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تِحقی خلاصہِ  

ہے۔ِ گیا کِی تقسیم مین ابواب تِی کو مقالہ اس مبنی پر تِحقی کی فوٹون سنگل  

 

دورہ۔ِ کا آلات تجرب اتی :اولِ ب ابِ  

ِ نئے بھی کسی والِ آنِ میں لیب
ہ
ا واقفیت سے آلات ہی سے پہلے کی علم طال 

 

حِ بِ ہوب  

سد  کا ب اب اہس اورِ ہےِ، یضرور
مق

ہسِ  ا یقینی تو واقفیت ا

 

کِا آلات تمام اُن میں ب اب اسِ ہے۔ بناب  

ِ کی مِیں تجرب ات مِتعل سے فوٹون سِنگل استعمال کا جن کہ ہے گیا ب اکرا تعارف
 
ب ابِ اس گا۔ جاے  

ِ بعد کے پڑہنے کو
ہ
ہسِ سے آلات تجرب اتی علم طال  ِ ح ا

 

ر ف ت
ع

 

مت
جھجک بلا وہِ کہ گے جائیں ہِو   

۔ِسکیں کر شروع کام میں گاہ تجربِ  

 

کِی فوٹون سنگل ہم میں جِن ہے مبنی پر نتائج اور خلاصون کے تجرب ات ۴ انِ ب اب یِ :دومِ ب ابِ  

امِ کے تجرب ات انِ ۔ہِی کرتِ استعمال کا شہتیر

 

۔ِہیں یلذ درج ب  

 پِی ساختہ بِ -۱ نمبر تجربِ

ٹ

 
کنورژن۔ِ ڈاون کام  

ثبوت۔ِ کِا وجود کِے فوٹون -۲ نمبر تجربِ  

  کے فوٹون سِنگل -۳ نمبر تجربِ

 
 

ِ کی یشنپولرائ

 

ا۔ِ ازہِیِن کا حال

 

لگاب  

ِ اور نسانٹرفیر فوٹون سِنگل -۴ نمبر تجربِ

ٹ  

 ِئ  ا کوان

 

۔رئ   

ِ کی فوٹون سنگل مِقص کِا تجرب ات تمام اہن

ٹ  

ا یلِہ کے فطرت کوان  و ب 

 

 
ا موازنِ کا ہون یج

 

ہے۔ِ کرب  



 

الگ دو ہِم مقص کا جِن کہ ہیں ئ  تحر نتائج اور خلاصے کے تجرب ات اُن مِیں ب اب اس :سومِ ب ابِ  

ِ مابین کے ونشہتیر فوٹون سنگل الگِ،

ٹ  

ِ کوان

ٹ

ٹ

 

ن
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ِ

ٹ

ٹ
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ا مشاہدہِ کا مظاہ

 

تجرب اتِ اہن ہے۔ِ کرب  

ام کے

 

۔ِہِیں یلذ درج ب  

  :۱نمبر تجربِ

 

 ف

ٹ

جانچ۔ِ کی یِپسند حقیقت مقامی کی مینی   

جانچ۔ِ کی یپِسند حقیقت مقامی کی یاِ یسا یِا سِ :۲نمبر تجربِ  
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Chapter 1

Tour of the experimental
apparatus

Knowing the equipment one has to work with is perhaps the most crucial part of
an experiment. This chapter serves as a tour of the experimental apparatus for the
single-photon experiments. After going through this chapter, the newcomers would
not feel alienated in the lab with the unknown equipment.

Laser

HWP

HWP

HWP

A

BB’

PBS

A’

PBS

Figure 1.1: Schematic for an experiment employing four detectors.
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We start by giving a whole overview of the experimental apparatus. Figure 1.1 shows
a schematic of an experiment that uses four detectors. We will see many similar
schematics in later chapters, but in this chapter we will see what the equipment
drawn in this schematic actually looks like.

We split the overview of physical components into two parts, the first part deals
with the apparatus that is concerned with the production of single photons that we
are going to manipulate by inserting different optical components in their path. The
second part deals with the apparatus that will collect the single photons after they
have passed through the desired optical components. In both parts we discuss the
location and at which each component is to be placed with respect to the laser beam,
followed by some basic techniques of optical alignment.

After the overview of the experimental apparatus as a whole, we take some time
to go into brief details of each and every component. Every component in the setup
plays a vital role, missing out on the functional details of any component can result
in undesired results in the experimental data that we produce and may damage the
equipment as well.

1.1 Overview
We use the equipment shown in figure 1.13(c) to make a single photon source for
the experiments. Mounting the laser onto a stable stand is not enough to ensure a
laser beam that is travelling is a straight line over a long distance. There may be
some tilt in the laser beam as it travels over the optical breadboard. To ensure a
perfectly straight laser beam without any tilt, we reflect it off two mirrors mounted
on kinematic mounts to align it such that the beam passes through the HWP and
hits the BBO stack. We can use an alignment ruler to check for any tilt in the beam
as demonstrated by ThorLABS insight in this video demonstration. [1]

Figure 1.13(b) shows the apparatus that we use to collect the generated single
photons. The BBO stack sends off two simultaneously produced single photons at
an angle of 3◦ from the pump beam. Thus, the apparatus in this portion is set in the
path of those single photons. The alignment of this portion is a bit tricky because
the the single photons produced by the BBO stack lie in the near-infrared (NIR)
regime, and we can not see even a trace of it. We make calculations for approximate
position for the detectors and then use back propagation lasers to make sure that
these are aligned properly. The height of all the detectors should be equal to the
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pump beam height to collect the photons efficiently. After collection the photons are
taken to the single photon detectors using optical fibres.

(a) Photon generation. (b) Photon collection.

Figure 1.2: 4 detector setup with all the components aligned. (a) shows the single photon producing
part of the apparatus. This part comprises of the pump laser beam, an HWP, a Quartz crystal, and a
stack of BBO crystals. (b) shows the measurement part of the apparatus. This part comprises of beam
splitters, wave plates, and collection optics.

1.2 Pump laser

Figure 1.3: A 405 nm violet laser
beam being used to pump photons
into the BBO crystal.

The silicon-based 405 nm pump beam is the pow-
erhouse for all our experiments. It is a class 3B
laser with a maximum power output of 500 mW. The
power supply it is connected to delivers a max power
of 75 mW to the laser head, which is the limit for our
experimental apparatus. Class 3B lasers can cause
severe damage to the eye in case of direct contact;
hence safety goggles must be put on while the laser
is powered on.

1.3 BBO crystal stack
The two Barium Beta Borate (BBO) crystals are situated in the middle of the circular
disk mounted on the kinematic mount. The pump laser is aligned such that it hits
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Figure 1.4: 405 nm pump beam hit-
ting the BBO crystal stack. BBO
crystals down-convert 405nm pho-
tons into two 810nm photons.

directly on the BBO; otherwise, it will go to waste.
The BBO is the part of our apparatus responsible for
generating single photons for all the experiments we
will be performing.

BBO crystals are hydrophobic and should be pro-
tected from moisture all the time. We have a continu-
ous nitrogen supply on the BBO crystals for moisture
protection. The yellow pipe with a micro-pipette noz-
zle shown in the picture above is connected to an N2
cylinder outside the lab. Using a nozzle makes sure
that we get an adequate flow of N2 over the crystal
stack with minimum wastage. We also place silica gel
beads near the BBO to act as sacrificial protection, and the lab is air-conditioned to
minimize moisture.

1.4 Photon collectors

Figure 1.5: Photon collection setup.

These collectors comprise F220FC-780 collimators,
ideal for applications involving light in the near-
infrared (NIR) regime, mounted on kinematic mounts
and covered with 780 nm long-pass filters. The pho-
tons we aim to collect in these experiments are of
wavelength 810 nm, so we use the long-pass filters
to filter any ambient light that might interfere with
the experimental results. Another reason for using
these filters is to limit the amount of light going to
the detectors as excess light can damage the highly
sensitive single-photon detectors. The collimators are
followed by optical fibres taking the captured light to
the single-photon detectors. Fibre optics are then connected to the F220FC-780 colli-
mators to carry the photons from the collection optics to the single photon detectors.

1.5 Single photon counting modules
The Single photon counting modules (SPCMs), shown in the left portion of figure
1.6, contain avalanche photo-diodes. Whenever they receive a photon, they produce
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an electric pulse in response to it. When terminated by 50 Ω resistance, the output
of these SPCMs is a 20 ns square wave with a peak voltage of 2.2V. The device on
the right side of the above image is the power supply of the SPCMs rated at 5V and
330mA. Since the SPCMs are highly sensitive, and excess light can damage them, we
take extra caution to turn on the intended detector. To avoid confusion regarding
which power supply will turn on which detector, the detectors and their respective
power supplies are labelled using the same colour.

Figure 1.6: An SPCM on the left and its power supply on the right.

1.6 Polarizing beam splitters

Figure 1.7: PBS 252 beam splitter
shown in different orientations.

In these experiments, we are using PBS252 polarizing
beam splitters from ThorLABS. The 25 in the naming
convention means that each edge of these PBSs is 25
mm, and the 2 at the end signifies that the beam
splitter is designed to work ideally in the 620-1000
nm range (the NIR regime). These are polarizing
beam splitters which means that they split the light
based on the polarization state of the incoming beam.
The ones that we are using in lab transmit the |V ⟩
polarized photons, and reflect the |H⟩ polarized photons.
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1.7 Waveplates

Figure 1.8: A 405nm multi-order
λ/4 waveplate from ThorLABS.

Waveplates are an essential part of all the experi-
ments in this book. They allow us to control the
polarization of incoming light. They come in differ-
ent sizes and mounts. The one shown in the picture is
from ThorLABS and comprises a 0.5” diameter crys-
tal mounted in a jacket of 1” diameter. We can place
this waveplate into any mount with a diameter to
support 1” optical equipment. There are two kinds
of waveplates, half waveplates (HWPs) and quarter
waveplates (QWPs), and they are quoted with the
values of wavelength of light they are designed to work best with.

1.8 Beam displacing prisms
The Beam displacing prisms (BDPs) are a particular variant of beam splitters. In-
stead of reflecting one component of light, they displace it by 4 mm. These BDPs
have a fascinating use case in one of the experiments when we make a Mach Zehnder
interferometer using them.

Figure 1.9: A BD40 beam displacing prisms from ThorLABS.

1.9 Back propagation laser
For back-propagation alignment, we use a 633 nm class 3R laser. It has a power
rating of only 5 mW which is not very dangerous. However, direct contact with the
eye should be avoided. The laser is coupled into one end of a fibre optic and it passes
through to the other end. The output light is not collimated and spreads out as soon
as it exits the fibre optic. A collimator can be used to converge the spreading light
into a Gaussian beam.
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(a) Laser light travelling through an optic
fibre.

(b) A collimator converging the light output
from the fibre optic into a Gaussian beam.

1.10 Motorized rotation stage and controller

Figure 1.11: A PRM1Z8 motorized
stage connected with a TDC001 DC
servo controller.

This combination of motorized stage and DC servo
controller has made the life of optical scientists a lot
easier. This motorized stage has a diameter of 1”
so we can attach a wide range of optical instruments
with it. Along with the controller, it can give very
precise rotation angles without even touching the
setup.The controller can be controlled using Thor-
LABS Kinesis software with great ease. A screenshot
of the Kinesis interface is shown in figure 1.12.

Figure 1.12: A screenshot of interface of ThorLABS Kinesis.
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1.11 Field programmable gate array
When a pulse is produced by an SPCM, it is carried to the Field programmable gate
array (FPGA) using BNC cables. In the FPGA, we have implemented a coincidence
counting unit (CCU). We use the Pmod connectors as the input and output interfaces
of the FPGA. The data is outputted into a UART serial communication device which
transfers data into the PC via a USB port.

(a) Pmod connector on a Nexys A7. (b) UART serial communication device.

(c) Nexys A7 FPGA.

Figure 1.13: A physical picture of the FPGA and its accessories.

1.12 Counting software
The counting software we are currently using in the lab is based on Python. The
data from the FPGA is received in 7-bit long packets which are then assembled into
decimal counts and projected in real-time onto an interactive GUI. The GUI has
user-interactive buttons to take a screenshot, collect data for a given time, and safely
terminate the communication channel while exiting the software. If the software is
closed other than the stop button, the serial communication channel will remain
active until it is commanded to close in the terminal.
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Figure 1.14: A screenshot of the Python software being used for real-time plotting of counts.
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Chapter 2

Single photon experiments: The
quantum nature of light

2.1 Introduction
This chapter is for the discussion of experiments I performed in the Quantum optics
lab. As my guideline, I used the book “Quantum Mechanics in Single Photon Lab-
oratory” and reproduced the results of this book. I produced the results a couple of
times. In the first run, I used the old Nexys 2 and LabVIEW. While for the second
go, I used the new Nexys A7 and a Python program that I wrote myself for coinci-
dence counting. This chapter will go over the experimental procedure and the results
obtained, while the choice of equipment and software lies with the experimenter.

2.2 Experiment 1: Spontaneous parametric down-
conversion

Spontaneous parametric down-conversion (SPDC) is preliminary to all other exper-
iments to be performed. In this experiment, we will be preparing a single photon
beam using BBO crystal and detecting it using our single-photon counting modules
(SPCMs). SPDC is the main ingredient for all the experiments outlined in the book
I am following. It is the source of the single photons we use in our experiments.
The ideal single-photon source would be a photon gun, producing just a single pho-
ton whenever needed, but such a device has just resided in human imagination so
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far. For real-life experiments involving single photons, we need some workarounds.
As mentioned in the article by [4], there are many ways of making single-photon
sources, some of which include “faint laser pulses”, “entangled photon pairs”, and
“Atoms, ions in the gas phase”, “ using organic molecules”. Out of all these methods,
parametric down-conversion is the most widely used method worldwide.

SPDC requires non-centrosymmetric crystals like KDP, BBO, LBO or LiNbO3.
As the name suggests, this process is spontaneous, i.e. one can not claim for sure if
a single photon that is going to hit the crystal will be able to down-convert or not.
Only a few thousand out of billions of photons undergo this process. The process
inherits the name down-conversion pertaining to the fact that this process converts
a photon into two photons of smaller frequency and energy. Lastly, the “parametric”
part in the name is because a parameter controls the down-conversion, i.e. the
polarization of the incoming photons. The crystals can down-convert photons only
for a certain polarization component. If this condition is not met, no matter how
much we increase the intensity of the incoming beam, the down-conversion will not
take place. In our lab, the crystal we have chosen is BBO (Barium Beta Borate).
We stack two of them together at 90◦ to one another. This way, we can cater for
all the polarization of incoming photons. The energy levels in this crystal are such
that the electrons in this crystal excite to a high energy level when they absorb a
pump photon of 405 nm. However, when these electrons de-excite, they return to
the original energy level in a couple of steps, producing photons of equal energy both
times. In this way, we split our 405 nm photons into two 810 nm photons. The
momentum and energy conservation conditions define the correlation between these
two photons [4]. Energy conservation requires,

wp = ws + wi, (2.1)

and momentum conservation requires,

k⃗p = k⃗s + k⃗i. (2.2)

kp and wp are related to each other by the formula,

kp = npwp

c
, (2.3)
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np here is the refractive index of the crystal.

The photons we obtain in SPDC are produced in pairs. We can use this property
of photons to make sure what we are receiving are genuinely single photons. We will
condition the detection on one detector to the detection on the other detector. This
way, we ensure that we have received a photon made due to SPDC. The detection
of one photon heralds the detection of the second photon, which is why this mode of
detecting single photons is also called heralded single-photon detection. Our FPGA
has a clock cycle of 10 ns so the time window the two pulses will get to get themselves
registered is only 10 × 2 ns. A faster FPGA will result in better accuracy of single-
photon coincidences detections and improve our results’ accuracy. There is a chance
of accidental coincidence since we are supplying tens of thousands of photons to the
detectors every second. We will need to cater for these counts while using our data
for calculations. Accidental counts can be calculated using this formula derived using
laws of probability as shown in [2] [6] as,

N
(acc)
AB ≈ NANB∆t. (2.4)

The good thing is that these accidental counts will not be very significant as the
coincidence window for our coincidence detection is just 20 ns, while the dead time
of SPCMs we are using is 50 ns. To get the real coincidence counts, we must subtract
the accidental counts from the raw coincidences as shown in equation 2.5.

N (real) = N (raw) −N (acc) (2.5)

Furthermore, we need to subtract the background counts from the single detector
counts. The data for all the results we produced in the lab went through this data
cleaning process.

The two down-converted photons will not necessarily follow the same path as the
incoming pump beam. Instead, their path will be determined by the phase-matching
angle θm, i.e. the angle between the pump beam and the optic axis of the crystal.
For the crystal we are using, the phase-matching angle is 30◦, giving us a lab angle
θL of 3◦. These implications need to be considered while purchasing the crystal.

The two output beams of the BBO spread in the form of cones. However, we stick
to only the photons emitted horizontally for our experiments and put the detectors
in their paths.
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2.2.1 Optical Alignment
The first step of every optical setup is to align the light source, i.e. the laser.
Keeping the laser on a mount is not enough as it is very likely to have some tilt,
both horizontally and vertically. For perfect alignment of the laser, we use a couple
of mirrors. After the light bounces off these two adjusted mirrors, it will have no
tilt, and it can travel in a perfectly straight path on our optical breadboard. We can
use an alignment ruler to check if the laser beam follows the desired path. A video
on ThorLABS insight gives a lovely demonstration of how to align a laser beam [1].

After we have aligned the laser, we can place other optical elements on the optical
table, keeping our laser beam as the reference for their alignment. Schematic shown
in figure 2.1 will help us understand the process of alignment.

Laser

HWP

A

B

Figure 2.1: A schematic for experiment 1.

First of all, we shine the laser on the BBO. We have discussed how the output
photons leave the BBO crystal by making a 3◦ angle with the pump beam. These
beams contain photons of 810 nm (near-infrared regime), and we can not see them
with our naked eyes. Aligning components to a light source that we cannot see is the
problem at hand now. To solve this problem, we use the method of back-propagation.
Firstly, we need to approximate a position our detectors need to be placed at using
simple trigonometry. After placing the detectors on the approximate location, we
attach a fibre optic carrying a laser light into the collimator. The collimators output
a Gaussian beam that we can use to align the detectors better. We ensure that this
light follows a straight path and falls on the BBO crystal. Doing this for both the
detectors completes our rough alignment.

15



2.2.2 Experimental method and results
We will remove the back-propagation laser and attach the SPCMs back into the
setup to fine-tune the detectors. By this step, we must be receiving some photons in
both the detectors. We need to tweak the tilt of the detectors and the BBO crystal
using the rotating knobs of the mount to maximize the coincidence detection counts.

So far, we have not changed the polarization of the pump beam, and the input to
BBO is |V ⟩. This means that the down-conversion was done hitherto by only one of
the two BBO crystals. This misalignment will be evident once we change the input
polarization of the pump beam by rotating the pump beam HWP. If the other BBO
crystal is misaligned, we should get dips in counts when the input state becomes
|H⟩. Figure 2.2(a) represents the experimental data supporting this hypothesis.

We have got the dips in counts while rotating the HWP from 0◦ to 180 ◦ These
dips correspond to 45 ◦ and 135 ◦ HWP angles when the polarization on input to
BBO changes to |H⟩. This shows that the BBO crystal that is responsible for down-
converting |H⟩ photons is unaligned. To align this crystal, we give |H⟩ input to
the BBO and tune the BBO tilt using the knobs on the kinematic mount until the
coincident counts maximize. We will need to turn only one knob of the rotating
mount, i.e. horizontal or vertical, as one of the crystals is already aligned. After
the alignment is complete, we will rotate the HWP again to check if the two BBO
crystals have been properly aligned. Figure 2.2(b) shows the single photon counts
on after proper alignment of both BBO crystals in the stack.

(a) One BBO unaligned. (b) Both BBOs aligned.

Figure 2.2: Pump beam HWP angles vs individual detector counts. (a) shows dips in counts with one
of the BBO crystals unaligned, while (b) shows the counts with both BBO crystals properly aligned.
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The main object of interest for us are the instances where two detectors click
simultaneously. These coincidence detections signify the detection of single photons.
No significant dips in the coincidence counts show that the BBO stack is able to
down-convert all the input polarization of photons. The graph shown in figure 2.3
compares the variation of coincidence counts with pump beam HWP orientation for
when the BBO is aligned and unaligned.

Figure 2.3: Comparison of single photon (coincidence) counts before and after alignment.

With our single-photon source aligned and perfectly working, we can move on to
perform further experiments on the single-photon beam.

2.3 Experiment 2: Proof of the existence of pho-
tons

This experiment serves to demonstrate the grainy nature of light and will act as a
test of whether the source we have captured in the previous experiment is truly a
quantum source or not. For this purpose, we will use a parameter called degree of
second-order coherence g(2)(0). If our light source is as quantum as we claim to be,
the photons should hit the detectors individually and not in packets. This is called
anti-bunching. In the case of anti-bunched photons, g(2)(0) should give us a value of
0, and if we have a classical source where we do see bunching, we should get a value
of at least 1 with an upper bound of 2 in case of a chaotic light source. The general
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expression for g(2)(0), as shown in [3], is given by equation 2.6,

g(2)(0) = ⟨I(t)2⟩
⟨I(t)⟩2 . (2.6)

To check for the grainy nature of light, we will need to make some alterations to
the experimental setup.

Laser

HWP

A

BB’

PBS

Figure 2.4: Schematic for experiment 3. Addition of a PBS and a detector to the setup.

We place a polarizing beam splitter in the path of the idler beam. This beam splitter
will help us to distinguish between the photons. If the incoming photon is in state
|V ⟩, it will go straight through the beam splitter, and if the input state is |H⟩, it
will be reflected by the beam splitter. We will include another detector in the setup
to detect these reflected photons. The logic behind this experiment is that if we
consider the photon as a particle (inspecting the grainy nature of light), it should
be able to take only one of the two paths at a time and result in detection on one
detector only. The expression for g(2)(0), in this case, can be written in terms of the
probabilities of detection. From [6], we find this expression to be,

g(2)(0) = PABB′(0)
PAB(0)PAB′(0)

. (2.7)

In terms of counts on the detectors, this expression turns to,

g(2)(0) = NANABB′

NABNAB′
. (2.8)
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We will need to incorporate accidental counts in this setup experiment as well. The
derivation from [6] shows that the probability of accidental counts comes out to be,

P ′
ABB′ = PABP ′

B′ + PAB′P ′
B,

= PABNB′∆t+ PAB′NB∆t.

Here ∆t is the coincidence time window. In our case, it is 20 ns. We can derive an
expression for g(2)(0)′ in terms of detector counts as.

g(2)(0)′ = P ′
ABB′

PABPAB′
,

= PABNB′∆t+ PAB′NB∆t
PABPAB′

,

= NB′∆t
PAB′

+ NB∆t
PAB

,

= NA∆t
(
NB′

NAB′
+ NB

NAB

)
.

This shows that we can get a contribution to the value of g(2)(0) from the accidental
counts, so we should subtract them from the measured counts before making any
calculations.

2.3.1 Experimental method and results
We first need to align the new detector and the PBS. The PBS and the new detector
should be placed such that the PBS is equidistant from both the detectors. The
procedure will be similar to the one we followed for the previous experiment. To
rough align the new detector, we first use the back-propagation technique. After
this, we turn the pump beam HWP to 45◦ to produce down-converted |V V ⟩ photons
from the BBO stack. |V ⟩ photons will go straight through the PBS and give us
maximum single-photon detections on detector B (maximum AB counts). As B is
already aligned, this detection scheme gives us the reference counts. We then turn
the pump beam HWP to 0◦ which will change the BBO output to |HH⟩, and the
photons hitting the BBO will now be reflected towards B′. Now we fine-tune the new
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detector B’ such that we get almost the same number of counts as we were getting
on detector B. This completes our additional alignment for this setup.

For this experiment, we will change the input state of the PBS and calculate
values of g(2)(0) for different states. To change the polarization of the input to BBO,
we use an HWP, which we can add to either the pump beam’s or idler beam’s path.
We will record data for the counts against the orientation of HWP. Since we claim
that our source is quantum, we need to show that it has anti-bunching, and for
that reason, we need to get 0 value of g(2)(0) irrespective of the input state. For
comparison, if we do not condition the detection on detector A, The light hitting the
BBO will be a classical light, and for that, we should get a g(2)(0) value close to 1.
Expression for classical g(2)(0) in terms of detector counts can be derived as,

g(2)(0) = ⟨IB(t)IB′(t)⟩
⟨IB(t)⟩⟨IB′(t)⟩

, (2.9)

= ⟨NBNB′⟩
⟨NB⟩⟨NB′⟩

. (2.10)

Figure 2.5(a) was obtained when we calculated the g(2)(0) for different pump
beam HWP angles. The classical result was obtained by considering the total counts
hitting the B and B′ detectors and using the equation 2.6.

(a) g(2)(0) with outliers. (b) g(2)(0) without outliers.

Figure 2.5: Graphs for comparison of quantum and classical g(2)(0). (a) has a couple of outliers
corresponding to the angles that are multiples of 45◦. While (b) has those outliers removed.

20



The points marked by the red circles are the outliers. These outliers occur at the
points where we have all |H⟩ or |V ⟩ polarized photons because at these polarizations
either NAB or NAB′ counts should almost be zero, resulting in a denominator in
equation 2.8 that approaches zero. To take care of these outliers we assign them the
value 0 that we should ideally obtain for the quantum case and obtain the graph
shown in figure 2.5(b). For the quantum case the values of g(2)(0) gave us the
following statistics in the lab experiment.

Mean 0.0512
Standard error 0.0082

Confidence interval 115

Table 2.1: Table quoting the experimental statistics.

To quantify the anti-bunching, we add a delay between the two signal chan-
nels coming from the SPCMs. By adding the delay, we will miss the photons that
were produced simultaneously, and as a result, we will start getting photons that
are bunched together. These bunched photons will start giving us values of g(2)(τ)
asymptotically reaching 1 for increasing values of τ . To add a delay between the two
channels, we use the delay box from Stanford research systems, inc. The following
graph is obtained experimentally, and it conforms to the simulated and experimental
results in [3] and [6].

Figure 2.6: Graph for g(2)(τ) obtained for different delays introduced. The lines between the points
represent the mean for that particular cluster. Error bars have different length for each point.
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2.4 Experiment 3: Estimating state of polariza-
tion of single photons

In the previous experiment, we saw that the photons are discrete particles of light
and that the light has a grainy nature. Despite having a grainy, particle-like nature,
the photons still act like waves as well. They have a polarization associated with
them like a classical electromagnetic wave does. In this experiment, we will use the
laws of probability to determine the polarization state of the single photons. The
polarization state of single photons is encoded as a quantum state. This quantum
state is defined in general as,

|ψ⟩ = A |H⟩ +Beiϕ |V ⟩ . (2.11)

A and B are the probability amplitudes for the measurements in state |H⟩ and |V ⟩
components, respectively and eiϕ is the phase difference between the two components.
For the normalization of probabilities, equation 2.12 must be satisfied.

A2 +B2 = 1 (2.12)

For a single photon beam, if we make several measurements in the |H⟩ and |V ⟩
basis, we can determine the values of A and B. Measurement in |H⟩ is basically the
projection of |ψ⟩ on |H⟩. Mathematically, it is shown by an inner product in the
Dirac notation as,

⟨H|ψ⟩ = A ⟨H|H⟩ +Beiϕ ⟨H|V ⟩ ,
= A.

The probability of measuring the photon in state |H⟩ will be,

P (|H⟩ | |ψ⟩) = | ⟨H|ψ⟩ |2 = A2. (2.13)

Similarly, we can determine the value of B by making a projection in |V ⟩. Or we
can just use the normalization condition for that as shown in equation 2.14.

B =
√

1 − A2 (2.14)

Determining the value of A and B just required measurements in {|H⟩ , |V ⟩}
basis. To determine ϕ we will require measurements in {|D⟩ , |A⟩} and {|L⟩ , |R⟩}
basis. In terms of |H⟩ and |V ⟩ these polarizations are defined as,
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|D⟩ = 1
2

(|H⟩ + |V ⟩),

|A⟩ = 1
2

(|H⟩ − |V ⟩),

|L⟩ = 1
2

(|H⟩ + i |V ⟩),

|R⟩ = 1
2

(|H⟩ − i |V ⟩).

The projection of |ψ⟩ on these will be given by,

P (|D⟩ | |ψ⟩) = | ⟨D|ψ⟩ |2,
= |

〈
D
∣∣∣(A ⟨H|H⟩ +Beiϕ ⟨H|V ⟩)

〉
|2,

= 1 + 2ABcosϕ
2

,

and

P (|L⟩ | |ψ⟩) = | ⟨L|ψ⟩ |2,
= |

〈
L
∣∣∣(A ⟨H|H⟩ +Beiϕ ⟨H|V ⟩)

〉
|2,

= 1 + 2ABsinϕ
2

.

Using the equations above, we can get a single equation that will yield a unique value
of ϕ,

ϕ = tan−1
(
P (|L⟩ | |ψ⟩) − 0.5
P (|D⟩ | |ψ⟩) − 0.5

)
. (2.15)

2.4.1 Generating polarization states and changing measure-
ment basis

We have seen that by using different measurement basis, we can determine the state
of polarization of the photons. This section deals with how we can experimentally
generate a photon in a specific state and change the measurement basis. We will
choose the idler beam for this experiment.

We can generate many polarization states by inserting an HWP or a QWP in the
path of a beam in the |H⟩ state. The table 2.2 shows the orientations of the optical
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components required for the generation of certain polarization states starting from
the |H⟩ state.

State HWP angle QWP angle
|H⟩ 0◦ 0◦

|V ⟩ 45◦ 0◦

|D⟩ 22.5◦ 0◦

|A⟩ -22.5◦ 0◦

|L⟩ 0◦ 45◦

|R⟩ 0◦ -45◦

Table 2.2: Waveplate angles required to produce certain polarization states.

To change the measurement basis, we need to use a QWP followed by an HWP
oriented at the angles specified in table 2.3.

Measurement basis QWP angle HWP angle
|H⟩ , |V ⟩ 0◦ 0◦

|D⟩ , |A⟩ 45◦ 22.5◦

|L⟩ , |R⟩ 45◦ 0◦

Table 2.3: Waveplate angles required to change measurement basis.

Correspondence to detector counts of the polarization state is summarized in table
2.4.

Measurement basis AB’ detection AB detection
|H⟩ , |V ⟩ |H⟩ |V ⟩
|D⟩ , |A⟩ |D⟩ |A⟩
|L⟩ , |R⟩ |L⟩ |R⟩

Table 2.4: Measurement basis and corresponding detector counts.

The probabilities of detection that we need to calculate A,B and ϕ can simply be
determined by these formulae,

PAB = NAB

NAB +NAB′
, (2.16)

and
PAB′ = NAB′

NAB +NAB′
. (2.17)
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2.4.2 Experimental method and results

Laser

HWP

HWP/QWP

HWP

QWP

A

BB’

PBS

BBO

Figure 2.7: Schematic for experiment 3.

The first dotted block containing the BBO crystal and an HWP/QWP represents
the state generation part of the experiment, while the other block represents the
state measurement part. We generate the states given in the table 2.3 by using
the corresponding waveplate angles and then measure the counts in different basis.
Finally, we determine the state of polarization by calculating A, B, and ϕ as described
in the previous sections.

Table 2.5 shows our experimental results.

Input Prediction Measurement
|H⟩ A = 1.000, B = 0.000 A = 0.996, B = 0.089, ϕ = 0.387
|V ⟩ A = 0.000, B = 1.000 A = 0.214, B = 0.977, ϕ = −0.138
|D⟩ A = 0.707, B = 0.707, ϕ = 0.000 A = 0.686, B = 0.727, ϕ = 0.310
|A⟩ A = 0.707, B = 0.707, ϕ = 3.142 A = 0.733, B = 0.681, ϕ = 2.817
|L⟩ A = 0.707, B = 0.707, ϕ = 1.571 A = 0.538, B = 0.843, ϕ = 1.127
|R⟩ A = 0.707, B = 0.707, ϕ = −1.571 A = 0.792, B = 0.611, ϕ = −1.320

Table 2.5: Comparison of expected and experimental results for experiment 3.

The differences in experimental outcome and theoretical predictions can be accounted
for by considering the experimental error while orienting the waveplates and the im-
perfections in the waveplates themselves. A Python code can be found in Appendix
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B that can be used to troubleshoot the waveplates. It uses Jones calculus to theoret-
ically predict the polarization state after it passes through different arrangements of
wavevplates. This code can predict graphs that should be produced when a certain
waveplate is rotated. A mismatch in the experimental data and the theoretical pre-
diction indicates a possibility of having a faulty waveplate in the setup. Other than
troubleshooting, this program can also use used to verify the results of experiment
3.

2.5 Experiment 4: Single-photon interference and
quantum erasure

In this experiment, we will work with the which-path information. Which-path
information refers to the information about the path that a single photon will take. If
we know for sure where the photon will go, we have complete which-path information.
For example, if we send in a known polarization state of either |H⟩ or |V ⟩ through
a PBS, we know for sure if it will reflect or go straight through. In this case, we
have complete which-path information of the photon. The toll for getting complete
which-path information is that we lose the wave-like property of photon, and the
nature of photon changes to completely particle-like.

In this experiment, we will change the nature of photons between wave-like and
particle-like by varying the amount of information we know of its path. While chang-
ing this, we pass the single photons through a Mach Zehnder interferometer to de-
termine the nature of the photon. If we have complete which-path information, we
have converted the photon into a particle, and particles do not interfere with one
another. In this case, we will not see any interference fringes. However, suppose we
do not have any information about the photon’s path. In that case, it will behave
like a wave, interfere with itself, and we will see an interference pattern appearing at
the output detector. Another interesting aspect of this experiment is that we place
the polarizer (the equipment to measure which-path information) after the beam
displacing prisms where the interference is supposed to occur. This shows that the
act of determining the state of polarization in the present changed the nature of the
photon in the past when it was passing through the interferometer. This experiment
is analogous to Wheeler’s “delayed-choice experiment” [5].
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2.5.1 Experimental method and results
We make an interferometer in the path of the single photons by using two beam
displacing prisms (BDPs), two HWPs, and a polarizer, as shown in the figure 2.8.

HWP 22.5

HWP 45

Polariser

Figure 2.8: Mach Zehnder interferometer made using BDPs.

We set the pump beam HWP at 0◦, so the BBO’s output is |HH⟩ and input to the
interferometer in the idler beam will be |H⟩. The first HWP is set at 22.5◦ which
will convert the state to an equal superposition state,

|ψ⟩ = 1√
2

(|H⟩ + |V ⟩). (2.18)

The BDPs are designed such that they let the |H⟩ state photons pass through un-
deviated and shift the |V ⟩ state photons to the right by 4 mm. When the beam
in the superposition state passes through the BDPs, it will split into two portions,
one portion will contain |H⟩ photons, and the other will contain |V ⟩ photons. The
second HWP is oriented at an angle of 45◦, so the two beams will flip their polar-
ization when they pass through this HWP. Now when the beams pass through the
next BDP, the |H⟩ portion will go undeviated, and the |V ⟩ portion will get deviated
by 4 mm again. The figure above shows that the two beams have covered the same
path length after they split and before they combine. There should be no phase
difference in the two beams that interfere. However, if we make the beams cover
different path lengths, which we can do by changing the tilt of one of the BDPs in
tiny steps using a piezoelectric stepper motor, we can induce a path difference in
the interfering beams. When this path difference is such that the two beams are
in phase, we see constructive interference, and we will get a peak in single photon
counts, and when the two beams are out of phase, we will get destructive interference
which will correspond to a dip in single-photon counts.

We will be able to observe all these phenomena provided that the photons act
as waves and they do interfere. This will be determined by the last component in
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the interferometer, i.e. the polarizer determining the which-path information. If we
set the polarizer at 0◦ or 90◦, we will be able to distinguish between the |H⟩ and
|V ⟩ photons, and while doing so, we will be able to determine which beam path
out of the two did our photon probe through. We have determined the which-path
information, which means now we will be deprived of the interference fringes. On
the other hand, if we turn the polarizer to 45◦, we will not be able to determine
which path did the photon take. No which-path information will result in maximum
visibility of the interference fringes. Equation 2.19 gives us a simple formula that
defines the visibility of the fringes,

V = Nmax −Nmin

Nmax +Nmin

. (2.19)

We will insert this interferometer in the path of idler beam as shown by the schematic
below.

Laser

HWP

HWP 22.5

HWP 45

A

B
Polariser

Figure 2.9: Schematic for experiment 4.

Since the beam emerging from the second BDP has displaced by 4 mm from the
original beam path, we need to move the detector B by 4 mm so that it can catch
the photons that have displaced on their way through the interferometer. Initially,
to get the interference pattern, we need to tilt the BPDs by a significant amount.
For our experiment, we took steps from -100,000 to +100,000 at 100 steps/sec to
initially get the tilt where we get interference fringes. To scan these fringes with
better accuracy, we tilt the BDP from -1500 to +1500 steps at a speed of 20 steps/s.

Figure 2.10 shows the interference fringes we obtained for different polarizer
angles.
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Figure 2.10: Graph for interference fringes corresponding to different polarizer angles.

Table 2.6 shows the visibility calculated for different polarizer angles.

Polarizer angle (◦) Predicted V Experimental V
0 0 0.06

22.5 0.71 0.51
45 1 0.73

67.5 0.71 0.54
90 0 0.07

Table 2.6: Predicted and measured visibility for different states.
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Chapter 3

Photon pair experiments:
Entanglement

3.1 Introduction
Until now, we have dealt with the photons in the idler beam only and considered
only a single stream of photons. From here onwards, we will include the signal beam
in investigations and use the joint polarization state to represent the whole system.

When photons are generated in the BBO crystal, they get correlated because of
the law of conservation of energy,

wp = ws + wi, (3.1)
and the law of conservation of momentum,

k⃗p = k⃗s + k⃗i. (3.2)

In these expressions, the subscripts p, s and i represent pump beam, signal beam and
idler beams respectively. These correlations are quantum, and we say that the two
photons are entangled because of these correlations. Entangled quantum particles
violate local realism, i.e. entangled photons seem to give a random output when
measured individually, but we see very strong correlations in the measured state of
the photons when we compare the experimental outcomes. It is as if measuring the
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state of one photon collapses the entanglement and determines the fate of the other
photon in the entangled pair.

A two-photon state is in general given by,

|ψ⟩ = A |H⟩A |H⟩B +Beiϕ |V ⟩A |V ⟩B ,

= A |HH⟩ +Beiϕ |V V ⟩ .

An entangled state is defined as the state from which we can not extract the state
of a single particle. Following are the states with maximum entanglement known as
the Bell states,

∣∣∣ϕ+
〉

= 1√
2

(|HH⟩ + |V V ⟩), (3.3)∣∣∣ϕ−
〉

= 1√
2

(|HH⟩ − |V V ⟩), (3.4)∣∣∣ψ+
〉

= 1√
2

(|HV ⟩ + |V H⟩), (3.5)∣∣∣ψ−
〉

= 1√
2

(|HV ⟩ − |V H⟩). (3.6)

(3.7)

3.2 Experiment 5: Freedman’s test of local real-
ism

This experiment is the most basic and experimentally easy to perform test for local
realism. In this experiment, we begin with a two detector setup like the one we used
for experiment 1 and insert linear polarizers in the path of both the beams. Let
θA and θB be the angles at which the polarizers are oriented. The probability of
detection of a photon pair provided the polarizer angles is defined by,

P (θA, θB) = N(θA, θB)
Nt

, (3.8)

where Nt represents the total number of photon pairs reaching the detectors in time
t, while N(θA, θB) represents the number of coincidence detections in the same time
window.
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An inequality can be established using locality, reality and hidden variable as-
sumptions. This inequality is known as the Freedman’s inequality, and is written
as,

δ =
∣∣∣∣∣N(22.5◦) −N(67.5◦)

No

∣∣∣∣∣− 1
4

≤ 0. (3.9)

here N(ϕ) represents the relative angle between the two polarizers. The detailed
derivation of the Freedman’s inequality can be found in [6] for interested readers.
To determine the same quantity δ in another way, we can use quantum mechanical
predictions and the polarizer properties. As mentioned in [6], the equation for it
comes out to be,

δ = ϵAϵB

2
√

2
− 1

4
. (3.10)

Here ϵA and ϵB represent the transmittance of polarizers A and B, respectively. The
classical and quantum predictions are in contradiction with one another. Classical
hypotheses state that the value of δ should be less than 0, while quantum mechan-
ically, δ should attain a value greater than 0. There is one experimental apparatus
restriction that must be taken into account. From the equation above, it can be
easily seen that to attain a value of at least 0, the average transmittance of the
polarizers should be 0.84 at the bare minimum.

3.2.1 Experimental method and results

Laser

HWP

A

B

Polar
iser

Polariser

Figure 3.1: Schematic for experiment 5.

32



The experimental setup is similar to that of experiment 1 with the addition of po-
larizers in the two down-converted beam paths as shown in figure 3.1. We generate
the required polarization state by turning the pump beam HWP at 22.5◦. This will
turn the pump bean polarization to |D⟩. We assume the BBO crystals to be very
thin and stacked closely so that there is no significant phase ϕ that we need to cater
for. The output of the BBO stack in this case will be the Bell state,∣∣∣ϕ+

〉
= 1√

2
(|HH⟩ + |V V ⟩).

The transmittances of the polarizers used in our experiment are measured to be
ϵA = 0.857 and ϵB = 0.867. The average transmittance is ϵavg = 0.862 so our
polarizers should suffice for the minimum requirement of transmittance to violate
local realism. The predicted value of δ that we should get using these transmittances
can be derived as,

δ = ϵAϵB

2
√

2
− 1

4
,

= 0.857 × 0.867
2
√

2
− 1

4
,

= 0.0127.

The experimental values obtained for use in equation 3.9 are,

N(22.5◦) = 2732 ± 5,
N(67.5◦) = 542 ± 3,

No = 8232 ± 7.

These values lead us to the value of δ = 0.01600 ± 0.00012, which clearly violates
Freedman’s inequality and hence proves entanglement in the pair of photons.

3.3 Experiment 6: CHSH Test of local realism
Another more advanced test for local realism is the CHSH test. Its experimental ap-
paratus contains four detectors. Like Freedman’s test, this experiment also revolves
around disapproving an inequality based on the local realism and hidden variable
theories. In this case, as mentioned in [6], our inequality is the CHSH inequality
written as,
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|S| = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′). (3.11)
Where E(α, β) represents the expected value of a local realistic measurement for the
analysis angle of α in the signal beam and β in the idler beam. Its value can be
experimentally determined by the following equation, as mentioned in [6],

E(α, β) = PHH + PV V − PHV − PV H = cos(2(α− β)). (3.12)
Using this, |S| becomes,

|S| = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′),
= cos(2(a− b)) − cos(2(a− b′)) + cos(2(a′ − b)) + cos(2(a′ − b′)).

If |S| attains a value greater than 2, this will violate local realism. So the
inequality under consideration is,

|S| ≤ 2.

3.3.1 Experimental method and results

Laser

HWP

HWP

HWP

A

BB’

PBS

A’

PBS

Figure 3.2: Schematic for experiment 6.
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Figure 3.2 shows a schematic for this experiment and the components can be aligned
by following the steps outlined for the previous experiments.

For a analysis angles a = −45◦, b = −22.5◦, a′ = 0◦, b′ = 22.5◦ and the Bell state
|ϕ+⟩ we get maximum violation of CHSH inequality and get a value of |S| = 2

√
2 .

The experimental value will be less than this because of imperfections while preparing
and measuring the state. The experimental value I obtained while performing the
experiment came out to be

S = 2.327 ± 0.082

The test passes with a 4 standard error margin, which is a clear violation of local
realism. The photon pairs were entangled.
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Chapter 4

FPGA: Introduction and
programming

4.1 Introduction
This chapter is a step by step guide to FPGA programming, especially for coincidence
counting in single-photon experiments. It is written in a highly user-friendly way,
such that anyone with little to no programming or FPGA knowledge can program
an FPGA for use in the experiments in a single-photon quantum physics lab.

4.1.1 What is an FPGA? A historical overview.
When digital electronics were still in infancy, discrete logic chips (AND, OR, NOT,
NAND etc.) were used to make entire logic circuits. It is still possible, in theory at
least, to make any digital circuit using just these chips. However, we prefer not to
resort to that technique any longer because of its slow speed, high cost and difficulty
of implementation.

The concept behind the logic design is still the same, but now we have much more
efficient methods to implement the circuits. One circuit implementation method that
takes the lead over any other method when it comes to speed is application-specific
integrated circuits (ASICs). These circuits are extremely fast, but there is a price to
pay for this speed. These circuits can be programmed only once. One small mistake
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or one need for change in the implementation of the circuit will render the entire
batch of old circuits useless.

Another modern way of implementing logic on a chip is by the use of micro-
processors. Microprocessors contain fixed hardware components like registers, logic
units, and control units. When we use a microprocessor, we use this fixed hardware
repeatedly to accomplish the required task. This gives us much room for innovation
but to no one’s surprise, using hardware in this way is highly inefficient.

At this point, the FPGAs come into play. FPGAs are made with rows of gates
stacked over one another, but the gates are left unconnected. Based on the design
needs, the gates are connected through wiring channels; changing the wire connec-
tions changes the circuit implementation. The design of an FPGA can be elaborated
into three significant components.

Logic Block

I/O Pad

Routing Channel

Figure 4.1: Illustration for FPGA’s overall design.

• Logic Blocks: Each logic block in the FPGA typically consists of a four-
input1 lookup table (4-LUT) and an optional D Flip-Flop. A 4-LUT is made
up of four layers of 2-to-1 multiplexer circuits. A 4-LUT has four control inputs
and 16 standard inputs connected to registers storing values of either 0 or 1.
A 4-LUT can implement any logic gate if we alter the values stored in the
registers. The D flip-flop halts the output of the logic block until it registers a

1Some advanced FPGAs use LUTs with six control inputs as well
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rising clock edge (we will get into the details of clock cycles further down the
road)

I
1

I
2

I
3

I
4

Clock

D
 f
lip

 f
lo

p

Figure 4.2: A schematic for a 4LUT made using 16 MUXs.

• Routing Channels: A modern FPGA may contain tens of thousands of logic
blocks, and all of these logic blocks are interconnected by a web of routing
wires and programmable interconnection switches. This allows us to connect
all the logic blocks to make a circuit that we desire just by writing a code that
configures the routing channels.

• I/O Pads: The circuit we made would be useless if we could not communicate
with it. For this purpose, we have I/O pads that enable connection to a range
of different instruments and peripherals.

It is to be noted that there is a difference in programming for a microprocessor
and an FPGA. A microprocessor has fixed hardware, and the commands need to
be fed continuously for it to process them. In contrast, an FPGA needs to be
configured only once after power-up, the circuit gets implemented, and the required
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task can be performed as many times as required. For this reason, programming an
FPGA is often called configuration. To configure an FPGA, we download a bit-
stream file onto an FPGA that consists of 0’s and 1’s. It contains instructions from
a hardware- configuration code written in HDL (Hardware Description Language).
This bit-stream file implements circuitry on the FPGA chip. This implementation
stays written on the FPGA as long as it is powered on. No need to send further
commands to FPGA.

4.2 Task for FPGA in our experimental setup.
Before exploring the world of FPGAs, let us look at what implementation we want
and what task we want to accomplish in our experiments.

4.2.1 Overview
A comprehensive view of our need would be to register the pulses generated by the
SPCMs and detect if any of these pulses arrived simultaneously. The SPCMs output
a square wave of amplitude 2.2V and 20 ns whenever a photon strikes its sensor.
We want some way to process and count these narrow pulses and communicate this
information to a computer. FPGAs are equipped with high-speed clocks, making it
possible for us to register these pulses. The built-in memory of the FPGA temporarily
stores the information of counts until it is sent to a computer in the form of bits (0s
and 1s) through a serial communication port.

4.2.2 Implementation
Registering a pulse

Every FPGA is equipped with an external oscillator that generates a square wave
(clock signal). This signal enters the FPGA through a specific physical pin, and we
can use this pin’s input to use the clock signal wherever we need it to trigger some
event. Both the clock signal and the output of SPCMs are square waves, i.e. series
of rising and falling edges of a voltage signal. The clock signal is a square wave of
constant frequency, which we can utilize to monitor an input pulse (another square
wave). For this to work, the clock signal frequency must be at least as high as the
input we want to register. In our case, the pulse generated by an SPCM is 20 ns,
while the FPGA clock of the Nexys A7 is 100MHz, i.e. a square pulse of 10 ns.
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Hence, registering the pulses coming from the SPCMs should not pose a problem for
our FPGA.

Count registered Count registered

Figure 4.3: Pulse detection at rising edges.

Registering a coincidence
Pusle A

Pusle B

Pulse AB

Figure 4.4: Registering coincidence
using AND operation.

When our clock signal coincides with a pulse coming
from the SPCM, the FPGA produces a pulse signi-
fying a detection event. While simply detecting the
incoming pulses, it is also possible to look for two
pulses coming in simultaneously from two channels
by simply applying an AND gate on these detection
pulses.

Storing the counts

Once we have registered the required counts, we can save them temporarily into
registers (a combination of gates that can store bits) until it is time to output them
to the computer.

Sending output to computer

Figure 4.5: Silicon lab’s UART com-
munication bus.

The data is now stored in registers, ready to be sent
to a computer. An FPGA can output data in the
form of bits only, so we send the data stored in reg-
isters bit by bit to the computer over a UART serial
communication channel. We need to communicate to
the computer the rate at which we will be transferring
the data. This rate is known as the baud rate.
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4.3 Selecting the right FPGA
FPGAs may seem to be the solution to every problem one may face; however, there
are some implications one must consider before buying an FPGA. One FPGA can
not suit everyone’s needs, and in the worst case, one may buy something expensive
yet entirely useless for the desired application.

4.3.1 I/O options
FPGAs are specific to the industry they are destined to serve, especially in the
I/O department. An FPGA designed for use in multimedia devices or broadcasting
purposes may have many multimedia connectors like video interface ports and audio
jacks. On the other hand, the FPGA designed for use in some outer-space equipment
may not contain any multimedia interface because no one needs audio jacks in outer
space. Needless to say, these I/O connectors will require some area on the FPGA
board and will add to the cost of the device as well.

Figure 4.6: Front view of a PMOD
connector.

For the coincidence counting experiments, we will
only require PMOD connectors. Pins in PMOD con-
nectors can be used as digital I/O communication
pins, and we will be using them for just that. Input
will be a square pulse generated by the SPCM, and
the output will be bits sent to the computer via the
UART communication serial device.

4.3.2 Frequency
The frequency of an FPGA is a raw measure of its speed—the higher the frequency,
the faster the FPGA. The frequency of the FPGA is to be selected according to the
application.

In our case, the signal being produced by our APDs is a square wave of about
20 ns, so our FPGA’s clock speed should be such that it can register every count
precisely without a miss. For this, we require the frequency of our clock to be at
least (1/20) × 10−9 = 50 × 106 Hz. Our previous device, the Nexys2, had a clock
speed of 50MHz, but the upgraded Nexys 7A operates with a crystal producing a
clock of 100MHz. It was possible to miss a few counts with our previous FPGA, but
with the newer one, we would not be missing a beat.
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4.3.3 Cost
Depending on the budget, one may not want to go over the minimum requirements of
the experimental needs, and that makes sense. However, with a reasonable budget,
a device that does a bit more than the minimum might be a better choice as it can
be used if the experimental setup needs to be expanded or improved. Factors that
impact the cost of a device are primarily its clock speed, available logic units, I/Os,
and RAM.

4.3.4 Manufacturer
Who is making the FPGA is also a thing to consider while shopping for one. Xilinx
makes the FPGA we are using. Xilinx is the primary producer of FPGAs worldwide,
and so its supporting software set is one of the best ones available. Another major
producer of FPGAs is Altera.

Selecting an FPGA is a tricky task and may require some time investment to
find the suitable device that fits our needs. It will, however, be worth it as it is vital
to have the right equipment before beginning the experiment.

4.4 Programming the FPGA
Now that we have the proper hardware, we can shift our focus to programming it
for our experiments.

4.4.1 Programming language
FPGAs are built different from microprocessors, and the simple programming lan-
guages like C, Java, or Python that we use to program microprocessors will be of
no use here. We have to implement circuit designs using logic gates and wires on
FPGA. So to program an FPGA, we need a Hardware Description Language (HDL).
In HDL, we define physical connections between different logic gates.

We have two options of HDL to choose from.

1. Verilog: Verilog was created by Prabhu Goel, Phil Moorby, Chi-Lai Huang,
and Douglas Warmke with “Gateway Design Automation” as the rights-holding
company. Its syntax is more like C and is easier to understand and work with
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for people with programming experience in C. It is the language that we chose
to configure our FPGA.

2. VHDL: It was initially developed by the US Department of defence in 1987
and is more to depth and strict in syntax than Verilog.

4.4.2 Implementation
In Verilog, we divide the tasks we need to perform into portions of code called
modules. When we run the FPGA after configuration, all these modules will run
simultaneously. There will not be a program flow that will dictate the sequence of
execution of the modules, but the modules will work in sync to perform the required
task. Modules that require the clock signal’s input will get it through a global routing
channel that consists of interconnected wires. Feeding the clock signal through the
global routing channel ensures that each module gets the clock simultaneously, and
there is no delay in the working of the modules that need to work in sync.

The implementation of a coincidence counting unit on an FPGA will require five
modules. Verilog implementations and functional details for all these modules are
given below.

• baud_rate_counter: Baud rate is the rate at which our FPGA and com-
puter agree to communicate, and it binds all data transfer. This module will
use the FPGA clock to produce a pulse signal of the required baud_rate (fre-
quency). We have chosen a commonly used baud rate of 19200 bits/s for our
setup. We need to send a pulse after 100 × 106/19200 = 5208 clock cycles to
achieve this. We define a register named baud_rate_count and increment its
value by 1 on every rising edge of the clock cycle. When the value stored in
this register reaches 5208, we send out a pulse signal of the same time as a
clock signal, i.e. 10 ns, and reset the value in the baud_rate_count register to
zero. We need to input the clock signal into this module, and it gives the baud
rate clock of 19200 cycles per second in the register named baud_rate_clk.

1 module baud_rate_counter (input clock_50 , output reg baud_rate_clk );
2
3 reg [31:0] baud_rate_count ;
4
5 always @( posedge clock_50 )
6 begin
7 baud_rate_count <= baud_rate_count +1;
8
9 if ( baud_rate_count >= 2604)
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10 begin
11 baud_rate_clk <= 1;
12 baud_rate_count <=0;
13 end
14
15 else
16 baud_rate_clk <= 0;
17 end
18
19 endmodule

• data_triggering: Now that we have determined the communication rate of
our FPGA and computer, we need to decide the time after which we want
to send the data from an FPGA to a computer. The following module is de-
signed to create a data triggering signal of 10Hz, i.e. we will be sending out
data to the FPGA every 1/10th of a second. We use the baud rate clock we
produced in the baud_rate_count module and produce a signal of 10 Hz by
sending out a pulse after every 1920 positive edges of the baud rate signal. To
do this, we take the data from baud_rate_clk register as input, increment the
value of the register named data_trigger_count by one at every rising edge
of the baud_rate_clk, send out a signal of the same width as the clock signal
once the value of data_trigger_count reaches 1920, and then reset the value
of data_trigger_count back to zero. We send the data into a register named
data_triggering, which other modules can access in the program.

1 module data_triggering (input baud_rate_clk , output reg data_trigger );
2
3 reg [31:0] data_trigger_count ;
4
5 always @( posedge baud_rate_clk )
6
7 begin
8 data_trigger_count <= data_trigger_count +1;
9 // Currently set to 1,920 to produce a clock of 10Hz

10 if ( data_trigger_count == 12'b11110000000 )
11 begin
12 data_trigger <= 1;
13 data_trigger_count <=0;
14 end
15 else
16 data_trigger <= 0;
17 end
18
19 endmodule

• counter: This module implements the main task in our program. It takes in
a clock signal, data_trigger and a pulse from one of the detectors as input and
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sends the data collected for 1/10 sec out into a register whose name can later
be defined by the user. For this module, we take the clock signal, data_trigger,
and a pulse from one of the SPCMs as input, and we define a wire named x
which will contain a signal edge if either data_triggering or pulse contains a
signal. Whenever we get a signal on this wire, if the signal is from an SPCM
pulse, we increment the value in the register defined by the user to contain
the count. If it was from the data_trigger register, we reset the value in the
register to zero. This marks that the data collected by the FPGA so far has
been forwarded to the computer, and the FPGA can start collecting data for
the next cycle.

1 module counter (input clock_50 , input data_trigger , input pulse ,
2 output reg [31:0]q);
3
4 wire x;
5
6 or o1 (x, data_trigger , pulse );
7
8 always @ ( posedge x)
9 begin

10
11 if ( data_trigger )
12 q <=0;
13
14 else
15 q<=q+1;
16
17 end
18
19 endmodule

• coincidence_pulse and three_detector_coincidence: We construct these
modules to send out a signal if two pulses reach the FPGA at the same time.
We perform a simple AND operation on the coincidences of interest and store
the output in the specified registers in this function. This module gets trig-
gered whenever one of its inputs gets a signal.

1 module coincidence_pulse (input a, input b, output reg y);
2
3 always @(*)
4 begin
5 y = a && b;
6 end
7
8 endmodule
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1 module three_detector_coincidence ( input a, input b, input c, output reg y);
2
3 always @(*)
4 begin
5 y = a && b && c;
6 end
7
8 endmodule

• data_out: This module is designed to send the data generated and collected
by all other modules to the computer via a UART serial communication chan-
nel. This module is triggered with the baud_rate_clk register that we defined
earlier. It selects the registers containing the number of single detector counts
and coincidence counts one by one and sends the binary representation of the
stored value to the computer. Computers receive the data in terms of bytes.
Each byte contains 8 bits. The registers storing the data are 32 bits long, and
we divide the data into five packets of length 7 bits each. Three zeros append
the last packet to compensate for the remaining space in a byte. Each packet
is followed by a sequence of starting and stopping bits that mark the end and
start of a new packet. These starting and stopping bits are to be used by the
serial communication channel for its reference, and they will not appear in the
final data that the computer gets. All that the computer will get in the end
are five 7 bit packets from which we need to extract the required information.

• coincidence: This module is like the “main” function that we define in most
high-level languages. Its function is to provide a workflow for all the modules
we defined earlier. It interconnects the registers containing all the values to
the required modules and provides a flow to the program.

Complete Verilog code and a schematic of the whole circuitry that will be im-
plemented on the FPGA after burning this code on it is shown in appendix B.

4.5 Software
We will be using Xilinx Vivado for programming our new Nexys A7. The old Nexys
2 was programmed using Xilinx ISE, which Xilinx has now discontinued, and the
Nexys A7 does not support ISE. Now that the computer receives the data, we need
to interpret these bits into numbers and display the data in real-time onto the screen
for easy, continuous data monitoring and collection.
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4.5.1 Reading data on computer
For data logging, I had two options to choose from:

• LabVIEW: A licenced software from National Instruments. It is a systems
engineering software for applications that require test, measurement, and con-
trol with rapid access to hardware and data insights. It is designed for an
extensive range of applications and has many installation requirements.

• Python: Using the open-source programming language, we can communicate
with the serial port and obtain data. Using matplotlib, we can generate graphs
as well.

I chose Python because I had some prior experience with it which allowed me to
create a decent GUI for the required task. Furthermore, it is open-source so that
anyone can replicate and improve the code for similar experiments. It can reach
a wider audience this way. It is not as resource hungry as LabVIEW and can be
installed on almost any device. Figure 4.7 shows a screenshot of the GUI.

Figure 4.7: GUI of the counting program written in Python

Commented Python code for this software can be found in the appendix. Users can
make relevant changes to change the time for data acquisition, the width of data
being displayed etc., by going through the comments in the code.
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Appendix A

Commented Python code for the
coincidence counting software

from serial import *
from time import sleep
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.widgets as wgt
import os

def FindHeader(s):

''' We have inserted a random 35 bit long in the FPGA code. At the
moment we are receiving 8 counts; after every session of these counts
we ask the FPGA to this random long. We use this packet to mark the
send and receive of an 8 count session. We find the packet first to
make sure we are receiving the correct byte sequence.'''

counter = 0
byte = decto7bit(s.read(1)[0])
# print(byte)

''' Data is being received in 7-bit packets, these five 7-bit packets
make up the header that we are hoping to receive from the FPGA'''

start = ["0001001", "1001100", "0100101", "0101010", "1011101"]

trial = []
'''Packets are received in reverse order aso we make a reverse array
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of these packets in this variable.'''
for i in range(1, len(start)+1):

trial.append(start[-i])

while True: # Looking for the packet in this loop.

counter += 1
ans = ""

if counter > 100:
print("Couldn't find the packet.")
break

if byte != trial[0]:
print("Returning from stage 1")
byte = decto7bit(s.read(1)[0])
print(byte)
continue

ans = byte + ans
byte = decto7bit(s.read(1)[0])

if byte != trial[1]:
print("Returning from stage 2")
byte = decto7bit(s.read(1)[0])
print(byte)
continue

ans = byte + ans
byte = decto7bit(s.read(1)[0])

if byte != trial[2]:
print("Returning from stage 3")
byte = decto7bit(s.read(1)[0])
print(byte)
continue

ans = byte + ans
byte = decto7bit(s.read(1)[0]))

if byte != trial[3]:
print("Returning from stage 4")
byte = decto7bit(s.read(1)[0])
print(byte)
continue
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ans = byte + ans
byte = decto7bit(s.read(1)[0])

if byte != trial[4]:
print("Returning from stage 5")
byte = decto7bit(s.read(1)[0])
print(byte)
continue

ans = byte + ans

break

return ans

'''Simple function to convert the decimal representation of a number
we receive from the FPGA into binary that we need to combine and read.'''
def decto7bit(byte):

bit = ""

while byte >= 1:
if byte%2 == 0:

bit = "0" + bit
elif byte%2 == 1:

bit = "1" + bit
byte = int(byte/2)

if len(bit) < 7:
for i in range(7-len(bit)):

bit = "0" + bit

return bit

'''Converting a number from binary representation to decimal for us to
read as output. '''
def bin2dec(data):

len_data = len(data)
ans = 0
for i in range(len_data):

ans = ans + int(data[i])*(2**(len_data-1-i))
return ans

50



'''Every 1/10th of a second we receive a set of 8 counts. This function
receives, processes, and returns one of those sets.'''
def GetIndvCounts(s):

'''Receinig those 8 counts plus the header requires 46 bytes.'''
data = s.read(51)

temp = []
for i in data:

temp.append(decto7bit(i)) # dec27bit sends back a string.
data = temp

counts = []
for i in range(9): # We are to receive a total of 9 counts

temp = ""
'''# Each count is received in 5 7-bit long portions, we
combine those portions here.'''
for j in range(5):

temp = data[j+i*5] + temp
counts.append(temp)

ans = []

'''Here we convert the binary string representations into
decimal counts.'''
for i in counts:

ans.append(bin2dec(i))

return ans

def GetCounts(s):

''' This function checks if there are 51 bytes available to be read,
and reads if there are. It repeats this 10 times and collects data
for 1 second this way. It then returns the sum of counts for 1 whole
second.'''

num_iter = 0
total_counts = []

while True:

'''Returns an array of total counts received in 1 sec.'''
if num_iter >= 10:

return np.sum(total_counts, 0)
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if s.in_waiting > 51:
total_counts.append(np.array(GetIndvCounts(s)))
num_iter += 1

sleep(0.03)

def SaveStop(val):
plt.savefig("saved")

def Stop(val):
os._exit(1)

''' Function to run the whole program and return data for the asked '''
def AcquireTrigger(val):

global acquire
acquire = 1

def ContinuousCheck(): # Function to monitor counts for past 3 min

acquisition_time = 120
ack_reset = acquisition_time # This value needs to be changed once more
global acquire
'''Represents the state of acquisition 0 for do not acquire, 1
for acquire'''
acquire = 0

s = Serial("COM4", 19200)
s.close()
s.open()
s.bytesize = 7
s.stopbits = 2

FindHeader(s)

# plt.style.use('dark_background')
# plt.style.use('seaborn-dark')

plt.rcParams.update({
"lines.color": "0.5",
"patch.edgecolor": "0.5",
"text.color": "0.95",
"axes.facecolor": "0.5",
"axes.edgecolor": "0.5",
"axes.labelcolor": "0.5",
"xtick.color": "white",
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"ytick.color": "white",
"grid.color": "lightgray",
"figure.facecolor": "0.1",
"figure.edgecolor": "0.1",
"savefig.facecolor": "0.1",
"savefig.edgecolor": "0.1"})

fig, ((ax1, ax2),(ax3, ax4)) = plt.subplots(nrows = 2, ncols = 2,
figsize = (10,6), sharex = True)

b1ax = plt.axes([0.02, 0.93, 0.12, 0.045])

save_stop_button = wgt.Button(b1ax, "Capture Screen", color="grey",
hovercolor="#05b5fa")

save_stop_button.on_clicked(SaveStop)

b2ax = plt.axes([0.15, 0.93, 0.06, 0.045])

stop_button = wgt.Button(b2ax, "Stop", color="grey",
hovercolor="#05b5fa")

stop_button.on_clicked(Stop)

b3ax = plt.axes([0.22, 0.93, 0.14, 0.045])

acquire_button = wgt.Button(b3ax, "Acquire data: "+str(ack_reset)+"s",
color="grey", hovercolor="#05b5fa")

acquire_button.on_clicked(AcquireTrigger)

time = np.array([1])
tic = 1
counts = GetCounts(s)
counts = np.array([GetCounts(s)])

temp_data = []
acquisition = 0 # Represents the initital number of acquisition

for i in range(180):

tic += 1

time = np.append(time, tic)

counts = np.append(counts, [GetCounts(s)], axis = 0)

53



A = counts[:, 0]
B = counts[:, 1]
BP = counts[:, 2]
AP = counts[:, 3]
AB = counts[:, 4]
ABP = counts[:, 5]
APB = counts[:, 6]
APBP = counts[:, 7]
ABBP = counts[:, 8]

if acquire == 1:

print(".", end = " ")

if ack_reset < 1:

acquire = 0
b4ax = plt.axes([0.37, 0.93, 0.16, 0.045])

display = wgt.Button(b4ax, " "+str(ack_reset)+"s | Acq "+
str(acquisition)+" complete", color="0.2", hovercolor="0.2")

print("Acquisition no.", acquisition, "completed.")
np.savetxt("data"+str(acquisition)+".txt", temp_data)
acquisition += 1
''' Restored to the original value, 120 in this case'''
ack_reset = acquisition_time
temp_data = []

else:

b4ax = plt.axes([0.37, 0.93, 0.04, 0.045])

display = wgt.Button(b4ax, str(ack_reset)+"s", color="0.2",
hovercolor="0.2")

temp_data.append([A[-1], B[-1], BP[-1], AP[-1], AB[-1],
ABP[-1], APB[-1], APBP[-1], ABBP[-1]])

ack_reset -= 1

ax1.cla()
ax2.cla()
ax3.cla()
ax4.cla()
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ax1.plot(time, A, color = "#45fc03", label = "A")
ax1.plot(time, AP, color = "#05b5fa", label = "A'")
ax1.text(time[-1], A[-1], A[-1])
ax1.text(time[-1], AP[-1], AP[-1])

ax2.plot(time, B, color = "#45fc03", label = "B")
ax2.plot(time, BP, color = "#05b5fa", label = "B'")
ax2.text(time[-1], B[-1], B[-1])
ax2.text(time[-1], BP[-1], BP[-1])

ax3.plot(time, AB, color = "#701c8c", label = "AB")
ax3.plot(time, ABP, color = "#FFD700", label = "AB'")
ax3.text(time[-1], AB[-1], AB[-1])
ax3.text(time[-1], ABP[-1], ABP[-1])

ax4.plot(time, APB, color = "#701c8c", label = "A'B")
ax4.plot(time, APBP, color = "#FFD700", label = "A'B'")
ax4.plot(time, ABBP, color = "#FD0E35", label = "ABB'")
ax4.text(time[-1], APB[-1], APB[-1])
ax4.text(time[-1], APBP[-1], APBP[-1])

ax1.legend(loc = 'upper left')
ax1.set_title("Counts against time")
ax1.set_ylabel("Counts")

ax2.legend(loc = 'upper left')
ax2.set_title("Counts against time")

ax3.legend(loc = 'upper left')
ax3.set_xlabel("Time(s)")
ax3.set_ylabel("Counts")

ax4.legend(loc = 'upper left')
ax4.set_xlabel("Time(s)")

plt.pause(0.001)

while True:

tic += 1

time = np.delete(time, 0)
time = np.append(time, tic)

counts = np.delete(counts, 0, axis = 0)
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counts = np.append(counts, [GetCounts(s)], axis = 0)

A = counts[:, 0]
B = counts[:, 1]
BP = counts[:, 2]
AP = counts[:, 3]
AB = counts[:, 4]
ABP = counts[:, 5]
APB = counts[:, 6]
APBP = counts[:, 7]
ABBP = counts[:, 8]

ax1.cla()
ax2.cla()
ax3.cla()
ax4.cla()

if acquire == 1:

print(".", end = " ")

if ack_reset < 1:

acquire = 0
b4ax = plt.axes([0.37, 0.93, 0.16, 0.045])

display = wgt.Button(b4ax, " "+str(ack_reset)+
"s | Acq "+str(acquisition)+" complete", color="0.2",
hovercolor="0.2")

print("Acquisition no.", acquisition, "completed.")
np.savetxt("data"+str(acquisition)+".txt", temp_data)
acquisition += 1

''' Restored to the original value, 120 in this case'''
ack_reset = acquisition_time
temp_data = []

else:

b4ax = plt.axes([0.37, 0.93, 0.04, 0.045])
display = wgt.Button(b4ax, str(ack_reset)+"s", color="0.2",

hovercolor="0.2")

temp_data.append([A[-1], B[-1], BP[-1], AP[-1], AB[-1],
ABP[-1], APB[-1], APBP[-1], ABBP[-1]])
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ack_reset -= 1

ax1.plot(time, A, color = "#45fc03", label = "A")
ax1.plot(time, AP, color = "#05b5fa", label = "A'")
ax1.text(time[-1], A[-1], A[-1])
ax1.text(time[-1], AP[-1], AP[-1])

ax2.plot(time, B, color = "#45fc03", label = "B")
ax2.plot(time, BP, color = "#05b5fa", label = "B'")
ax2.text(time[-1], B[-1], B[-1])
ax2.text(time[-1], BP[-1], BP[-1])

ax3.plot(time, AB, color = "#701c8c", label = "AB")
ax3.plot(time, ABP, color = "#FFD700", label = "AB'")
ax3.text(time[-1], AB[-1], AB[-1])
ax3.text(time[-1], ABP[-1], ABP[-1])

ax4.plot(time, APB, color = "#701c8c", label = "A'B")
ax4.plot(time, APBP, color = "#FFD700", label = "A'B'")
ax4.plot(time, ABBP, color = "#FD0E35", label = "ABB'")
ax4.text(time[-1], APB[-1], APB[-1])
ax4.text(time[-1], APBP[-1], APBP[-1])

ax1.legend(loc = 'upper left')
ax1.set_title("Counts against time")
ax1.set_ylabel("Counts")

ax2.legend(loc = 'upper left')
ax2.set_title("Counts against time")

ax3.legend(loc = 'upper left')
ax3.set_xlabel("Time(s)")
ax3.set_ylabel("Counts")

ax4.legend(loc = 'upper left')
ax4.set_xlabel("Time(s)")

plt.pause(0.001)

plt.show()

s.close()

ContinuousCheck()
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Appendix B

Python program for waveplate
troubleshooting.

import cmath as m
import pylab as pl
import numpy as np
import matplotlib.pyplot as plt

def MatrixMultiply(matrix1, matrix2):
matrixr = [[0],[0]]
for i in range(2):

for j in range(1):
for k in range(2):

matrixr[i][j] += matrix1[i][k] * matrix2[k][j]

return matrixr

def Send(a, b, phi, tq1, th1, tq2, th2):

# Making input state
inp = [[a],[b*m.exp(complex(0,phi))]]

# Making Waveplates

# State Generating QWP
qe11 = complex((m.cos(tq1))**2, (m.sin(tq1))**2)
qe123 = complex(m.cos(tq1)*m.sin(tq1), -m.cos(tq1)*m.sin(tq1))
qe14 = complex((m.sin(tq1))**2, (m.cos(tq1))**2)
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qwp1 = [[qe11,qe123],[qe123,qe14]]

# Basis Changing QWP
qe21 = complex(m.cos(tq2)**2,m.sin(tq2)**2)
qe223 = complex(m.cos(tq2)*m.sin(tq2),-m.cos(tq2)*m.sin(tq2))
qe24 = complex(m.sin(tq2)**2,m.cos(tq2)**2)
qwp2 = [[qe21,qe223],[qe223,qe24]]

# State Generating HWP
hwp1 = [[m.cos(2*th1), m.sin(2*th1)],[m.sin(2*th1), -m.cos(2*th1)]]

# Basis Changing HWP
hwp2 = [[m.cos(2*th2), m.sin(2*th2)],[m.sin(2*th2), -m.cos(2*th2)]]

# Passing through apparatus

result = MatrixMultiply(qwp1, inp)

result = MatrixMultiply(hwp1, result)

return result

# Input state
a = 1
b = 0
phi = 0

# Waveplate angles (All angles in radians)

# State generation waveplates
tq1 = 0
th1 = m.pi/8

# Basis changing waveplates
tq2 = 0
th2 = 0

# Lists to store data

hlist = []
vlist = []
tlist = []
tq1list = []
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tq2list = []
th1list = []
th2list = []

# Making Waveplate Rotations

# State Generating QWP

for i in np.arange(0, 2*m.pi, 0.01):
tq1 = i
result = Send(a, b, phi, tq1, th1, tq2, th2)
tq1list.append(tq1 * 180/m.pi)
hlist.append(abs(result[0][0])**2)
vlist.append(abs(result[1][0])**2)

'''
# State Generating HWP
for i in np.arange(0, m.pi, 0.01):

th1 = i
result = Send(a, b, phi, tq1, th1, tq2, th2)
th1list.append(th1 * 180/m.pi)
hlist.append(abs(result[0][0])**2)
vlist.append(abs(result[1][0])**2)

'''
'''
# Basis Changing QWP
for i in np.arange(0, 2*m.pi, 0.01):

tq2 = i
result = Send(a, b, phi, tq1, th1, tq2, th2)
tq2list.append(tq2 * 180/m.pi)
hlist.append(abs(result[0][0])**2)
vlist.append(abs(result[1][0])**2)

'''
'''
# Basis Changing HWP
for i in np.arange(0, 2*m.pi, 0.01):

th2 = i
result = Send(a, b, phi, tq1, th1, tq2, th2)
th2list.append(th2 * 180/m.pi)
hlist.append(abs(result[0][0])**2)
vlist.append(abs(result[1][0])**2)

'''

plt.plot(tq1list, hlist)
plt.plot(tq1list, vlist)
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Appendix C

Complete Verilog code and
resulting circuit schematic.

1
2 // This is the main function which counts the single and coincidence photon detection
3 // pulses and sends the corresponding count rates to PC via UART every 1/10th of a
4 // second
5 module coincidence ( output UART_TXD , input clock_50 , input A, input B, input C,
6 input D);
7
8 // data_trigger is turned on every 1/10th of a second and begins the data
9 // stream out

10 // baud_rate_clk is the clock to output data at the baud rate of 19200
11 // bits/ second
12 wire baud_rate_clk ;
13 wire data_trigger ;
14 wire Coincidence_0 ;
15 wire Coincidence_1 ;
16 wire Coincidence_2 ;
17 wire Coincidence_3 ;
18 wire Coincidence_4 ;
19
20 // Counts the baud clock until it reaches 1920 , which occurs every 1/10th of a second
21 reg [14:0] data_trigger_count ;
22
23 // Turns on every 1/10th of a second for one 100 MHz clock pulse signal and
24 // resets the photon detection counters
25 reg data_trigger_reset ;
26
27 // Counts the 100 MHz clock pulses until it reaches 5208 in order to time the
28 // baud clock
29 reg [31:0] baud_rate_count ;
30
31 // Represents the top level design entity instantiation of the number of
32 // coincidences counted
33 wire [31:0] Count_top_0 ;
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34 wire [31:0] Count_top_1 ;
35 wire [31:0] Count_top_2 ;
36 wire [31:0] Count_top_3 ;
37 wire [31:0] Count_top_4 ;
38
39 // Output registers of coincident photon counts
40 reg [31:0] Count_out_0 ;
41 reg [31:0] Count_out_1 ;
42 reg [31:0] Count_out_2 ;
43 reg [31:0] Count_out_3 ;
44 reg [31:0] Count_out_4 ;
45
46 // Represents the top level design entity instantiation of the number of counts .
47 wire [31:0] A_top ;
48 wire [31:0] B_top ;
49 wire [31:0] C_top ;
50 wire [31:0] D_top ;
51
52 // Output registers of single photon counts .
53 reg [31:0] A_out ;
54 reg [31:0] B_out ;
55 reg [31:0] C_out ;
56 reg [31:0] D_out ;
57
58 // Generation of four coincidence pulses from the input pulses .
59 coincidence_pulse CP0( .a(A), .b(B), .y( Coincidence_0 ));
60 coincidence_pulse CP1( .a(A), .b(C), .y( Coincidence_1 ));
61 coincidence_pulse CP3( .a(D), .b(B), .y( Coincidence_2 ));
62 coincidence_pulse CP2( .a(D), .b(C), .y( Coincidence_3 ));
63 three_detector_coincidence CP4(.a(A), .b(B), .c(C), .y( Coincidence_4 ));
64
65 // Counts for a baud rate of 19200 and produces the baud rate clock signal .
66 baud_rate_counter BRC1 (. clock_50 ( clock_50 ), . baud_rate_clk ( baud_rate_clk ));
67
68 // Uses the baud rate clock signal and generates a trigger signal every 1/10th
69 // of a second .
70 data_triggering DT1 (. baud_rate_clk ( baud_rate_clk ), . data_trigger ( data_trigger ));
71
72 // Outputs the data in 32 -bit registers and resets every 1/10th of a second
73 counter C0 ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ),
74 .pulse ( Coincidence_0 ), .q( Count_top_0 ) );
75 counter C1 ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ),
76 .pulse ( Coincidence_1 ), .q( Count_top_1 ) );
77 counter C2 ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ),
78 .pulse ( Coincidence_2 ), .q( Count_top_2 ) );
79 counter C3 ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ),
80 .pulse ( Coincidence_3 ), .q( Count_top_3 ) );
81 counter C4 ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ),
82 .pulse ( Coincidence_4 ), .q( Count_top_4 ) );
83 counter CA ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ), . pulse (A),
84 .q(A_top ));
85 counter CB ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ), . pulse (B),
86 .q(B_top ));
87 counter CC ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ), . pulse (C),
88 .q(C_top ));
89 counter CD ( . clock_50 ( clock_50 ), . data_trigger ( data_trigger ), . pulse (D),
90 .q(D_top ));
91
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92
93 // This process updates the counts output arrays every 1/10th of a second
94 always @( posedge data_trigger )
95 begin
96 A_out <= A_top ;
97 B_out <= B_top ;
98 C_out <= C_top ;
99 D_out <= D_top ;

100 Count_out_0 <= Count_top_0 ;
101 Count_out_1 <= Count_top_1 ;
102 Count_out_2 <= Count_top_2 ;
103 Count_out_3 <= Count_top_3 ;
104 Count_out_4 <= Count_top_4 ;
105 end
106
107 // Sends the A, B, C, D and the Coincidence counts out on the RS -232 port
108 data_out D0 ( .A(A_out ), .B(B_out ), .C(C_out ), .D(D_out ),
109 . coincidence_0 ( Count_out_0 ), . coincidence_1 ( Count_out_1 ),
110 . coincidence_2 ( Count_out_2 ), . coincidence_3 ( Count_out_3 ),
111 . coincidence_4 ( Count_out_4 ), .clk( baud_rate_clk ), . data_trigger ( data_trigger ),
112 . UART_TXD ( UART_TXD ));
113
114 endmodule
115
116
117 // This function ANDs two pulse signals to form one coincidence pulse signal
118 module coincidence_pulse (input a, input b, output reg y);
119
120 always @(*)
121 begin
122 y = a && b;
123 end
124
125 endmodule
126
127 module three_detector_coincidence (input a, input b, input c, output reg y);
128
129 always @(*)
130 begin
131 y = a && b && c;
132 end
133
134 endmodule
135
136
137 // This function uses the baud rate clock signal and generates a trigger signal
138 // every 1/10th of a second
139 module data_triggering (input baud_rate_clk , output reg data_trigger );
140
141 reg [31:0] data_trigger_count ;
142
143 always @( posedge baud_rate_clk )
144
145 begin
146 data_trigger_count <= data_trigger_count +1;
147 // Currently set to 1,920 so we get clock of 10Hz
148 if ( data_trigger_count == 12'b11110000000 )
149 begin
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150 data_trigger <= 1;
151 data_trigger_count <=0;
152 end
153 else
154 data_trigger <= 0;
155 end
156
157 endmodule
158
159 // This counter specifically counts for a baud rate of 19200 and produces a
160 // corresponding baud rate clock signal
161 module baud_rate_counter (input clock_50 , output reg baud_rate_clk );
162
163 reg [31:0] baud_rate_count ;
164
165 always @( posedge clock_50 )
166 begin
167 baud_rate_count <= baud_rate_count +1;
168
169 if ( baud_rate_count >= 5208)
170 begin
171 baud_rate_clk <= 1;
172 baud_rate_count <=0;
173 end
174
175 else
176 baud_rate_clk <= 0;
177 end
178
179 endmodule
180
181 // This function counts voltage pulses
182 module counter ( input clock_50 , input data_trigger , input pulse , output reg [31:0]q);
183
184 wire x;
185
186 or o1 (x, data_trigger , pulse );
187
188 always @ ( posedge x)
189 begin
190
191 if ( data_trigger )
192 q <=0;
193
194 else
195 q<=q+1;
196
197 end
198
199 endmodule
200
201 // This function sends out up to four single photon counts and up to four coincidence
202 // counts to the PC through serial communication (UART)
203 module data_out (input [31:0] A, input [31:0] B, input [31:0] C, input [31:0] D,
204 input [31:0] coincidence_0 , input [31:0] coincidence_1 , input [31:0] coincidence_2 ,
205 input [31:0] coincidence_3 , input [31:0] coincidence_4 , input clk,
206 input data_trigger , output reg UART_TXD );
207
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208 reg [5:0] index ;
209 reg [0:31] incremental ;
210 reg [31:0] out;
211 reg [3:0] data_select ;
212
213 always @ ( posedge clk)
214
215 begin
216
217 if (index == 6'b111111 && data_trigger == 1)
218 begin
219 index <= 6'b000000 ;
220 UART_TXD <= 1;
221 // Sending out a header number to detect before taking counts
222 out <= 32'b10011001100010010101010101011101 ;
223 data_select <= 3'b000 ;
224 end
225
226 else if (index == 6'b000000 )
227 begin
228 index <= 6'b000001 ;
229 UART_TXD <= 0;
230 end
231
232 else if (index == 6'b000001 )
233 begin
234 index <= 6'b000010 ;
235 UART_TXD <= out[0];
236 end
237
238 else if (index == 6'b000010 )
239 begin
240 index <= 6'b000011 ;
241 UART_TXD <= out[1];
242 end
243
244 else if (index == 6'b000011 )
245 begin
246 index <= 6'b000100 ;
247 UART_TXD <= out[2];
248 end
249
250 else if (index == 6'b000100 )
251 begin
252 index <= 6'b000101 ;
253 UART_TXD <= out[3];
254 end
255
256 else if (index == 6'b000101 )
257 begin
258 index <= 6'b000110 ;
259 UART_TXD <= out[4];
260 end
261
262 else if (index == 6'b000110 )
263 begin
264 index <= 6'b000111 ;
265 UART_TXD <= out[5];
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266 end
267
268 else if (index == 6'b000111 )
269 begin
270 index <= 6'b001000 ;
271 UART_TXD <= out[6];
272 end
273
274 else if (index == 6'b001000 )
275 begin
276 index <= 6'b001001 ;
277 UART_TXD <= 0;
278 end
279
280 else if (index == 6'b001001 )
281 begin
282 index <= 6'b001010 ;
283 UART_TXD <= 1; // the first stop bit
284 end
285
286 else if (index == 6'b001010 )
287 begin
288 index <= 6'b001011 ;
289 UART_TXD <= 0; // the second start bit
290 end
291
292 else if (index == 6'b001011 )
293 begin
294 index <= 6'b001100 ;
295 UART_TXD <= out[7];
296 end
297
298 else if (index == 6'b001100 )
299 begin
300 index <= 6'b001101 ;
301 UART_TXD <= out[8];
302 end
303
304 else if (index == 6'b001101 )
305 begin
306 index <= 6'b001110 ;
307 UART_TXD <= out[9];
308 end
309
310 else if (index == 6'b001110 )
311 begin
312 index <= 6'b001111 ;
313 UART_TXD <= out[10];
314 end
315
316 else if (index == 6'b001111 )
317 begin
318 index <= 6'b010000 ;
319 UART_TXD <= out[11];
320 end
321
322 else if (index == 6'b010000 )
323 begin

66



324 index <= 6'b010001 ;
325 UART_TXD <= out[12];
326 end
327
328 else if (index == 6'b010001 )
329 begin
330 index <= 6'b010010 ;
331 UART_TXD <= out[13];
332 end
333
334 else if (index == 6'b010010 )
335 begin
336 index <= 6'b010011 ;
337 UART_TXD <= 0; // the termination bit
338 end
339
340 else if (index == 6'b010011 )
341 begin
342 index <= 6'b010100 ;
343 UART_TXD <= 1; // the second stop bit
344 end
345
346 else if (index == 6'b010100 )
347 begin
348 index <= 6'b010101 ;
349 UART_TXD <= 0; // the third start bit
350 end
351
352 else if (index == 6'b010101 )
353 begin
354 index <= 6'b010110 ;
355 UART_TXD <= out[14];
356 end
357
358 else if (index == 6'b010110 )
359 begin
360 index <= 6'b010111 ;
361 UART_TXD <= out[15];
362 end
363
364 else if (index == 6'b010111 )
365 begin
366 index <= 6'b011000 ;
367 UART_TXD <= out[16];
368 end
369
370 else if (index == 6'b011000 )
371 begin
372 index <= 6'b011001 ;
373 UART_TXD <= out[17];
374 end
375
376 else if (index == 6'b011001 )
377 begin
378 index <= 6'b011010 ;
379 UART_TXD <= out[18];
380 end
381
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382 else if (index == 6'b011010 )
383 begin
384 index <= 6'b011011 ;
385 UART_TXD <= out[19];
386 end
387
388 else if (index == 6'b011011 )
389 begin
390 index <= 6'b011100 ;
391 UART_TXD <= out[20];
392 end
393
394 else if (index == 6'b011100 )
395 begin
396 index <= 6'b011101 ;
397 UART_TXD <= 0; // the termination bit
398 end
399
400 else if (index == 6'b011101 )
401 begin
402 index <= 6'b011110 ;
403 UART_TXD <= 1; // the third stop bit
404 end
405
406 else if (index == 6'b011110 )
407 begin
408 index <= 6'b011111 ;
409 UART_TXD <= 0; // the fourth start bit
410 end
411
412 else if (index == 6'b011111 )
413 begin
414 index <= 6'b100000 ;
415 UART_TXD <= out[21];
416 end
417
418 else if (index == 6'b100000 )
419 begin
420 index <= 6'b100001 ;
421 UART_TXD <= out[22];
422 end
423
424 else if (index == 6'b100001 )
425 begin
426 index <= 6'b100010 ;
427 UART_TXD <= out[23];
428 end
429
430 else if (index == 6'b100010 )
431 begin
432 index <= 6'b100011 ;
433 UART_TXD <= out[24];
434 end
435
436 else if (index == 6'b100011 )
437 begin
438 index <= 6'b100100 ;
439 UART_TXD <= out[25];
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440 end
441
442 else if (index == 6'b100100 )
443 begin
444 index <= 6'b100101 ;
445 UART_TXD <= out[26];
446 end
447
448 else if (index == 6'b100101 )
449 begin
450 index <= 6'b100110 ;
451 UART_TXD <= out[27];
452 end
453
454 else if (index == 6'b100110 )
455 begin
456 index <= 6'b100111 ;
457 UART_TXD <= 0; // termination bit
458 end
459
460 else if (index == 6'b100111 )
461 begin
462 index <= 6'b101000 ;
463 UART_TXD <= 1; // the fourth stop bit
464 end
465
466 else if (index == 6'b101000 )
467 begin
468 index <= 6'b101001 ;
469 UART_TXD <= 0; // the fifth start bit
470 end
471
472 else if (index == 6'b101001 )
473 begin
474 index <= 6'b101010 ;
475 UART_TXD <= out[28];
476 end
477
478 else if (index == 6'b101010 )
479 begin
480 index <= 6'b101011 ;
481 UART_TXD <= out[29];
482 end
483
484 else if (index == 6'b101011 )
485 begin
486 index <= 6'b101100 ;
487 UART_TXD <= out[30];
488 end
489
490 else if (index == 6'b101100 )
491 begin
492 index <= 6'b101101 ;
493 UART_TXD <= out[31];
494 end
495
496 else if (index == 6'b101101 )
497 begin
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498 index <= 6'b101110 ;
499 UART_TXD <= 0;
500 end
501
502 else if (index == 6'b101110 )
503 begin
504 index <= 6'b101111 ;
505 UART_TXD <= 0;
506 end
507
508 else if (index == 6'b101111 )
509 begin
510 index <= 6'b110000 ;
511 UART_TXD <= 0;
512 end
513
514 else if (index == 6'b110000 )
515 begin
516 index <= 6'b110001 ;
517 UART_TXD <= 0;
518 end
519
520 else if (index == 6'b110001 && data_select == 4'b0000 )
521 begin
522 index <= 6'b000000 ;
523 data_select <= 4'b0001 ; // increments data_select to begin output of B
524 out <= A;
525 UART_TXD <= 1; // the fifth stop bit
526 end
527
528 else if (index == 6'b110001 && data_select == 4'b0001 )
529 begin
530 index <= 6'b000000 ;
531 data_select <= 4'b0010 ; // increments data_select to begin output of B
532 out <= B;
533 UART_TXD <= 1; // the fifth stop bit
534 end
535
536 else if (index == 6'b110001 && data_select == 4'b0010 )
537 begin
538 index <= 6'b000000 ;
539 data_select <= 4'b0011 ; // increments data_select to begin output of C
540 out <= C;
541 UART_TXD <= 1; // the fifth stop bit
542 end
543
544 else if (index == 6'b110001 && data_select == 4'b0011 )
545 begin
546 index <= 6'b000000 ;
547 data_select <= 4'b0100 ; // increments data_select to begin output of D
548 out <= D;
549 UART_TXD <= 1; // the fifth stop bit
550 end
551
552 else if (index == 6'b110001 && data_select == 4'b0100 )
553 begin
554 index <= 6'b000000 ;
555 // increments data_select to begin output of Coincidence_0
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556 data_select <= 4'b0101 ;
557 out <= coincidence_0 ;
558 UART_TXD <= 1; // the fifth stop bit
559 end
560
561 else if (index == 6'b110001 && data_select == 4'b0101 )
562 begin
563 index <= 6'b000000 ;
564 // increments data_select to begin output of Coincidence_1
565 data_select <= 4'b0110 ;
566 out <= coincidence_1 ;
567 UART_TXD <= 1; // the fifth stop bit
568 end
569
570 else if (index == 6'b110001 && data_select == 4'b0110 )
571 begin
572 index <= 6'b000000 ;
573 // increments data_select to begin output of Coincidence_2
574 data_select <= 4'b0111 ;
575 out <= coincidence_2 ;
576 UART_TXD <= 1; // the fifth stop bit
577 end
578
579 else if (index == 6'b110001 && data_select == 4'b0111 )
580 begin
581 index <= 6'b000000 ;
582 // increments data_select to begin output of Coincidence_3
583 data_select <= 4'b1000 ;
584 out <= coincidence_3 ;
585 UART_TXD <= 1; // the fifth stop bit
586 end
587
588 else if (index == 6'b110001 && data_select == 4'b1000 )
589 begin
590 index <= 6'b000000 ;
591 // increments data_select to begin output of Coincidence_4
592 data_select <= 4'b1001 ;
593 out <= coincidence_4 ;
594 UART_TXD <= 1; // the fifth stop bit
595 end
596
597 else if (index == 6'b110001 && data_select == 4'b1001 )
598 begin
599 index <= 6'b110010 ;
600 UART_TXD <= 1; // the fifth stop bit
601 end
602
603 else if (index == 6'b110010 )
604 begin
605 index <= 6'b111111 ;
606 UART_TXD <= 0; // the start bit of the termination byte
607 end
608
609 else
610 begin
611 index <= 6'b111111 ;
612 UART_TXD <= 1; // sets all subsequent bits to negative voltage
613 end
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614 end
615
616 endmodule

In the schematic given below, starting from the left, the small white blocks repre-
sent the inputs to the FPGA. These are the four inputs we get from the single-photon
detectors, and a clock signal coming from the oscillator placed on the FPGA. The
blue blocks after that represent the modules we wrote in the FPGA programming
chapter. All the functionality that we implemented in the modules is being imple-
mented inside these blue blocks in the schematic. Following these blue block are
some yellow blocks, These yellow blocks represent the registers in which the value
is temporarily stored before it is sent to the PC. Finally, the rectangle at the end
represents the UART communication bus that will send all the data stored in the
registers to the attached PC via serial communication..
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