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Faraday’s law of electromagnetic induction states that an electromotive force (EMF ε) is
induced in a loop of copper wire when there is a change of magnetic flux Φ linking the loop.
According to this, the induced EMF is equal to the negative of the rate of change of flux,

ε = −dΦ

dt
(1)

This principle can be tested out with an oscillating magnet that goes through a loop of wire
fashioned into a solenoid. This is the case being used in the present experiment. The collected
data can be used to quantitatively verify equation (1) by computing the integral of the EMF
with respect to time t,

Φ(t) = −
∫ t

0

ε(t)dt (2)

establishing in this process, a relationship between the EMF, flux, angular amplitude, angular
velocity, angular acceleration, time, etc. This experiment is particularly suited to investigate
these relationships.
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1 Objectives

In this experiment, we will

1. observe the phenomenon of electromagnetic induction,
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2. obtain the integral of the EMF through a solenoid with respect to time, and argue that
this is indeed the magnetic flux,

3. observe how the EMF is related to angular amplitude, angular velocity,

4. observe the damping of rotational motion due to eddy currents, and finally,

5. mathematically corroborate Faraday’s law of electromagnetic induction.

2 Introducing the Experiment

The experiment is derived from reference [1]. The setup comprises a semi-circle made of
metal with weights attached to each end. Small magnets are attached to its centre inside a
depression. There is also a loop of insulated copper wire wound around a hollow plastic frame
surrounding the space in which the semi-circle oscillates. The data is acquired with the help
of a PhysLogger (a data acquisition and control device), PhysCompass (the rotary motion
sensor), and V Probe (a voltage sensing device). Further information about PhysLogger can
be found online [2]. The rotary sensor is connected to the semi-circle and the voltage sensor
is connected to the loop. Both of these are connected to PhysLogger, which is connected
to a computer. The software program of PhysLogger, PhysLogger Desktop App, is used to
collect the data. The setup is shown in Fig. 1.

To PC

Figure 1: The experimental setup, comprising A: PhysCompass (the rotary motion sensor),
B: the metal semi-circle, C: the copper coil loop around a plastic frame, D: voltage sensing
V Probe, and E: PhysLogger.
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Figure 2: Signals of the angle θ(t) and EMF ε(t) for a small interval of time. The ith cycle
of the angular displacement is shown. The variables (θ0)i and

(
θ0
)
i
show the positive and

negative amplitudes of the angles. The magnet approaching and receding the solenoid after
(θ0)i result, respectively in the positive and negative EMF peaks, (εmax,1)i and (εmax,2)i. A

similar argument can be made for
(
θ0
)
i
generating (εmax,1)i and (εmax,2)i.

When the straight edge of the semi-circle is nudged, the magnet oscillates from side to side,
inducing an EMF in the loop of wire.

The rotary motion sensor measures the angular amplitude of the semi-circle θ(t), while the
EMF ε(t) developed across the solenoid is also amplified and measured by the V Probe and
PhysLogger. Both of the signals are fed into the computer using PhysLogger and can be
analyzed. The angle θ(t) also decays with time. The EMF ε(t) will have a unique shape
comprising alternate positive and negative peaks. The EMF signal also decays. Both the
angular and EMF data are shown in Fig. 2.

2.1 Magnitude of the Induced EMF

Equation (1) can be modified to show that the absolute value of the induced EMF, ε(t) is
the derivative of the magnetic flux Φ(t):

|ε| = dΦ

dt
(3)

This can be rewritten as

|εmax| =
(
dΦ

dθ

)
max

(
dθ

dt

)
max

=

(
dΦ

dθ

)
max

ωmax (4)

where ωmax is the maximum angular velocity and εmax is the maximum EMF in one cycle.
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Therefore, it can be said that the EMF |εmax| is proportional to the maximum angular velocity
ωmax.
Therefore, once the angular and EMF data is acquired, we will use a computer program to
extract |εmax| and θmax for each cycle. For example in the ith cycle

(εmax)i =
(εmax,1)i + (εmax,2)i + (εmax,1)i + (εmax,2)i

4
(5a)

(θmax)i =
(θ0)i +

(
θ0
)
i

2
(5b)

Since ωmax is proportional to the maximum angular amplitude θmax, for amplitudes that are
not too small (see the Appendix), εmax is also proportional to θmax. If εmax is plotted against
θmax, a linear increase in the maximum EMF is seen, which constitutes a quantitative verifi-
cation of Faraday’s law of electromagnetic induction

The maximum angular amplitude for each cycle can also be plotted against time to observe
a linear decay. This is due to electromagnetic damping, in addition to energy loss through
radiation, friction at the pivot, air resistance, etc. We now describe the damping process.

2.2 The Mechanism of Damping

The oscillating semi-circle slows down due to electromagnetic damping. Usually damped
systems show an exponential decay, but linear decay for electromagnetically braked systems
can be mathematically proven with the help of equation (4). Disregarding other sources
of energy loss, the main source is Joule heating due to the production of eddy currents in
the loop. This happens in compliance with Lenz’s law. The current in the loop flows in a
direction that it produces a magnetic field opposing the changing magnet field due to the
source itself, which is the oscillating magnet. The power loss is given by

Ploss = i2R (6)

where i is the eddy current and R is the resistance of the loop. Integrating this over a cycle,
we obtain

∆Eone cycle =

∫
one cycle

i2R dt =
1

R

∫
one cycle

ε2max dt =
1

R

∫
one cycle

(
dΦ

dθ

)2

max

(
dθ

dt

)2

max

dt (7)

Now, dΦ/dθ for a cycle is only significant for a narrow range of angles near θ = 0. This
is because the magnet is small compared to the larger solenoid, causing the flux to drop
to a minimal value when it reaches the geometric centre of the solenoid, and dΦ/dθ swiftly
becomes negligible outside the range. Within this range, dθ/dt, the angular velocity is ap-
proximately constant (≈ ωmax), given that the angular amplitude is not too small either (see
the Appendix). Taking this term outside the integral we obtain

∆Eone cycle ≈
ωmax

R

∫ (
dΦ

dθ

)2

max

dθ (8)
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This integral is almost completely independent of the initial angular amplitude (θmax) and
thus of ωmax. The integral is zero outside a small range of θ. The energy loss per cycle is
proportional to ωmax

dE

dt
∝ ωmax (9)

At this point, the potential energy of the system almost completely converts into kinetic
energy, so we obtain the consumed energy

E =
1

2
Iω2

max (10a)

=⇒ E ∝ ω2
max (10b)

=⇒
√
E ∝ ωmax (10c)

where I is the moment of inertia of the oscillating assembly. Therefore, from equation (9)
and (10c) we obtain,

dE

dt
= −k

√
E (11)

Given the initial condition E(0) = E0, integrating equation (11) yields(√
E0 −

√
E
)
∝ t (12)

This implies linear decay of
√
E, therefore of ωmax, thus of εmax and also linear decay of θmax.

To consider the damping due to friction at the pivot, we cannot consider the frictional force
to be proportional to the velocity, as this would yield an exponential decay. Such a model
does not fit the empirically collected data. Instead, a constant frictional torque τ at the pivot
can be assumed, which is justified by the contact forces at the pivot. This gives the following
equation for the additional energy loss in one cycle

∆Eone cycle =

∫
τ dθ = τ4θmax ∝ ωmax ∝

√
E (13)

once again indicating linear decay of the angular amplitude θmax. In summary, we have
εmax ∝ ωmax ∝ θmax and dE/dt ∝

√
E ∝ t.

3 Preparing for the Experiment

Before starting the experiment, we make sure to verify the following aspects.

1. The semi-circle is tightened to the rotary sensor. Tightening prevents it from the slight
to and fro motion. It increases mechanical efficiency and allows for more accurate data
collection.

2. The orientation of the semi-circle is exactly horizontal. It can be verified with the help
of a spirit level, and modified through adjusting the position of the weights on the
straight edge of the semi-circle with the help of the knobs that hold them in place.
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Figure 3: A precise mobile application may be used instead of a physical spirit level as well.
An example of such an application is Bubble Level - Spirit Level

3. The semi-circle in due motion does not collide with the internal surface of the plastic
frame of the loop. Collisions will interfere with data collection as they alter the expected
motion of the oscillating semi-circle, giving inaccurate data.

4. All connections are made, as shown in Figure 1.

5. Notes about configuring PhysLogger:

(a) It is connected to the PC via a USB cable.

(b) It is connected with the PhysCompass via one of its digital channels, and with the
V Probe via one of its analog channel.

When all these preparations are made and PhysLogger is responding to changes in the semi-
circle’s moment, the apparatus is ready for experimentation.

4 Conducting the Experiment

1. In PhysLogger Desktop App, select Measure > Rotation and Measure > Voltage.
Make a LivePlot. (PhysCompass should have been already connected to PhysLogger
before starting the App).

2. Go to Quantities Panel > PhysCompass and set the units of angular measurements
to radians. When the semicircle is stationary at its equilibrium position, Tare the
readings of PhysCompass.
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3. Go to Extensions Menu > Advanced > Differentiate and first differentiate Angleto
compute Angular velocity and then differentiate the Angular velocity to achieve
the Angular acceleration.

4. Set a desirable sampling rate, such as 20 Hz.

5. Once you are ready to begin the experiment, click on Clear Plots and nudge one side
of the semi-circle. Make sure not to use excessive force as that may cause a collision
between the corners of the semi-circle and the plastic frame of the loop.

6. The magnets will begin to oscillate, the angular data and the resulting EMF detected
by PhysLogger are sent to the computer.

7. You see a graphed collection of the data in real time. A sample is shown in Fig. 4.

Figure 4: Representation of data acquired shown in PhysLogger Desktop App. Multiple
plots can be made on the same page by using the Add LivePlot icon.

Once the data has been collected, Save all quantities > Show in Explorer. Convert
the saved file to .txt file for further analysis in MATLAB. (Delete the first row of serial
numbers.) Note that the file includes data with the respective names and measurement units
of the measured quantities.

Now let’s analyze the data in MATLAB.
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5 Analyzing the Data

1. Calculate the integral of the EMF potential to obtain the flux. You could use MAT-
LAB’s command cumtrapz for this purpose. Explain the shape of the signal and connect
it with the physics matter of the swinging magnet.

2. Plot the EMF, flux, angle, angular velocity, and angular acceleration against time.
Compare them with each other describe and how they vary as time progresses. Are the
shapes of these variables interrelated?

3. Calculate the maximum EMF and the maximum angle for each cycle and plot them
against each other. Fit this data with a straight line.

4. Calculate the maximum angle versus time and plot these variables against each other.
Fit this data with a straight line.

Could you write a computer program to automatically take your data from PhysLogger and
output these processed outputs? We encourage you to try this, but if you do not want to try,
you can use the collection of MATLAB scripts from our website. Make sure your data and
your code is in the same folder. Simply run the script and input your data with the input
interface. Discuss your findings and answers with your instructor.

Repeat the experiment with the loop left open circuited and short circuited. Processing
the data collected with the rotary sensor will allow you to produce plots of the maximum
angle for each oscillation against time, showing differences due to electromagnetic damping.

Appendix

The maximum angular velocity ωmax is connected to the maximum angle θmax by

ωmax =
4π

T
sin (θmax/2) (14)

where T is the period of (small) oscillations and θmax/2 is in radians. If θmax/2 is smaller
than 1, then ωmax is approximately proportional to θ0. Can you derive this relationship using
the principle of energy conservation?
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