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Experience teaches us that a large balloon takes longer to deflate than a small one of the same kind.

But what is the quantitative relation between the deflation time s and the radius R of a balloon? A

simple analysis, depending only upon elementary physics, shows that s � R7=2—a prediction that

is surprisingly easy to illustrate with a party balloon, a tape measure, and a smart-phone app. VC 2021
American Association of Physics Teachers.

https://doi.org/10.1119/10.0001998

I. INTRODUCTION

A balloon is comprised of elastic material that, if not
stretched too far, returns, when relaxed, to its initial state. If
the balloon is spherical, it can, in one’s imagination, be
divided into two hemispheres with a bisecting plane of area
pR2.1 The net downward force exerted by the air (inside and
outside the balloon) on the lower hemisphere of the balloon
is ðP� PatmÞpR2, where P is the pressure of the gas inside
the balloon and Patm is atmospheric pressure. This force is
balanced by the upward force c2pR exerted by the upper
wall of the balloon on the lower wall. Here, c is the surface
tension supplied by the elastic material. The result is that
ðP� PatmÞpR2 ¼ c2pR or, equivalently

P ¼ Patm þ
2c
R
: (1)

In ours and other applications, the surface tension c is con-
stant in the regime in which Eq. (1) obtains.

The “Young–Laplace equation”2 (1) works well as long as
the balloon radius R is larger than about one and a half times
the radius of the balloon Ro when filled without excess pres-
sure and smaller than approximately three or four times this
radius.1,3,4 In practice, we found that, as a rule of thumb, one
strenuous breath inflated a party balloon to the regime in
which Eq. (1) obtains. And, as long as further inflation
becomes less difficult, the balloon remains spherical and the
Young–Laplace law applies.

The Young–Laplace equation has numerous applications
in medical physics, in the context of which it is called “The
Law of Laplace,” including for bladders and other animal
organs.5 While standard physics texts ignore this equation
and its physics, medical physics texts7 and pedagogically ori-
ented monographs do not.4,6

For a party balloon, the difference between the pressure
inside P and the pressure outside Patm is typically small.
After all, the pressure that can be exerted by human lungs is
no more than, and typically much less than, approximately
10% of atmospheric pressure.8–10 This means that, in this
case, the inequality

P � Patm �
2c
R
; (2)

is obtained.

II. DEFLATION TIME

How much time is required to deflate an elastic sphere
through an opening of fixed size? Very little, according to
the dramatic experience of Charlton Athletic, an English
soccer club, that saw two balls burst in two consecutive FA
Cup Final appearances (English soccer’s equivalent of the
Super Bowl).11 Suppose the air leaves the sphere in stream-
line fashion, so that Bernoulli’s law is observed and, conse-
quently, the quantity Pþ qv2=2 is constant along a
streamline. Then the speed v of the air leaving the sphere at
its opening is related to the pressures inside P and outside
Patm by

P ¼ Patm þ
qatmv2

2
; (3)

where qatm is the mass density of the air at local atmospheric
pressure Patm. Note that we assume the air speed inside the
sphere vanishes except near its opening. The rate at which
mass m leaves the sphere is, according to the equation of
continuity,

dm

dt
¼ �Aqatmv;

¼ �A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qatmc

R
;

r
(4)

where A is the cross-sectional area of the sphere’s opening,
and we have used Eqs. (1) and (3). If we had an independent
relation between the total mass m of the air inside the sphere
and its radius R, we could integrate Eq. (4) to obtain the time
required for the sphere to deflate.

We find this relation in the following way. The air in the
elastic sphere observes the ideal gas law PV ¼ NkBT, which
we express as

P ¼ m

mo

kBT

V
; (5)

where m is the mass of the air inside the sphere and mo is
the average mass of one molecule of air. Here, kB is
Boltzmann’s constant and T is the air temperature. The
volume V of the gas inside the sphere is related to its radius
R by
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V ¼ 4

3
pR3: (6)

Using Eq. (5) to eliminate P from Eq. (1) produces

m ¼ moV

kBT

� �
Patm þ

2c
R

� �
: (7)

Using Eq. (6) to eliminate V in Eq. (7), we find that

m ¼ mo

kBT

� �
4pR3

3

� �
Patm þ

2c
R

� �
;

¼ 4p
3

� �
m0Patm

kBT

� �
R3 þ 2c

Patm
R2

� �
;

¼ 4p
3

� �
qatm R3 þ 2c

Patm
R2

� �
; (8)

where qatm ¼ moPatm=kBT provides the desired relation
between m and R.

Together the equation of continuity (4) and the relation (8)
produce

�A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4qatmc

R

r
¼ 4p

3

� �
qatm 3R2 þ 4c

Patm
R

� �
dR

dt
; (9)

from which follows:

�A

ffiffiffiffiffiffiffiffi
c

qatm

r
dt ¼ 2p R5=2 þ 4c

3Patm
R3=2

� �
dR: (10)

Integrating Eq. (10), from R¼R when t¼ 0 to R¼Ro when
t ¼ s, we find that the time s required for an elastic sphere of
radius R to deflate to its unpressurized radius Ro is

s ¼ 4p
7A

ffiffiffiffiffiffiffiffi
qatm

c

r
R7=2 � R7=2

o

� �
þ 28

15

c
Patm

R5=2 � R5=2
o

� �� �
:

(11)

According to this result, the larger the sphere radius R,
and, therefore, the larger the mass of the air it contains, the
longer the deflate time s. Also, the smaller the area A of its
opening, the larger s. Larger surface tension c typically
means shorter deflation times s because, as we shall see, the
first term in the square brackets on the right hand side of Eq.
(11) dominates the second term. As an example of the depen-
dence of the deflate time on atmospheric mass density qatm,
consider that otherwise identical elastic spheres, identically
inflated, will deflate about 10% more quickly in Santa Fe,
NM (at an of elevation 2133 m) than in Washington, DC
(elevation 0 m) assuming that an isothermal atmosphere reg-
ulates atmospheric pressure and mass density.

III. EXPERIMENTS

Equation (11) can be empirically demonstrated with a
party balloon, a flexible tape measure (to measure the bal-
loon circumference), and a smart-phone application called
Voice Memos (to measure the duration of the sound of air
rushing from the balloon). It is important that the inflated
balloon remains spherical and that the cross-sectional area A
of the balloon mouth is constant. Accordingly, we inserted a

snugly fitting segment of garden tubing into the balloon
mouth and did not inflate the balloon beyond the limited
regime in which it remained spherical.

Figure 1 shows a plot of the deflation time s (in seconds)
versus the radius R (in meters) for a common “12-in.” party
balloon. Filled circles are measurements, and the curve is
from Eq. (11). The cross-sectional area of the balloon mouth
is A ¼ 1:79� 10�5 m2, and its unpressurized radius is
Ro ¼ 0:024 m. The atmospheric pressure in Santa Fe,
New Mexico, USA (where the experiments were done)
Patm ¼ 78:1� 103 Pa and the mass density of the atmosphere
qatm ¼ ð78:1=101Þ1:225 kg=m3 are standard values. Finally,
we chose a surface tension parameter c ¼ 500 kg=s2 to fit the
data.

Figure 2 shows a plot of the deflation time s (in seconds)
versus the radius R (in meters) for a super-sized “36-in.”
party balloon. The filled squares are measurements and the
curve is from Eq. (11). The cross-sectional area of the bal-
loon mouth is A ¼ 4:97� 10�5 m2, and the radius of the
unpressurized balloon is Ro ¼ 0:073 m. The atmospheric
pressure Patm and the mass density of the atmosphere qatm

are the same as for the smaller balloon. While there is no rea-
son the balloons should have exactly the same surface ten-
sion, 500 kg=s2, we found that this assumption works well.

In both cases, the pressures, P and Patm, surface tension c,
and balloon radius R observe the inequality Patm � P
� 2c=R. This suggests that the second term in the square
brackets of Eq. (11) is small compared to the first term.
Note, also, that the unpressurized radii of the small and of
the large balloons are, respectively, 2.4 cm and 7.3 cm.
Consequently, the ratio ðRo=RÞ7=2

varies for the small bal-
loon data from 8% to 0.4% and for the large balloon data
from 22% to 1.8%. The data itself suggest that random varia-
tions associated with the difficulty of measuring R are at
least as large as these more systematic variations. For these
reasons, the power law

s ¼ 4p
7A

� � ffiffiffiffiffiffiffiffi
qatm

c

r
R7=2 (12)

derived from the largest term in Eq. (11) departs almost
unnoticeably from the curves plotted in Figs. 1 and 2.

Fig. 1. Deflation time s (in seconds) versus balloon radius R (in meters) of a

common “12-in.” party balloon. Filled circles: data. Solid line: Eq. (11) with

A¼ 1:79� 10�5 m2; Pa ¼ 78:1� 103 Pa; qatm ¼ 0:947kg=m3; Ro ¼ 0:024m,

and c¼ 500kg=s2.

81 Am. J. Phys., Vol. 89, No. 1, January 2021 D. S. Lemons and T. C. Lipscombe 81



The scaling s / R7=2 is easily observed in the log-log plot
displayed in Fig. 3. Here, the straight lines are the common
logarithm (that is, to base 10) of the left hand side of Eq.
(12) versus the common logarithm of R. The upper line is for
the smaller balloon with mouth of area A ¼ 1:79� 10�5 m2,
and the lower line is for the larger balloon with mouth of
area A ¼ 4:97� 10�5 m2. The data points are the common
logarithms of those plotted in Figs. 1 and 2. The slopes of
the two lines are 7/2. Of course, the extent to which the indi-
vidual data points depart from these lines, especially for the
larger balloon, could be a reflection of the fact that Ro=R is
not always ignorably small compared to one.

In principle, a slope and y-intercept of the straight lines in
Fig. 3 could be found algorithmically rather than, as we
have, by first assuming the slope to be 7/2 and second by
choosing c “by eye.” However, we have found that with so
few data points, the most divergent ones representing the
smallest radii of each balloon have an undeserved influence
on the algorithmic result. If desired, more data could help
remedy this statistical problem.

IV. EXTENSIONS AND VARIATIONS

Those who want to reproduce these experiments either at
home or in a physics laboratory should be aware of the possi-
bilities and the challenges. For instance, a stopwatch could
substitute for the cell phone application Voice Memos but,
probably, with less precision. Also, digital pressure gauges,
of a type common in physics teaching laboratories, would
allow one to use the Young–Laplace law (1) to determine the
surface tension parameter c directly instead of inferring its
value from the balloon data. An amusing variation on this
measurement of c is to insert a smartphone into a semi-
transparent balloon and record the pressure from its barome-
ter application, as it is being inflated or deflated.10

Be forewarned that the small party balloon, if inflated and
deflated too often, can change its elastic constant c, or, worse
yet, develop weak spots that bulge non-uniformly. For best
results, use a new balloon. The larger balloon requires a
larger tube at its mouth, taken from a segment of garden
hose, than that required by the small balloon for which a seg-
ment of drip-system, irrigation tubing suffices.

The balloons we used are relatively inexpensive. Higher
quality and more expensive, inflatable, elastic spheres are
also available but were not tested.12 We know from experi-
ence that a single person can perform these experiments. But
a team of two might produce even better data.

V. CONCLUSION

We have asked and answered the question, “How much
time s is required to deflate an elastic sphere with radius R
through an opening of definite cross-sectional area A?” Our
derivation of the answer s ¼ ð4p=7AÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qatm=c

p
R7=2, where

qatm is the mass density of the atmosphere and c is the
(assumed constant) surface tension of the sphere, makes use
of Bernoulli’s principle, the equation of continuity, and the
neglected, but useful, Young–Laplace equation. This relation
is remarkably easy to illustrate with a party balloon, a flexi-
ble tape measure, and a smart-phone application called
Voice Memos and as such could be the basis of a laboratory
or home exercise.
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