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Abstract

This paper serves to report on the computational reproduction of the research paper, ”A geomet-
ric method to locate Neptune”[1]. The computational program thus produced can be used to obtain
the Mass, Sidereal Period, Semi-major axis, and Synodic Period (with respect to any planet) of Nep-
tune. The paper also reports on the ephemeris data simulation for other exoplanets via pure geometric
methods and consequently a complete computational algorithm thus established can be extended to
the exoplanetary systems. Provided with the orbital parameters and experimental ephemeris of al-
ready discovered exoplanets in a system, the program can help hint at undiscovered exoplanets and
ascertain their Mass and Period. The thesis also details on the computational implementation of the
Transit Light Curve method of Exoplanet detection.
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1 Gravitational Modelling

1.1 Introduction
Neptune was the one planet in our solar system that was mathematically predicted before it was
discovered. Looking at the irregularity of Uranus from its predicted orbit, Urbain Le Verrier postulated
that an undiscovered planet should exist beyond Uranus’s orbit and it was discovered by astronomer
Johann Gottfried Galle in the Berlin Observatory in 1846 [4]. Here we make use of the astronomical
data available of the position vectors and velocity of all the planets in our solar system and through the
application of vector analysis on Newton’s laws of motion, calculate the orbital parameters of Neptune.

1.2 Newton’s Law of Gravitation
Starting with Newton’s law of Gravitation written for the ith object in a system is given by:

F⃗i = −
9∑

j ̸=i

GMiMj
x⃗i − x⃗j

|xi − xj|3
. (1)

where G is the Gravitational Constant with a value of 6.671× 10−11Nm2kg−2.

This force provides the acceleration for the ith object during its motion which is given by Newton’s
second law of motion as follows:

F⃗i = Mi
d2x⃗i

dt2
. (2)

Equating (1) and (2) gives us,
d2x⃗i

dt2
= −

9∑
j ̸=i

GMj
x⃗i − x⃗j

|xi − xj|3
. (3)

Eq. (1) is written for 9 objects: the Sun, 7 planets (up till Uranus) and the yet to be discovered Neptune.

1.3 The Vector V(t)
Knowing that Neptune is not yet discovered, one can separate all the terms in the expansion of this
equation that are concerned with Neptune from the other terms. For this, one write Eq. (1) in terms of
the Sun and Uranus and subtract them.

d2x⃗⊙
dt2

= −
∑9

j ̸=
⊙

,N GMj

x⃗⊙−x⃗j

|x⊙−xj |3 −GMN

x⃗⊙−x⃗N

|x⊙−xN |3 .

d2x⃗U

dt2
= −

∑9
j ̸=U,N GMj

x⃗U−x⃗j

|xU−xj |3 −GMN
x⃗U−x⃗N

|xU−xN |3 .

Subtracting the two equations, one gets

1



d2(x⃗U−x⃗⊙)

dt2
= −

∑9
j ̸=

⊙
,U,N GMj

x⃗U−x⃗j

|xU−xj |3 −GM⊙ x⃗U−x⃗⊙
|xU−x⊙|3 −

∑9
j ̸=

⊙
,U,N GMj

x⃗⊙−x⃗j

|x⊙−xj |3 −

GMU

x⃗⊙−x⃗U

|x⊙−xU |3 −GMN(
x⃗U−x⃗N

|xU−xN |3 −
x⃗⊙−x⃗N

|x⊙−xN |3 ).

Define,

r⃗i = x⃗i − x⃗⊙.

=⇒ r⃗N − rU = x⃗N − x⃗U .

So, the above equation becomes,

d2r⃗U
dt2

= GMN(
r⃗N−r⃗U

|r⃗N−r⃗U |3 −
r⃗N

|rN |3 )−G(M⊙ +MU)
rU

|rU |3 +
∑9

j ̸=
⊙

,U,N GMj(
r⃗j−r⃗U

|xN−xU |3 −
r⃗j

|rj |3 ).

Finally, separating the terms involving Neptune’s parameters from the others gets us,

V⃗ (t) = GMN(
r⃗N − r⃗U
|r⃗N − r⃗U |3

− r⃗N
|rN |3

). (4)

V⃗ (t) =
d2r⃗U
dt2

+G(M⊙ +MU)
rU
|rU |3

−
9∑

j ̸=
⊙

,U,N

GMj(
r⃗j − r⃗U
|r⃗j − r⃗U |3

− r⃗j
|rj|3

). (5)

The variable V⃗ (t) here is the part of Uranus’s acceleration that cannot be explained by other planets. If
Neptune did not exist then by definition in Eq. (2), V⃗ (t) will be 0. However, obtaining the data of the
other planets’ motions can help us plot the magnitude of V⃗ (t) and it comes out as follows in figure 1.1

Figure 1.1 |V⃗ (t)| versus time since 1800.

2



This graph is obtained by plotting the magnitude of the vector V⃗ (t) from equation (5) by obtaining the
ephemeris data of Uranus and the inner planets [2].This clearly is not zero with two very clear spikes in
late-1822 and mid-1994. This ascertains our initial guess that an 8th planet should exist in our Solar
System.

To understand the two spikes, we need to take into consideration the structure of V⃗ (t) from equation (4).
Note that V⃗ (t) maximizes when the magnitude of the position vector of Neptune with respect to Uranus
reduces to its minimum. This occurs when Neptune and Uranus form a conjunction.

The direction of vector V⃗ (t) is also of high significance as we will see in chapter 3. However, we do not
need to worry about it at all instants as it has a complicated geometry, and we only need it at some points.

Figure 1.2: The trend of V⃗ (t) as Neptune makes a full circle but Uranus is held static.

The conjunction is the instant when the sun, Neptune, and Uranus lie in the same line on the same side
of the sun. An opposition is the event when Neptune and Uranus are on the opposite sides of the sun
while being in the same line.

Note that, whenever a conjunction occurs, all the vectors that make up V⃗ (t) point in the same direction:
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towards Neptune and Uranus. Similarly, whenever there is an opposition, V⃗ (t) again points in the
direction of Uranus.

To understand this, assume that a new coordinate system is defined where Sun is at the origin and the
+x-axis is along the line joining Uranus to the origin. The negative x-axis would thus point towards
Neptune. Thus, the new position vectors of Neptune and Uranus will have zero values for y and z
coordinates. |r⃗Nx’| will be larger than |r⃗Ux’| so,

r⃗Nx ’−r⃗Ux ’
|r⃗Nx ’−r⃗Ux ’|3

will be pointed towards Neptune. However,
it can be seen that the magnitude of r⃗Nx ’−r⃗Ux ’

|r⃗Nx ’−r⃗Ux ’|3
is much smaller than that of r⃗Nx’, so resultantly,

r⃗Nx ’−r⃗Ux ’
|r⃗Nx ’−r⃗Ux ’|3

− r⃗Nx ’
|r⃗Nx ’|

3
will point towards Uranus. Thus, we can say that V⃗ (t) is pointed towards Uranus

during both Conjunctions and Oppositions. This information will be of immense help while determining
the time of conjunctions and oppositions.

1.4 The Period of Neptune
We define another vector p⃗(t) that is perpendicular to the position vector of Uranus and is in the same
plane as the three entities. Now you insert the information we deduced in the previous paragraph for the
direction of V and notice that p⃗(t) and V⃗ (t) are perpendicular to each other in the events of
Conjunctions and Oppositions. Thus, if we define another quantity that is the projection of V⃗ (t) on p⃗(t),
we see that this quantity will be zero in case of both oppositions and conjunctions.

Keeping our goal in mind: calculating the sidereal period of Neptune that is the time it takes to complete
one cycle around the sun and all the quantities we have so far defined will prove essential in obtaining
the sidereal period of the planet.

Synodic period is another quantity that we need to evaluate for Neptune before we arrive at our goal.
Synodic period of Neptune with respect to Uranus will be the time it would take to return to the same
position around the sun as seen from Uranus. So, the time period between two conjunctions can be
counted as the Synodic period for Neptune with respect to Uranus.

1.5 Kepler’s Laws
Lastly, we need to acquaint ourselves with the Kepler’s laws of planetary motion. There are three laws,
the third of which is of use to us which states that, “The square of Sidereal period of a planet is directly
proportional to the cube of its semi-major axis.” [9]

a3N = cT 2
N . (6)

Now if you take the Sidereal Time Period in years and calculate the semi-major axis in Astronomical

Units, the value of c for our solar system comes out as 1 (AU)3/yr2.

1.6 Orbital Mechanics
To describe how the orbits of various planetary and stellar systems work, we have to be familiar with
some geometric concepts and their mathematical formulation. Then we can accurately describe the
two-body problem: a star and a planet in orbit or two stars (referred to as ä Binary”) forming an orbital
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system. With decent approximations, we can also model a three body system with two stars and a planet
or even three stars.

Consider, as a first, that we have at hand, a two star system in mutual rotatory motion. The stars A and B
have massesM1 andM2. If we take the frame where the center of mass of the system is the origin, we
have the following position vectors for the two stars,

r⃗1 = − M2

M1+M2
d⃗,

r⃗2 =
M1

M1 +M2

d⃗ (7)

Here d⃗ = r⃗2 − r⃗1, the relative displacement of the two stars. The center of mass is given by,

r⃗CM =
M1r⃗1 +M2r⃗2
M1 +M2

, (8)

and the force exerted on star B by A is given by,

F⃗ = G
M1M2

d3
d⃗. (9)

This produces acceleration in the two bodies,

a⃗1 =
GM2

|r2−r1|3 (r⃗2 − r⃗1).

a⃗2 = − GM1

|r2 − r1|3
(r⃗2 − r⃗1). (10)

We also have the vis− viva equation that describes the relative velocity of stars in a binary system, and

is given as [11],
v2 = G(M1 +M2)(

2

d
− 1

a
). (11)

Here again, d is the magnitude of the relative displacement of the two stars and a is defined as the
semi-major axis of the elliptical motion of the the vector d⃗(t).

To define the initial values of our coupled differential equations problem, we take the periastron
coordinates for the binary, i.e. when the two stars are in the closest proximity to each other. We take the
planetary motion to be along the x-y axis. We also align our x-axis along the line joining the two stars at
periastron. Let dp be the distance separating the two stars at periastron, which the the instance of the
closest proximity of the two stars, given by dp = a(1− e), then we have

r⃗1(0) = ( M2

M1+M2
dp, 0, 0).

r⃗2(0) = (− M1

M1+M2
dp, 0, 0).

At periastron, the velocities of the two bodies are perpendicular to their position vectors and given by,
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v⃗1(0) =
d
dt
r⃗1(0) = (0,− M2

M1+M2
dp, 0)

v⃗1(0) =
d
dt
r⃗2(0) = (0, M1

M1+M2
dp, 0).

Figure 1.3: Elliptical orbits of the two stars in a binary.

Python programming for this problem will be described in Chapter 2.
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2 Examples in Numerical Astronomy
This chapter assumes fundamental understanding of Python programming and focuses on the utilization
of that understanding for problem solving in astrophysics and astronomy.

2.1 Libraries
We will be utilizing a number of that have functions defined for astrophysical problem solving which
will prove beneficial for our programs. The standard libraries include NumPy, Math, Pandas and
Mathplotlib. There are also libraries like AstroPy and SciPy [8].

SciPy helps us obtain the numerical values of various physical constants. The library AstroPy will
mostly help us obtain the data of coordinates, positions and periods etc. of various astronomical objects.

2.2 Length of the Diurnal Arc
Let us begin with our first problem: Determining the length of a star’s diurnal arc for a particular
geographical location of the earth.

Diurnal arc is the path an object appears to follow in the sky as the earth completes its one rotation. The
diurnal arc of the sun would be its trajectory as it (roughly) moves from the east to the west rising at the
dawn and setting in the dusk. Similarly, for your given latitude, various stars can be seen to have a
unique trajectory with respect to your position. This trajectory is termed as the diurnal arc and we will
be utilizing this information to obtain the time period for which a particular star stays in the sky and also
the maximum altitude it appears at for that location.

The length of the arc is given by,

h =
1

2
cos−1[tan(δ) tan(ϕ)]. (12)

Figure 2.1: Diurnal Arc of an object moving around the celestial sphere
(Schmidt, fig. 2.3, p28 [7]).
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Here ϕ is the latitude of earth location that you are viewing the star from. The red circle in the figure
above represents the diurnal arc of an object and δ is the declination of the star. Declination of an object
is defined as its angular distance from the equatorial plane of the earth. Similarly, there is another
quantity that we use to completely describe the location of a star in the sky: right ascension of a star is
the angular distance measured eastward along the celestial equator at the time of March equinox.

Now we have sufficient knowledge of the theory to write a program to determine the length of the
Diurnal Arc.

Let us do it for the brightest star of the constellation Lyra, Vega. We can use the library AstroPy to
obtain its coordinates as follows:

from astropy.coordinates import SkyCoord, EarthLocation, AltAz, get_sun
Vega = SkyCoord.from_name("Vega")

We have now created the variable “Vega” that is coordinate class containing the Declination and Right
Ascension of Vega. Use the print(Vega) command to obtain these values:

SkyCoord (ICRS): (ra, dec) in deg
(279.23473479, 38.78368896)

We can extract the value of the declination to our use as follows:

delta=Vega.dec

Next, we need to create a variable that contains the coordinates of Earth where we need to observe the
diurnal arc of Vega from. This can be done as follows:

import astropy.units as u
LUMS = EarthLocation(lat=31*u.deg+28*u.arcmin+20*u.arcsec,

lon=74*u.deg+24*u.arcmin+40*u.arcsec)
phi=LUMS.lat

We now have both the necessary components required for our calculation and we can proceed ahead.

import math
x=-math.tan(delta.radian)*math.tan(phi.radian)

We have to keep one thing in mind that −90◦ ≤ ∆+Φ ≤ 90◦. Otherwise, the stars have such low/high
altitudes ∆ that they cannot be seen from the sky of a location with latitude ϕ. Moreover, this will also
trouble our arccos function obtained from the library math. In case of Vega and LUMS, it is not a
problem since ∆+Φ ≈ 70◦.

Finally, we obtain the length of the Diurnal Arc as follows:

8



h=math.acos(x)
T = (math.degrees(2*h)/360) #Converts radians to degrees
T=T*u.sday #converts degrees to hour format out of 24
print("T = {:.2f}"}.format(T.to(u.h)))
T = 15.89 h

Thus, Vega stays in the sky as seen from LUMS for 15 hours and 54 minutes.

2.3 Length of a day through the year
Let us utilize our knowledge of computational Python and astronomy to create a chart that details on
how the days change in length over the course of a year for any geographical location on the earth.

Understanding the theory of altitude of the sun requires the knowledge of how the altitude of the sun
varies for any particular location on the earth. If you are in the northern hemisphere, the length of a day
increases during the summer season that lasts from late March to late September having peaked on the
summer solstice (June 21). Then there is a dip in the length of a day during winters with the winter
solstice (December 21) being the shortest day of the year. The very opposite is true the southern
hemisphere where the seasons are reverted with the summers lasting between September and March and
vice versa.

The obliquity (ϵ0 = 23.44◦) of the earth’s elliptic, that is, the inclination of earth’s rotation plane with
respect to its spin plane is responsible for the changing of seasons throughout the year. We do not need
understand the exact details of earth’s motion to make sense of this trend.

The annual variation in sun’s declination is given by the following relation[10]:

δ⊙ = − sin−1[sin(ϵ0) cos
(

360◦

365.24
(N + 10)

)
]. (13)

Here N represents the number of day for a year (January 10 being N=10) for which we are obtaining the
declination.

Before we proceed, the distinction between declination and altitudes of a Star needs to be understood.
The declination, as defined above, is the angular displacement of a celestial object from the equator.
This means that a star of declination, say, 31.47◦ should pass directly overhead once a day, if viewed
from LUMS (latitude= 31.47◦N). So, the declination is a standardized coordinate that remains
unchanged wherever you are around the globe. And it is your position on the globe that determines the
local height of that object in the sky. This “local height” or more precisely, angular distance from the
horizon on an object for a particular latitude is called the altitude of that object. So, the same star that is
visible directly overhead at the equator, must be visible at an altitude of 58.53◦ in the LUMS skies. This
can be determined by the simple relation of

Alt = 90◦ − (Lat− δ) (if Lat > δ)
Alt = 90◦ + (Lat− δ) (if Lat < δ).
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The same phenomenon governs the variation in the altitude of the Sun with the change in its declination.
Next we write a program that creates an array of the altitude of the Sun for a given location on Earth.
Then we would convert it to the number of hours and thus you obtain the variation of the length of a day
throughout the year.

import numpy as np
N = np.arange(0,365) # array with elements 0,1,2,...,364
omega = 2*math.pi/365.24 # Earth’s angular velocity in rad/day
ecl = math.radians(23.44) \# obliquity of the ecliptic

Next we use equation (13) to obtain an array with the declination of the Sun varying throughout the year.

delta = -np.arcsin(math.sin(ecl) * np.cos(omega*(N+10)))

So, to obtain the diurnal arc, we use the same equation,
h = 1

2
cos−1[tan(δ) tan(ϕ)].

First, we declare a new variable and apply a couple of if conditions as follows:

x=-np.tan(delta) * math.tan(phi.radian)

for i in range(len(x)):
if x[i] \< -1:

x[i]=-1
if x[i] \> 1:
x[i]=1

To understand this, consider the 171st day of the year, that is, June 21, the day of summer solstice in the
northern hemisphere.
δ = − sin−1[sin(23.44◦ × cos

(
2π

365.24
(171 + 10)

)
]

δ = 23.40◦

Now, for ϕ = 80◦

x = tan(23.40◦)× tan(80◦)
x = 2.45

Now, if you take cos−1() of this number, you realize that you get an error. This is because,
mathematically, this number is outside the range of the cosine function, or the domain of the cosine
inverse function.

Physically, on June 21, the sun does not set for any location on the earth above the latitude of 66.56◦,
called the arctic circle. So, if you input a location with coordinates above this latitude, our program
would crash. Thus, we apply the catch, that whenever such an event would occur, the program would
give us a value of 1, that would correspond to an arccos value of 90◦ and thus our program would
provide us with the day length of 24 hours.
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h=np.arccos(x)\\
T = (np.degrees(2*h)/360) * u.sday.to(u.h)\\

Now, we have the array T which contains the length of each for a year for any given location. If we insert
the coordinates of LUMS, and plot this array versus the days array, we should get the following graph,

import matplotlib.pyplot as plt
%matplotlib inline

plt.plot(N,T, label="LUMS (32˚N)")

print("Minimum day length = {:5.2f} h"}.format(T.min()))
print("Maximum day length = {:5.2f} h"}.format(T.max()))
Minimum day length = 9.92 h
Maximum day length = 14.01 h

Figure 2.2: Altitude of the Sun throughout the year for LUMS (Lahore), Cape Town (34˚S) and
Kirkland, WA (USA).

You can simultaneously plot multiple graphs (Figure 2.2) and compare how various latitudes have the
length of their days vary.

Following are some interesting results:

1. All the locations in the northern hemisphere follow the same trend as LUMS: the length of the day
peaking in mid-year (June 21) and having a minimum around late December.

2. All the locations in the southern hemisphere follow the opposite trend.
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3. All locations on the equator have 12-hour long days all year long.

4. All locations above the arctic circle (66.56◦) show a peculiar trend with days becoming longer
than 24 hours in the summers and falling to 0 hours of sunlight during winters.

2.4 Trajectory of an object against the Sun
We realize that the stars change their altitude throughout the day for a given location as their azimuth
angle also varies. Note that when the sun is out during the day, these stars are not visible. Therefore, we
devise a program that can plot the varying altitude of these stars against the changing rising and setting
sun so we have an idea of the best time for the observation of these stars.

We make use of the ”AltAz” module of astropy.coordinates and use it to define our geographical
position and time.

We start with defining a variable that encompasses the coordinates of our geographical location.

import astropy.units as u
from astropy.coordinates import SkyCoord, EarthLocation, AltAz, get_sun

# geographical position of the observer
LUMS=EarthLocation(lat=31*u.deg+28*u.arcmin+11*u.arcsec,

lon=- 74*u.deg+24*u.arcmin+42*u.arcsec)
phi=LUMS.lat

Next, we import a time format and adjust it to our time zone. Note that by default, the time is set to
Coordinated Universal Time (GMT).

from astropy.time import Time

utc_shift = 5*u.hour # PST time zone (5h ahead)
local_time= Time("2022-03-25 00:00:00") + utc_shift

Next we will define our x-axis where we will have the 24 hours of time for a day. We take data points 5
minutes across for a smooth graph.

import numpy as np

# time array covering next 24 hours in steps of 5 min
elapsed = np.arange(0, 24*60, 5)*u.min
x_time = local_time + elapsed

frame_local_24h = AltAz(obstime=x_time, location=LUMS)
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Next we import the coordinates of a star the we want to analyze and transform its data to our local frame
(obtain its declination and right ascension). We do the same for the sun.

Vega = SkyCoord.from_name("Vega")
Vega_local = Vega.transform_to(frame_local_24h)

sun = get_sun(x_time)
sun_local = sun.transform_to(frame_local_24h)

Finally, we obtain the numerical data of our axes. We split the x-axis variable ”elapsed” into 2
segments: when the sun is above the horizon (daytime) and when it is below the horizon (night time).
Similarly, we make two variables Vega_night and Vega_day for the altitude of Vega during the night
and day, respectively.

#Indicates the time when the Sun is below the horizon
elapsed_night = elapsed[np.where(sun_local.alt < 0)]

#Indicates the altitude of Vega while there is night
Vega_night = Vega_local.alt[np.where (sun_local.alt < 0)]
#Indicates the altitude of Vega while there is day
Vega_day = Vega_local.alt[np.where(sun_local.alt >= 0)]

Lastly, now that the data import is all complete, we import the matplot library to plot out data.

import matplotlib.pyplot as plt
%matplotlib inline

plt.plot(elapsed.to(u.h), sun_local.alt, color='Orange', label='Sun')

plt.plot(elapsed.to(u.h), Vega_local.alt, color='red', linestyle=':', label='Vega (daylight)')

plt.scatter(elapsed_night.to(u.h), Vega_night, s=2, color='red', label='Vega (night)')

plt.xlabel('Time since midnight [h]')
plt.xlim(0, 24)
plt.xticks(np.arange(13)*2)
plt.ylim(0, 90)
plt.ylabel('Altitude [deg]')
plt.legend(loc='upper center')

Note that for plotting Vega_night, we have used scatter plot instead of continuous line plot. This is to
ensure that in case the sun rises above the horizon while the star is still up in the sky, we avoid the
disruption the continuous line graph makes in our plot by connecting the last point before sunrise to the
first point after sunset with a straight line.
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Figure 2.3(a): Vega’s altitude against the sun as viewed from LUMS on March 25, 2022.

Figure 2.3(b): Betelgeuse’s altitude against the sun as viewed from LUMS on April 10, 2022.

2.5 Orbital Mechanics
2.5.1 Two Star System

We start off with describing the python program that has the plot of the trajectory of two stars going in a
mutual orbit as its output. We start off with importing the essential libraries and declaring the variables
that contain the information of the stars’ masses and the orbital parameters.

We start with the Sirius system that has planets A and B roughly twice and same the size of the sun,
respectively.

import numpy as np
from scipy.constants import G,year,au
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from astropy.constants import M_sun, M_earth
import matplotlib.pyplot as plt

M1 = 2.06*M_sun.value # mass of Sirius A
M2 = 1.02*M_sun.value # mass of Sirius B

a = 2.64*7.4957*au # semi-major axis of the 2 star system
e = 0.5914 # eccentricity of the two star system

The orbital time period for the system comes out as,

T = 2*np.pi * (G*(M1 + M2))**(-1/2) * a**(3/2)

print("Orbital period = {:.1f} yr".format(T/year))

We start off with describing the python program that has the plot of the trajectory of two stars going in a
mutual orbit as its output. We start off with importing the essential libraries and declaring the variables
that contain the information of the stars’ masses and the orbital parameters.

We start with the Sirius system that has planets A and B roughly twice and same the size of the Sun,
respectively.

import numpy as np
from scipy.constants import G,year,au
from astropy.constants import M_sun, M_earth
import matplotlib.pyplot as plt

M1 = 2.06*M_sun.value # mass of Sirius A
M2 = 1.02*M_sun.value # mass of Sirius B

a = 2.64*7.4957*au # semi-major axis of the 2 star system
e = 0.5914 # eccentricity of the two star system

Next we calculate the orbital period using Kepler’s third law [9],

T =
2π√

G(M1 +M2)
a3/2. (14)

T = 2*np.pi * (G*(M1 + M2))**(-1/2) * a**(3/2)

print("Orbital period = {:.1f} yr".format(T/year))

One can play around with the orbital period by changing the defined semi-major axis and the masses of
the stars.
Next, we are required to solve a system of coupled differential equations to obtain an array that can be
regarded as the ephemeris of the two stars. As we had in equation (10),

dv⃗1
dt

= GM2

|r2−r1|3 (r⃗2 − r⃗1), dv⃗2
dt

= − GM1

|r2−r1|3 (r⃗2 − r⃗1).

Next we compute the integral of the whole orbital period of Neptune Euler method
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n_rev = 3 # number of revolutions
n = n_rev*500 # number of time steps
dt = n_rev*T/n # time step
t = np.arange(0, (n+1)*dt,dt)

The number of revolutions can be changed and this would correspondingly, change the total number of
time steps we would have over which the integration is being performed.

Next we start off by initializing the position vectors and the orbital velocity vectors. We keep them of
the dimension of n+1 where n is the total number of steps. The zeroth index will have our initial values
which we define as follows:

# periastron distance and relative velocity
d=a*(1+e)
v = np.sqrt(G*(M1 + M2)*(2/d - 1/a)) # vis-viva equation

#Initial values of x-y coordinates for each star
x1[0], y1[0] = d*M2/(M1 + M2), 0
x2[0], y2[0] = -d*M1/(M1 + M2), 0

#Initial values of vx-vy velocities for each star
vx1[0], vy1[0] = 0, -v*M2/(M1 + M2)
vx2[0], vy2[0] = 0, v*M1/(M1 + M2)

alpha = G*M1*M2

Proceeding, we define the distance and force vectors

for i in range(n):
delta_x = x2[i] - x1[i]
delta_y = y2[i] - y1[i]

# third power of distance
d3 = (delta_x**2 + delta_y**2)**(3/2)

# force components
Fx = alpha*delta_x/d3
Fy = alpha*delta_y/d3

Finally we define our state vectors that help us calculate the derivative of our variables and the tools we
required for integration are now complete.The vector notation is as follows:

s⃗ =



x1

y1
x2

y2
v1x
v1y
v2x
v2y


f⃗(t, s) =



v1x
v1y
v2x
v2y

F12x/M1

F12y/M1

−F12x/M2

−F12y/M2
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Here,
ds⃗

dt
= f⃗(t, s) (15)

Thus, we can now import the solve_ivp() function from scipy.import, define a function to
determine the derivative of state vectors, and insert our variables,

from scipy.integrate import solve_ivp

init_state = np.array([ x1[0], y1[0], x2[0], y2[0],
vx1[0], vy1[0], vx2[0], vy2[0]])

def state_derv(t, state):
alpha = G*M1*M2

delta_x = state[2] - state[0] # x2 - x1
delta_y = state[3] - state[1] # y2 - y1

# third power of distance
d3 = (delta_x**2 + delta_y**2)**(3/2)

# force components
Fx = alpha*delta_x/d3
Fy = alpha*delta_y/d3

return np.array([state[4], state[5], state[6], state[7],
Fx/M1, Fy/M1, -Fx/M2, -Fy/M2])

tmp = solve_ivp(state_derv, (0,3*T), init_state,
dense_output=True)
data = tmp.sol(t)

The final ephemeris data for both our orbiting bodies is contained in the variable data in the sequence
defined in the return argument of the state_derv function. Once we apply the solve_ivp() function
on our data with our initial values as defined above by using the derivative function of the state vector,
we will have the instantaneous values of the x-y position coordinates and the orbital velocity vectors of
both the bodies. This can then be plotted and the figure 2.4 is obtained.

fig = plt.figure(figsize=(6, 6*25/35), dpi=150)

plt.plot([0], [0], '+k') # center of mass
plt.plot(data[0,:]/au, data[1,:]/au,

color='red', label='Sirius A')

plt.plot(data[2,:]/au, data[3,:]/au,
color='blue', label='Sirius B')

# plt.plot(data[0,0],data[0,0],"o")
# plt.plot(data[2,0],data[2,0],"x")

plt.xlabel("$x$ [AU]")
plt.xlim(-22.5,12.5)
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plt.ylabel("$y$ [AU]")
plt.ylim(-12.5,12.5)
plt.legend(loc='upper left')
plt.savefig("sirius_scipy.png")
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Figure 2.4: The orbital motion of Sirius A and B in x-y plane over three revolutions.

It can be realized that the orbits being obtained are not closed with the semi-major axis continuously
shrinking. This has to do with the definition of the solve_ivp() function whereby it continuously
adjusts the tolerances in time step to compute the integral efficiently. Besides that, this section provides
us with a notion of how the orbital mechanics works for a binary star system with two stars with a
comparable size. We can change the variable values and see how the change in stellar masses, the
semi-major axis and the eccentricity affects our orbits.

2.5.2 Two Stars with a Hypothetical Planet

Next we introduce a hypothetical planet into our system whose mass is small enough to not cause any
disturbances in the orbits of the two stars, but it has its path influences by the gravity of both these stars.
The system is modelled in the same way as the two star system above, except that we define a third body
of a small mass that has its own orbit of eccentricity e3.

M1 = 2.06*M_sun.value # mass of Sirius A
M2 = 1.02*M_sun.value # mass of Sirius B
M3 = 10.2*M_earth.value # mass of planet

a = 2.64*7.4957*au # semi-major axis of the 2 star system
e = 0.5914 # eccentricity of the two star system

e3 = 0.3 #for the planet

The data variables remain the same for the 2-star systems and there is an introduction of four new arrays
that will have the data of the x-y position coordinates and the orbital velocity vector of this new planet.

# data arrays for coordinates
x3 = np.zeros(n+1)
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y3 = np.zeros(n+1)

# data arrays for velocity components
vx3 = np.zeros(n+1)
vy3 = np.zeros(n+1)

We can start off by setting the semi-major axis of this planet-stars system at 25 AU and keep on
changing it to see how the orbit gets affected. We also define the initial position with the planet starting
off its motion around the smaller star, Sirius B.

M12=M1+M2

a123 = 25*au # semi-major axis of the planets-stars system

d123=a123*(1-e3)
v123 = np.sqrt(G*(M12 + M3)*(2/d123 - 1/a123))

x3[0], y3[0] = -d123*M12/(M12 + M3), 0
vx3[0], vy3[0] = 0, v123*M12/(M12 + M3)

Finally, we make some changes to the state derivative computer function to account for this new planet,
and our integration tools will be complete.

init_state2 = np.array([x1[0], y1[0], x2[0], y2[0], x3[0], y3[0],
vx1[0], vy1[0], vx2[0], vy2[0], vx3[0], vy3[0]])

def state_derv2(t, state):
alpha = G*M1*M2
beta = G*M1*M3
gamma = G*M2*M3
delta12_x = state[2] - state[0] # x2 - x1
delta12_y = state[3] - state[1] # y2- y1

delta13_x = state[4] - state[0] # x3 - x1
delta13_y = state[5] - state[1] # y3- y1

delta23_x = state[4] - state[2] # x3 - x2
delta23_y = state[5] - state[3] # y3- y2

# force components
F12x = alpha*delta12_x/(delta12_x**2 + delta12_y**2)**(3/2)
F12y = alpha*delta12_y/(delta12_x**2 + delta12_y**2)**(3/2)

F13x = beta*delta13_x/(delta13_x**2 + delta13_y**2)**(3/2)
F13y = beta*delta13_y/(delta13_x**2 + delta13_y**2)**(3/2)

F23x = gamma*delta23_x/(delta23_x**2 + delta23_y**2)**(3/2)
F23y = gamma*delta23_y/(delta23_x**2 + delta23_y**2)**(3/2)

return np.array([state[6], state[7],
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state[8], state[9],
state[10], state[11],
( F12x + F13x)/M1, ( F12y + F13y)/M1,
(-F12x + F23x)/M2, (-F12y + F23y)/M2,
(-F13x - F23x)/M3, (-F13y - F23y)/M3])

Finally we apply the solve_ivp() function and plot our data points.

tmp2 = solve_ivp(state_derv2, (0,3*T), init_state2,
dense_output=True)

data2 = tmp2.sol(t)

fig = plt.figure(figsize=(6, 6*25/35), dpi=150)

plt.plot([0], [0], '+k') # center of mass
# plt.plot(data[4,0], data[5,0], '+k') #Starting point of the planet

plt.plot(data2[0,:]/au, data2[1,:]/au,
color='red', label='Sirius A')

plt.plot(data2[2,:]/au, data2[3,:]/au,
color='blue', label='Sirius B')

plt.plot(data2[4,:]/au, data2[5,:]/au,
color='green', label='Planet')

plt.xlabel("$x$ [AU]")
plt.xlim(-30.5,15.5)
plt.ylabel("$y$ [AU]")
plt.ylim(-12.5,12.5)
plt.legend(loc='upper left')
plt.savefig("sirius planet.png")

Figure 2.5(a): The orbital motion of Sirius star system with a planet of semi-major axis of 25 AU in x-y
plane over three revolutions.
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When the semi-major axis is changed to 200 AU, the following figure (2.5(b)) is obtained:

Figure 2.5(b): The orbital motion of Sirius star system with a planet of semi-major axis of 200 AU in
x-y plane over three revolutions.
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3 Geometric Discovery of Neptune

3.1 Methods
As previously mentioned in the Introduction, Neptune was first predicted through mathematical
calculations before being actually sighted through a telescope. [1] devised a computational
mathematical model that can be used for a rediscovery of Neptune.

As shown in equations (4) and (5) the vector V⃗ (t) is the component of Uranus’s acceleration that can
only be explained in terms of the gravitational force of Neptune. Had Neptune not existed, |V⃗ (t)| would
have been zero. The magnitude of V⃗ (t) is maximum when the sun, Uranus and Neptune form a
conjunction because it maximizes 1

|r⃗N−r⃗U |3 .

From the data it can be ascertained that |V⃗ | peaked in late 1822 and mid 1994 (Figure 1.1) which can
indicate the conjunctions of the Uranus, Neptune and sun system.

Note that while plotting the data, one is making the assumption that the planets are all moving in
co-planar circles (Figure 1.2).

The first term in Eq. (3) demands the acceleration of Uranus. It is to be noted that the data available
provides the numerical values of the velocity of Uranus with a resolution of data spaced 1 day apart. We
differentiate this data to obtain the acceleration using the 5 point differentiation method:

d2r⃗U
dt2

=
1

12h
(vU(i− 2)− 8vU(i− 1) + 8vU(i+ 1)− vU(i+ 2)). (16)

vu is the python vector with the values of velocity of Uranus at different instants. h is the time difference
between two consecutive values. If you take data 30 days apart, h comes out as 30/365.24 years.
The value of G needs to be obtained in the units of kg (AU)3/(year)2 given by,

G = 2.95× 10−18 kg (AU)3

(year)2 .

3.2 Synodic Period
To calculate the orbital period of Neptune, one introduces another quantity p⃗(t) that is in the x-y plane
and always perpendicular to r⃗U .

p⃗(t) = ẑ × r⃗u(t). (17)

One makes the following two observations:

1. V⃗ (t) points in the direction of Uranus in case of both the conjunction and opposition of Uranus
and Neptune.

2. p⃗(t) is perpendicular to r⃗U and will thus be perpendicular to V⃗ (t) too in case of opposition and
conjunction.

Therefore, one introduces a scalar quantity χ(t),

χ(t) = V⃗ (t).p⃗(t). (18)
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From the second observation, one can see that χ(t) will be 0 in case of conjunctions and oppositions of
Uranus and Neptune. This can thus help us obtain the synodic period of Neptune with respect to Uranus
as it will provided by the time difference between any two conjunctions.

Figure 3.1: χ(t) versus time since 1800.

Upon plotting the figure, one can see that one has obtained five roots for χ(t). First, third, and fifth roots
correspond to the first conjunction, opposition, and second conjunction, respectively (Figure 3.1). The
roots in 1861 and 1964 correspond to the projections of p⃗(t) and V⃗ (t) cancelling each other.

• First Conjunction (C1): 1821

• Opposition: 1909

• Second Conjunction (C2): 1995

The calculation of these events on python assumes each year to be of exactly 360 days. Thus to obtain
an accurate value of the synodic period, one do the following calculations:

C = C2 − C1

Tsy = C(1− 5
365.24

).

Thus, the synodic period of Neptune with respect to Uranus comes out as 171 years.

3.3 Sidereal Period and Semi-major axis
Sidereal period is the time taken by a planet to complete one cycle around the Sun. If Neptune and
Uranus had the same angular velocities while going around the Sun, the Synodic period would be the
same as the Sidereal period for Neptune. But since that is not the case, and Uranus, being in a smaller
orbit, has a shorter sidereal period, the sidereal period of Neptune comes out as slightly shorter than the
synodic period calculated above. one define a new quantity ξ(t). First define the normal vector to the
orbital plane of Uranus,
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n⃗U = r⃗U × dr⃗U
dt

ξ(t) = V⃗ (t).n⃗U (19)

The variable ξ(t) gives the projection of V⃗ (t) on n⃗U . ξ(t) allows us to move beyond the assumption of
the planets moving in co-planar orbits. Since for co-planar orbits, ξ(t) would come out as zero.

ξ(t) will be zero at conjunctions and oppositions alongside having 2 other roots like χ(t).

Figure 3.2: ξ(t) versus time since 1800.

From the nth and (n+4)th roots of ξ(t) in the same manner as for χ(t), one can obtain the Sidereal period
of Neptune that comes out as 165 years.

Next, to obtain the semi-major axis of Neptune, one can put to use Kepler’s third law of planetary
motion [9].

a3N = cT 2
N . (20)

Since, the sidereal period is given in years, c can be taken as 1 to obtain the semi-major axis in AU. aN

comes out as 30.05 AU.

3.4 Mass
Employing equation 2 can help obtain the mass of Neptune.

MN =
1

G
(

V⃗
r⃗N−r⃗U

|r⃗N−r⃗U |3 −
r⃗N

|rN |3
). (21)

A python program would thus provide you with an array of values forMN . Thus, upon averaging it, you
have the mass of Neptune come out as 1.024× 1026 kg.
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3.5 Python Program
To begin programming in Python, we begin with importing our data first. The ephemeris data we are
emloying in our model is obtained from NASA’s Jet Propulsion Laboratory (JPL) at Caltech. The data
can be downloaded from the link shared in reference [2]. The modified data in xlsx file available at [3]
has the x, y and z coordinates for the respective planet as well as the x, y and z components of their
velocities.

import pandas as pd
import numpy as np

#Importing the position vectors of the 4 planets.
Uranus=pd.read_excel("Uranus ephimeres.xlsx", header=0, index_col=0, skiprows=[0],

usecols=[1,2,3,4])
Saturn=pd.read_excel("Saturn ephimeres.xlsx", header=0, index_col=0, skiprows=[0],

usecols=[1,2,3,4])
Jupiter=pd.read_excel("Jupiter ephimeres.xlsx", header=0, index_col=0, skiprows=[0],

usecols=[1,2,3,4])

Uv=pd.read_excel("Uranus ephimeres.xlsx", header=0, index_col=0, skiprows=[0],
usecols=[4,5,6,7])

The variables thus declared are essentially the position vectors of Uranus, Saturn and Jupiter. While the
variable ”Uv” is the velocity vector of Uranus. This last variable is essential for the determination of the
acceleration of Uranus which is the first term in equation (5). The position vectors have the units of AU
while the velocities are in AU/day.
Next we convert these variables into NumPy arrays to apply further operations on them.

#Converting it to an array here
Neptune=Neptune.to_numpy()
Uranus=Uranus.to_numpy()
Saturn=Saturn.to_numpy()
Jupiter=Jupiter.to_numpy()
Uv=Uv.to_numpy()
Uv=Uv*365.24218750 #To convert from au/day to au/year

Here the last term takes the Uranus velocity given in AU/day to AU/year.
We begin with the calculations of the second term from equation (5).

V⃗ (t) = d2r⃗U
dt2

+G(M⊙ +MU)
rU

|rU |3 −
∑9

j ̸=
⊙

,U,N GMj(
r⃗j−r⃗U

|r⃗N−r⃗U |3 −
r⃗j

|rj |3 ).

M_S=1.989e30 #Mass of the Sun
M_U=8.681e25 #Mass of Uranus
M_St=5.683e26
M_J=1.898e27

#############
#Second Term
#############
Vv23=((Ux)**2+(Uy)**2+(Uz)**2)**(1/2)
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V2_2_3= np.tile(Vv23, (3,1))
V2_2_3=np.transpose(V2_2_3)

V2_2=G*(M_S+M_U)*Uranus/(V2_2_3**3)

The function np.title() duplicates the vector one provides as input and creates a new array with each
of the columns that are the same as the argument vector. This helps us easily divide each column of the
position vector of Uranus by the magnitude cube of the same vector as required in the equation.

Next we evaluate the third term which includes the acceleration part of Neptune due to the inner planets.
Although the sum is over all the planets except Uranus, we perform it only for Jupiter and Saturn. For a
greater precision one can also include the inner planets, but these are far away from Neptune and have
such small masses that they have no practical gravitational pull on Neptune.

#Saturn
Sx,Sy,Sz=Saturn.T

Sv2=((Sx-Ux)**2+(Sy-Uy)**2+(Sz-Uz)**2)**(3/2)
S2= np.tile(Sv2, (3,1))
S2=np.transpose(S2)

Sv3=((Sx)**2+(Sy)**2+(Sz)**2)**(3/2)
S3= np.tile(Sv3, (3,1))
S3=np.transpose(S3)

S=G*M_St*((Saturn-Uranus)/S2-Saturn/S3)

#Jupiter
Jx,Jy,Jz=Jupiter.T

Jv2=((Jx-Ux)**2+(Jy-Uy)**2+(Jz-Uz)**2)**(3/2)
J2= np.tile(Jv2, (3,1))
J2=np.transpose(J2)

Jv3=((Jx)**2+(Jy)**2+(Jz)**2)**(3/2)
J3= np.tile(Jv3, (3,1))
J3=np.transpose(J3)

J=G*M_J*((Jupiter-Uranus)/J2-Jupiter/J3)

V2_3=J+S

Next we obtain the acceleration term for Uranus. This has been the most tricky part of this paper and we
have to achieve extreme preciseness in this calculation to obtain the required results.

Different methods for this calculation can be tried. We use the 5 point differentiation method that makes
use of two neighbouring points on each side of a given point and calculate the change in the function at
that point.
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∂f

∂x
=

−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
, (22)

where h is the difference between two consecutive point coordinates relative to which the derivative is
being calculated.

h=30/365.24218750 #We divide it by 365.24 to convert it to years

XX=np.zeros(2698)
V2_1=np.tile(XX,(3,1))
#Print("Datatype:",V2_1.dtype)
V2_1=np.transpose(V2_1)
for i in range(2696):

if i==0:
continue

if i==1:
continue

V2_1[i]=1/(12*h)*(Uv[i-2]-8*Uv[i-1]+8*Uv[i+1]-Uv[i+2])

#Hard coding the first and last 2 values in the array
#V2_1=V2_1
V2_1[0]=V2_1[2]
V2_1[1]=V2_1[2]
V2_1[2697]=V2_1[2695]
V2_1[2696]=V2_1[2695]

Now that we have calculated the individual terms, we add them all to obtain the array for V⃗ (t). Lastly,
we obtain its amplitude and plot it vs. time.

import matplotlib.pyplot as plt

V_RHS=V2_1+V2_2-V2_3
Vrx,Vry,Vrz=V_RHS.T
Vr_mag=((Vrx)**2+(Vry)**2+(Vrz)**2)**(1/2)
plt.plot(Time,Vr_mag,label="V versus Time")

plt.xlabel("Time since 1800 [months]")
plt.ylabel("V")
plt.legend(loc="upper center")

Next we use the array of V⃗ (t) and obtain the arrays for χ(t) and ξ(t)

Z=np.zeros(2698) #z-axis
Z=np.tile(Z,(3,1))
Z=np.transpose(Z)
for i in range(2698):
Z[i,2]=1

p_t=np.cross(Z,Uranus)
px,py,pz=p_t.T
x_t=Vx*px+Vy*py+Vz*pz
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plt.plot(Time,x_t)

Zero=np.zeros(2698)
Zero=np.array(Zero)
plt.plot(Time,Zero)
plt.xlabel("Time since 1800 [years]")
plt.ylabel("$x_t$")

To obtain the roots of χ(t) we must apply a number of if-else statements keeping in mind that at no point
our function may exactly be zero, but we can indicate the point at which the graph crossed the χ(t) = 0
line.

#Finding the roots of x_t
C1=0
a=0
O1=0
b=0
C2=0
t=0
for i in range(2695):

if x_t[i]<0 and x_t[i+1]>0:
if t==0:
C1=Time[i]
t=t+1

elif t==1:
a=Time[i]
t=t+1

if t==2:
O1=Time[i]
t=t+1

elif t==3:
b=Time[i]
t=t+1

elif t==5:
C2=Time[i]
t=t+1

if x_t[i]>0 and x_t[i+1]<0:
if t==0:
C1=Time[i]
t=t+1

elif t==1:
a=Time[i]
t=t+1

if t==2:
O1=Time[i]
t=t+1
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elif t==3:
b=Time[i]
t=t+1

elif t==4:
C2=Time[i]
t=t+1

print("First Conjunction: ",C1)
#print(a)
print("First opposition: ",b)
#print(b)
print("Second Conunction: ",C2)

C=C2-C1
C=(1-5/365.24218750)*C

print("The Synodic Period of Neptune with respect to Uranus is :",C," years")

In a similar manner, we declare ξ(t) and calculate its roots.

Nu=np.cross(Uranus,Uv)

Nux,Nuy,Nuz=Nu.T
E_t=Vx*Nux+Vy*Nuy+Vz*Nuz
plt.plot(Time,E_t)
plt.plot(Time,Zero)
plt.xlabel("Time since 1800 [years]")
plt.ylabel("e_t")

The roots are calculated as follows:

#Finding the roots of E_t
D1=0
c=0
E1=0
d=0
D2=0
t=0
for i in range(2695):

if E_t[i]<0 and E_t[i+1]>0:
if t==0:
D1=Time[i]
t=t+1

elif t==1:
c=Time[i]
t=t+1

if t==2:
E1=Time[i]
t=t+1
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elif t==3:
d=Time[i]
t=t+1

elif t==5:
D2=Time[i]
t=t+1

if E_t[i]>0 and E_t[i+1]<0:
if t==0:
D1=Time[i]
t=t+1

elif t==1:
c=Time[i]
t=t+1

if t==2:
E1=Time[i]
t=t+1

elif t==3:
d=Time[i]
t=t+1

elif t==4:
D2=Time[i]
t=t+1

D=D2-D1
D=(1-5/365.24218750)*D
print("The sidereal period for Uranus is: ",D)

Now that we have the sidereal period, we can calculate the semi-major axis of Neptune using Kepler’s
third law.

a_u=D**(2/3)
print("Uranus's semi-major axis in AU is:",a_u)

The semi-major axis is in AU.

Finally, the mass term is calculated as given by equation (17),

#Finding the Mass of Neptune:
VVV=V1/V2-Neptune/V3
VVVx,VVVy,VVVz=VVV.T
VVV_mag=((VVVx)**2+(VVVy)**2+(VVVz)**2)**(1/2)

#This won't be a single value but an array of values
Mass_N=V_mag/(VVV_mag*G)

#We print the average of these values
print("The Mass of Neptune is: ",np.sum(Mass_N)/2698)
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3.6 Conclusion
The orbital parameters of Neptune can be obtained through this computational program that utilizes the
given data of position vectors and velocities of the other solar system planets. The Sidereal period can
be very accurately determined through the information of conjunctions of the Uranus, Neptune, and Sun
system which can thus lead to the accurate determination of the semi-major axis of the planet.

For Neptune the sidereal period was calculated to be 165 years. Kepler’s second law of planetary motion
helped us determine its semi-major axis to be 30.05 AU. The mass was came out as 1.024 × 1026 kg.

This model can be extended to the discovery of exoplanets provided that you have information
regarding the masses and orbital parameters of the other major planets in the stellar system.

3.7 Prospects
The goal of the computational reproduction of the research paper in discussion has been the prospective
applications of the concerned model on other exosolar planetary systems. The paper provides us with a
model that we can apply to any given exoplanet system and see if the stellar system has any more
planets that are yet to be observed/discovered. By using the ephemeris data of the currently discovered
planet, we can posit the existence of yet undiscovered planets in the system.

Once the experimental ephemeris data is obtained for the currently discovered planets of a stellar
system, one can compare it with the simulated ephemeris generated data in section 2.5, and if there is
any deviation, the geometric model here established can help determine the exoplanetary cause of this
deviation.

Moreover, due to the analogous symmetry of the problem, we can also extend the geometric model to
the discovery of planetary moons as well. Since planets with their moons geometrically act in the same
manner as planets moving around a star, if we apply our model to these planet-moon systems, we can
expect to discover new satellites that are orbiting these planets.

3.8 Limitations
• For the discovery and accurate determination of the orbital parameters of a planet, it is necessary
to have information regarding the parameters of the other major planets in the stellar system.

• The model assumes that the system has at least two planets.

• The planet must have completed at least one circle around the star or its sidereal period and
correspondingly, semi-major axis cannot be obtained.
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4 Transit Light Curves

In this chapter we describe what is one of the most dominant methods for exoplanet discovery.
We also develop the geometric tools that help us ascertain the orbital and system parameters and
finally write the Python program to help us extract these parameters from observational data.

4.1 Method

Transit Light Curve method for explanatory detection is a high precision method that has so far
helped discover over 4,000 exoplanets across our galaxy. The method relies on the fact that when
a planet passes from in front of the star (eclipses the star) the light emitted from the star that is
reaching the observer, reduces in intensity. The system is consequently referred to as an
”Eclipsing Binary”. This reduction in light when reoccurs over a period of time, indicates the
presence of an exoplanet in the system under observation.

Figure 4.1:How a transiting exoplanet reduces the intensity of the star’s light.
(Schmidt, fig. 5.23, p189 [7])

Let F0 be the flux of light reaching the Earth before the planet transits. Assuming a uniform
surface brightness, the flux is proportional to the surface area of the star,

F0 = cR2
s.

Here Rs is the radius of the star.

Now, imagine a planet of radius Rp transits this star. The flux reaching the earth will now be
reduced to,

F = c(R2
s −R2

p).

The fraction reduction in the flux is thus given by,

∆F
F0

= F−F0

F0
.

∆F

F0

= (
Rp

Rs

)2. (23)
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4.2 Size of the exoplanet

The orbital period of the star can very easily be calculated by timing the time difference between
two consecutive transits. There are a number of eclipsing binaries visible in our night sky that
have an orbital period of 2 to 5 days.

Once the orbital period P is experimentally determined, the semi-major axis can be obtained from
Kepler’s third law.

a = 3

√
P 2(Ms+Mp)

k
.

Since the planet’s mass is very small as compared to that of the star, Kepler’s law takes the form,

a = 3

√√√√ Ms

M⊙P 2/3. (24)

Once we have the semi-major axis and the period, we can use the following relation to determine
the planet’s size,

sin
(
πTtrans

P

)
=

Rs +Rp

a
. (25)

Ttrans is the time the exoplanet takes to complete its transit of the star.

Rp(1 +
Rs

Rp
) = a sin

(
πTtrans

P

)
.

Since the transit time is much smaller than the orbital period of the exoplanet, we can use the
small angle approximation on the sine function. Also, from equation (22),

Rp(1 +
√

F0

∆F
) ≈ a(πTtrans

P
).

Rp ≈ a
πTtrans

P (1 +
√

F0

∆F
)
. (26)

Next, we will proceed with the python programming.

4.3 Python Programming

We will work with the transit light curve data available for TrES-2 system in reference [6] (in
chapter 5). 702 light years away from the Earth, this planet with a mass of roughly 1.5 Jupiter
orbiting the star GSC 03549-02811, is the darkest exoplanet ever discovered that absorbs more
than 99% of light that falls on its surface [5].

We download the txt file and load it in our Python program,
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data = np.loadtxt("tres2_data.dat")

time = data[:,0]
flux = data[:,1]
err = data[:,2]

The variable ”time” will be the time parameter along our x-axis while plotting the flux. Its units
are in days and calculated over a span of a few days. The variable ërr” has the data for the error
values stored.

Next we use the ërrorbar()” function from matplotlib.pyplot(), to plot our data while also
estimating the error in each value.
import matplotlib.pyplot as plt
%matplotlib inline

plt.errorbar(time, flux, yerr=err, ecolor='steelblue',
linestyle='none', marker='o', color='navy')

plt.xlabel("Time")
plt.ylabel("Flux")

We obtain the following figure 4.2,

Figure 4.2: Dimming of Light from the star due to the transit of an exoplanet.

Looking at this plot, we try and ascertain the starting and ending times of the transit,
T_start=0.445+5.645e4
T_end=0.52+5.645e4

Next we proceed to smooth the plot in order to obtain the minimum flux at the peak time of the
transit so that we can compute ∆F . This can be done by averaging over neighbouring data points
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[7],

F
(n)
i =

1

N + 1

N/2∑
n=−N/2

Fi+n. (27)

Here you sum over N neighbouring points with N/2 on either side. The python program works as
follows:
N=14

# compute moving average
flux_smoothed = np.ones(flux.size - N)
for i,val in enumerate(flux_smoothed):
flux_smoothed[i] = np.sum(flux[i:i+N+1])/(N+1)

flux_min = np.min(flux_smoothed)
print(f"Minimum flux: {flux_min:.3f}")

The program prints the following:
Minimum flux: 1.487

The maximum flux can be obtained as:
flux_max = np.max(flux_smoothed)
print(f"Maximum flux: {flux_max:.3f}")

Maximum flux: 1.512
This means we can use equation (22) to obtain the size of our planet.

F0/∆F is calculated as,
F0

∆F
= 1.512

1.512−1.487
= 60.48

Equation (22) gives us,
Rp ≈ a πTtrans

P (1+
√

F0
∆F

)
.

Here P is the experimentally determined orbital period of the planet. In case of TrES-2, it comes
out to be 2.47063 days and the semi-major axis as provided in equation (26) is estimated to be
0.03563 AU[5].

The Python runs as follows:
a=0.03563*1.496e8 #converting AU to km
P=2.47063 #days
T_trans=(T4-T1) #days
x=math.sqrt(flux_max/(flux_max-flux_min))
Radius=a*np.pi*T_trans/(P*(1+x))

print(f"Radius of the planet: {Radius:.3f} km")
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Radius of the planet: 57719.674 km
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5 Conclusion

Over the course of these four chapters, we have established an understanding of various geometric
and computational concepts. We learned the modelling of orbital motion of various star systems
and learned how these systems with varying masses, eccentricities and semi-major axes behave.
Following on, the Python program we implemented helped us obtain the ephemeris data for these
systems.

The chapter 2 focused on solving various astrophysical problems computationally. This would
help a student newly stepping into the world of Python to learn computational astrophysics
problem solving. Moreover, the various programs thus produced can be used by new learners to
understand a myriad of astronomy concepts.

Finally, the main essence of the thesis, that is, the computational reproduction of the paper ”A
geometric method to locate Neptune” is realized in chapter 3. Here, we learned how the model of
geometrically predicting a new undiscovered planet works and how it can be implemented
computationally. The uncertainties and lack of precision in the calculation of derivatives marred
our progress, and consequently, the final results could not accurately determine the orbital
parameters for Neptune, but once the correction is made, the model assures that you obtain the
mass and semi-major axis of Neptune and from that, the orbital period. The prospects of this
model are huge and can be applied to various extra-solar planetary systems and can lead to a
prediction of undiscovered planets.

Finally, we describe another exoplanetary detection techniques that is currently very efficiently
used in discovery of new exoplanets: Transit light curve method. We describe the algorithm that
can help use this flux data from the eclipsing binaries and obtain the size of the exoplanet.
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7 Appendix

My Google Colab notebooks for the solved python programs from the project are available as
follows:
Discovering Neptune: https://colab.research.google.com/drive/1BghYEpM9IZEcbzNevBOO-
6hvLeNHbztpT?usp=sharing

Orbital Mechanics: https://colab.research.google.com/drive/1Mcyhbco1Q8cyYtzHMTGEvU-
Ybop6QLl7?usp=sharing

Transit Light Curves:
https://colab.research.google.com/drive/1hu49Nxs20F7kBlswFYdxvGl8-Z9yBpix8?usp=sharing

Diurnal Arc: https://colab.research.google.com/drive/1xomVv0YrdCPnwLd2a9UOyh-
YtK4KwPpfC?usp=sharing

Star Latitude against the Sun:
https://colab.research.google.com/drive/13oSq6LANZSl-f1bI8pALJ2K6U- f6iC4-9?usp=sharing
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