + sin2 θ sin2 ξ)

)
, (4.82)

2χ = sin−1(sinψ sinϕ), (4.83)

where ψ represents the rotation of the polarization ellipse and χ is the elliptic-
ity. The ellipticity acquired by the single photon as it traverses through TGG
are plotted as a function of magnetic field in Fig. 4.22. For completeness, the
polar coordinates of the resulting nominal pure idler photon quantum state

193



4.4. MEASUREMENT OF FARADAY ROTATION OF A SINGLE
PHOTON

are also shown in the same Figure.

It is clear that ellipticity is a strong function of the magnetic field and the tem-
perature. Our model with a tilted rotation axis allows an interesting method
to determine the ellipticity acquired by the polarization state of a single pho-
ton qubit. The ellipticity χ whose value is constrained to lie in the range
[−π/4,π/4] is seen to traverse the full range available. Our description based
on the Bloch sphere of the photon polarization offers unique and interesting
perspective on magneto-optic rotations.
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4.5 Supplementary Information
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Figure 4.23: Normalized intensity measured by lockin amplifier as function of
applied current through EM coils. Subfigures (a) and (b) show low and high
temperature ranges and solid lines are guide to the eyes.
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Figure 4.24: The absolute value of density matrix is plotted for |HH⟩ state.
a) ρ◦ corresponds to zero magnetic field and ρ1 to a maximum current (3 A)
through the coils.
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Figure 4.25: The absolute value of density matrix is plotted for |HH⟩ state
at T= 100 K. a) ρ◦ corresponds to zero magnetic field and ρ1 to a maximum
current (3 A) through the coils.
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Figure 4.26: Bell’s state |ψ+⟩ density matrix plots for different applied mag-
netic fields. a) corresponds to zero magnetic field whereas for (b)–(f) the
current through coils is varied from 1–5 A in a step size of 1 A.
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Figure 4.27: Bell’s state |ψ+⟩ density matrix plots at T=100 K for different
applied magnetic fields. a) ρ◦ corresponds to zero magnetic field whereas for
(b)–(f) the current through coils is varied from 1–5 A in a step size of 1 A.

4.5.1 Density Matrices for |HH⟩ States at 8 K

Re{ρ2} =


0.37 0.06 0.39 0.08
0.06 0.03 0.07 0.03
0.39 0.07 0.55 0.12
0.08 0.03 0.12 0.06

 (4.84)

Re{ρ3} =


0.21 0.03 0.31 0.02
0.03 0.01 0.08 0.02
0.31 0.08 0.71 0.15
0.02 0.02 0.15 0.07

 (4.85)

Re{ρ4} =


0.10 0.02 0.16 −0.02
0.02 0.01 0.08 0.01
0.16 0.08 0.82 0.16
−0.02 0.01 0.16 0.08

 (4.86)
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Re{ρ5} =


0.07 0.01 −0.05 −0.06
0.01 0.01 0.06 0.00
−0.05 0.06 0.85 0.17
−0.06 0.00 0.17 0.08

 (4.87)

Re{ρ6} =


0.11 0.03 −0.16 −0.09
0.03 0.01 0.02 −0.02
−0.16 0.02 0.81 0.14
−0.09 −0.02 0.14 0.07

 (4.88)

Re{ρ7} =


0.22 0.05 −0.32 −0.11
0.05 0.03 −0.02 −0.04
−0.32 −0.02 0.68 0.13
−0.11 −0.04 0.13 0.07

 (4.89)

Re{ρ8} =


0.39 0.09 −0.41 −0.09
0.09 0.05 −0.07 −0.04
−0.41 −0.07 0.52 0.08
−0.09 −0.04 0.08 0.04

 (4.90)

4.5.2 Density Matrices for Bell’s State at 8 K

ρ1 =


0.30 −0.15 + 0.04i 0.24 + 0.02i 0.15 + 0.08i

−0.15− 0.04i 0.20 −0.17− 0.00i −0.17 + 0.03i
0.24− 0.02i −0.17 + 0.00i 0.23 0.20 + 0.06i
0.15− 0.08i −0.17− 0.03i 0.20− 0.06i 0.26


(4.91)

ρ2 =


0.20 −0.15− 0.02i 0.23 + 0.10i 0.08 + 0.12i

−0.15 + 0.02i 0.27 −0.21− 0.01i −0.17− 0.02i
0.23− 0.10i −0.21 + 0.01i 0.34 0.19 + 0.10i
0.08− 0.12i −0.17 + 0.02i 0.19− 0.10i 0.19


(4.92)

ρ3 =


0.11 −0.10− 0.06i 0.12 + 0.17i −0.02 + 0.09i

−0.10 + 0.06i 0.33 −0.15− 0.02i −0.11− 0.07i
0.12− 0.17i −0.15 + 0.02i 0.45 0.10 + 0.16i
−0.02− 0.09i −0.11 + 0.07i 0.10− 0.16i 0.11


(4.93)

ρ4 =


0.07 −0.05− 0.10i 0.01 + 0.16i −0.06 + 0.02i

−0.05 + 0.10i 0.36 −0.14 + 0.01i −0.04− 0.10i
0.01− 0.16i −0.14− 0.01i 0.51 0.02 + 0.16i
−0.06− 0.02i −0.04 + 0.10i 0.02− 0.16i 0.06


(4.94)
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ρ5 =


0.08 −0.00− 0.11i −0.06 + 0.16i −0.06− 0.03i

−0.00 + 0.11i 0.38 −0.13 + 0.02i 0.01− 0.12i
−0.06− 0.16i −0.13− 0.02i 0.47 −0.04 + 0.16i
−0.06 + 0.03i 0.01 + 0.12i −0.04− 0.16i 0.07


(4.95)

ρ6 =


0.17 0.06− 0.08i −0.19 + 0.09i 0.02− 0.14i

0.06 + 0.08i 0.36 −0.03 + 0.02i 0.07− 0.11i
−0.19− 0.09i −0.03− 0.02i 0.31 −0.13 + 0.10i
0.02 + 0.14i 0.07 + 0.11i −0.13− 0.10i 0.15


(4.96)

ρ7 =


0.34 0.09 + 0.00i −0.18 + 0.00i 0.18− 0.15i

0.09− 0.00i 0.21 −0.06 + 0.02i 0.11− 0.01i
−0.18− 0.00i −0.06− 0.02i 0.15 −0.14 + 0.01i
0.18 + 0.15i 0.11 + 0.01i −0.14− 0.01i 0.31


(4.97)

ρ8 =


0.46 0.06 + 0.09i −0.02− 0.08i 0.22− 0.08i

0.06− 0.09i 0.08 −0.06− 0.00i 0.05 + 0.06i
−0.02 + 0.08i −0.06 + 0.00i 0.06 −0.02− 0.06i
0.22 + 0.08i 0.05− 0.06i −0.02 + 0.06i 0.41


(4.98)
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Appendix A

A.1 SEM Images of Permalloy Thin Films

Figure A.1: SEM image and corresponding energy dispersive x-ray spectro-
scopic linescan along the yellow line of Si/Pt/NiFe thin film deposited by
mangetron sputtering.
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Figure A.2: Permalloy thin film images viewed under a scanning electron mi-
croscope (SEM) where a) presents cross-sectional image of thin film for thick-
ness measurement and b) depicts the uniform surface morphology of sputtered
thin film.
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A.1.1 Labview Interface for MOKE Setup

D:/MOKE/NiFe.lvm
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Figure A.3: Front panel of the MOKE setup visualized in labview environment.
The graphical VI’s display the real time output voltages from lockin channels
(X and Y ) with time whereas the current (I) tab controls the input current to
the bipolar power supply.
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A.1. SEM IMAGES OF PERMALLOY THIN FILMS

Figure A.4: Block diagram of the virtual elements of the labview program for
MOKE setup. Simulate Signal VI generates a triangular wave of frequency
f and amplitude A and is fed to the data acquisition device DAQ which drives
the bipolar power supply. The other DAQ assistant receives the input from
lockin channels and stores in the measurement file assigned by the user.
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Appendix B

B.1 Labview Interface for Stokes Polarimetry

Figure B.1: Front panel of the Stokes polarimetry labview program.
The graphical VI displays the output from the lockin channel whereas
MG17Motor control shows the angular position of quarter waveplate which
is being rotated in a step size of 5◦.

B.1.1 Stokes Polarimetry Code

1 field=[0:0.25:5]*0.0493;
2 temperatures=[8 10 15 20 30 40 50 60 80 100 125 150];
4 shapes={’b-o’,’b-^’,’b-*’,’b-x’,’b-s’,’b->’,’b-p’,’b-v’,

’b-h’,’b-d’,’b-<’};
5 lol=2;
6 lol2=[1 3 5 7 9 ];
7 colors={[1 0 0 ],[0 1 0 ],[0 0 1 ],[0.5 0.5 0 ],[0.5 0 0.5 ],
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B.1. LABVIEW INTERFACE FOR STOKES POLARIMETRY

Fi
gu

re
B.
2:

Bl
oc
k
di
ag
ra
m

fo
r
th
e
po

la
rim

et
ry

se
tu
p
w
he
re

D
A

Q
A

ss
is

ta
nt

=
da

ta
ac
qu

ist
io
n,

M
G
17

M
ot

or
=

co
nt
ro
ls

fo
r

th
e
ro
ta
tio

n
st
ag
es

an
d

w
ri

te
to

m
es

au
re

m
en

t=
el
em

en
t
fo
r
st
or
in
g
da

ta
.

210



B.1. LABVIEW INTERFACE FOR STOKES POLARIMETRY

[0 0.5 0.5],[0.25 0.75 0 ],[0.25 0 0.75 ],[0 0.25 0.75],
[0.75 0.25 0 ],[0.75 0 0.35 ],[0 0.75 0.25]};

8 names={’8K_’ ,’10K_’,’15K_’,’20K_’,’30K_’,’40K_’,’50K_’,’60K_’,
’80K_’,’100K_’,’125K_’,’150K_’};

9 for count=1:1:lol %temperature values
10 flag=0;
11 signal=0;
12 nishani=0;
13 alamat=0;
14 N=36;
15 L=18;
16 %% retardance and zero error for alpha=0
17 retardance = 86.2571;
18 zeroerror = 3.6828;
19 %% Code Continue
20 deltabeta=(5*pi/180);
21 del = (retardance*pi/180); %retardance
22 alpha=(0*pi/180); %analyzer angle
23 beta0=zeroerror*pi/180; % zero error
24 for num=1:1:21 %field values
25 %defining variables
26 filename=char([names{count} num2str(num) ’.xlsx’]);
27 A=xlsread(filename);
28 current_applied(num) = A(1,4); %reading values of current
29 %% Fourier Series Calculation
30 Beta(1,:)=(A(1,3) - A(:,3))*(pi/180);
31 It(1,:)= A(:,2);
32

33 for k=1:(L+1) %calculating fourier coefficeints
34 w=((2*pi)/(N*deltabeta))*(k-1);
35 if((k==1)||(k==L+1))
36 Co(k) = (2/N)*(1/2)*sum(It.*cos(w*Beta));
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B.1. LABVIEW INTERFACE FOR STOKES POLARIMETRY

37 Si(k) = (2/N)*(1/2)*sum(It.*sin(w*Beta));
38 else
39 Co(k) = (2/N)*(1)*sum(It.*cos(w*Beta));
40 Si(k) = (2/N)*(1)*sum(It.*sin(w*Beta));
41 end
42 end
43 w=0:((2*pi)/(N*deltabeta)):((2*pi)/(N*deltabeta))*L;
44 %calculating stokes parameters
45 M(count,num)=(2/(1-cos(del)))*(Co(3)*cos(2*alpha + 4*beta0)

+ Si(3)*sin(2*alpha + 4*beta0));
46 C(count,num)=(2/(1-cos(del)))*(Si(3)*cos(2*alpha + 4*beta0)

- Co(3)*sin(2*alpha + 4*beta0));
47 S(count,num)= (Co(2)^2+Si(2)^2)^0.5/(sin(del)^2);
48 S1(count,num)=-Si(2)/(sin(del)*cos(2*alpha+4*beta0));
49 S2(count,num)= Co(2)/(sin(del)*sin(2*alpha+4*beta0));
50 I(count,num)=Co(1)- ((1+cos(del))/(1-cos(del)))

*(Co(3)*cos(4*alpha + 4*beta0) + Si(3)*sin(4*alpha + 4*beta0));
51 Ip(count,num) = (M(count,num)^2 + C(count,num)^2

+ S1(count,num)^2)^0.5;
52 M(count,num)=M(count,num)/I(count,num);
53 C(count,num)=C(count,num)/I(count,num);
54 S1(count,num)=S1(count,num)/I(count,num);
55 Ip(count,num)=Ip(count,num)/I(count,num);
56 I(count,num)=I(count,num)/I(count,num);
57 %% Ellipticity
58 Eta1(count,num) = (1*(2*Ip(count,num))+ ((((2*Ip(count,num))^2)

- 4*abs(S1(count,num))
*abs(S1(count,num)))^0.5))/(2*abs(S1(count,num)));

59 Eta2(count,num) = (1*(2*Ip(count,num))- ((((2*Ip(count,num))^2)
- 4*abs(S1(count,num))
*abs(S1(count,num)))^0.5))/(2*abs(S1(count,num)));

60 ellipticity(count,num)= ((1/2)
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*atand(((S1(count,num)))/(norm([M(count,num), C(count,num)]))));
61 if(S1(count,num)<0)
62 Eta2(count,num)=-1*Eta2(count,num);
63 end
64 %% Rotation
65 basic_angle(count,num) = ((1/2)

*atand((abs(C(count,num)))/(abs(M(count,num)))));
66 if ((C(count,num)>=0)&&(M(count,num)>=0))
67 Zeta(count,num) = basic_angle(count,num);
68 else if((C(count,num)<=0)&&(M(count,num)<=0))
69 Zeta(count,num) = 90 + basic_angle(count,num);
70 else if ((C(count,num)>=0)&&(M(count,num)<=0))
71 Zeta(count,num) = 90 - basic_angle(count,num);
72 else if ((C(count,num)<=0)&&(M(count,num)>=0))
73 Zeta(count,num) = -1*basic_angle(count,num);
74 end
75 end
76 end
77 end
78 if((Zeta(count,num)>=0)&&(Zeta(count,num)<=180)&&(num>1))
79 Zeta(count,num)= Zeta(count,num) - 180;
80 end
81 if (Zeta(count,num)<=-90)
82 flag=1;
83 end
84 if ((flag==1)&&(Zeta(count,num)<=0)&&(Zeta(count,num)>=-90))
85 Zeta(count,num) = Zeta(count,num) - 180;
86 end
87 if ((flag==1)&&(Zeta(count,num)<=0)&&(Zeta(count,num)>=-90))
88 Zeta(count,num) = Zeta(count,num) - 180;
89 end
90 if(Zeta(count,num)<=-180)
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91 signal = 1;
92 end
93 if ((signal==1)&&(Zeta(count,num)<=-90)&&(Zeta(count,num)>=-180))
94 Zeta(count,num) = Zeta(count,num) - 180;
95 end
96 if(Zeta(count,num)<=-270)
97 nishani = 1;
98 end
99 if ((nishani==1)&&(Zeta(count,num)<=-180)&&(Zeta(count,num)>=-270))

100 Zeta(count,num) = Zeta(count,num) - 180;
101 end
102 if(Zeta(count,num)<=-360)
103 alamat = 1;
104 end
105 if ((alamat==1)&&(Zeta(count,num)<=-270)&&(Zeta(count,num)>=-360))
106 Zeta(count,num) = Zeta(count,num) - 180;
107 end
108 end
109 end
110 %% Plotting Rotation
111 figure(2)
112 hold on
113 xlabel(’Magnetic Field (T)’,’FontSize’, 20)
114 ylabel(’Ellipticity (degrees)’,’FontSize’, 20)
115 title(’Ellipticity’,’FontSize’, 40)
116 for k=1:lol
117

118 if k> length(shapes)
119 temp=k-length(shapes);
120 else
121 temp=k;
122 end
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123

124 if k> length(colors)
125 temp11=k-length(colors);
126 else
127 temp11=k;
128 end
129 set(gca,’fontsize’,20)
130 plot(field.^2,ellipticity(k,:)-ellipticity(k,1),

shapes{temp},’Color’,colors{temp11},
’MarkerFaceColor’,colors{temp11})

131 end
132 legend(’8K’,’10K’,’15K’,’20K’,’30K’,’40K’,’50K’,’60K’,’80K’

,’100K’,’125K’,’150K’)
133 %% Plotting Rotation
134 figure(1)
135 hold on
136 xlabel(’1/B^2(1/T^2)’,’FontSize’, 20)
137 ylabel(’tan(2\theta)’,’FontSize’, 20)
138 title(’Rotation’,’FontSize’, 40)
139 for k=1:lol
140 if k> length(shapes)
141 temp=k-length(shapes);
142 else
143 temp=k;
144 end
145 if k> length(colors)
146 temp11=k-length(colors);
147 else
148 temp11=k;
149 end
150 set(gca,’fontsize’,20)
151 theta(k,:)=(basic_angle(k,:)-basic_angle(k,1)+45);
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152 plot(field,((basic_angle(k,:)-basic_angle(k,1)+45)),shapes{temp},
’Color’,colors{temp11},’MarkerFaceColor’,colors{temp11})

153 end
154 legend(’8K’,’10K’,’15K’,’20K’,’30K’,’40K’,’50K’,’60K’,’80K’,

’100K’,’125K’,’150K’);

B.1.2 Sample Holder Drawing
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Figure B.3: Design and drawings of sample holder and mounting clamp. All
the dimensions are in millimeters.
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