Introduction to Quantum Information Science and Quantum Technologies

Assignment 2 Muhammad Abdullah Ijaz and Muhammad Sabieh Anwar

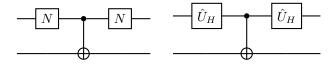
"Don't be afraid to fail, courage." - Muriel

Question 1

Given that \hat{U}_H is the Hadamard gate, prove the following identities:

- (a) $\hat{U}_H \hat{\sigma}_x \hat{U}_H = \hat{\sigma}_z$,
- (b) $\hat{U}_H \hat{\sigma}_u \hat{U}_H = -\hat{\sigma}_u$,
- (c) $\hat{U}_H \hat{\sigma}_z \hat{U}_H = \hat{\sigma}_x$.

Using these relations or otherwise, construct the truth table, matrix, and outer product form of the following circuits:



Question 2

Suppose in quantum computing hardware, only single qubit gates and a controlled $\hat{\sigma}_Z$ gate is possible (CZ), i.e.

$$CZ = |0\rangle \langle 0| \otimes \hat{I} + |1\rangle \langle 1| \otimes \hat{\sigma}_Z.$$

An engineer wants to implement a CNOT gate using any single qubit gate and a CZ gate. How can she achieve that?

Question 3

The Toffoli gate is called the CCNOT gate since it has two qubits acting as controls and one target.

$$|a,b,c\rangle \xrightarrow{CCNOT} |a,b,ab \oplus c\rangle$$

- (a) Make the matrix for CCNOT and write it in tensor form.
- (b) Using this gate construct an Oracle \hat{O} which induces the relative phase, $e^{i\pi} = -1$ to the $|00\rangle$, leaving the others unchanged.
- (c) Using the rotation argument we used for the diffuser in Grover Algorithm, determine the state this Oracle \hat{O} reflects about and corresponding tensor form.
- (d) Construct another Oracle which induces the relative phase, $e^{i\pi} = -1$ to the states $|01\rangle$, and $|10\rangle$, leaving the other unchanged.
- (e) Construct one last Oracle, which acts on three input qubits and induces the relative phase, $e^{i\pi/2}=i$ to the states $|000\rangle$, and $|111\rangle$, leaving the other unchanged.

Question 4

The no-cloning theorem is fundamental to quantum communication, which states that no unitary operation can allow one to clone a quantum system to another without disturbing the original system. Let us define,

$$|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$$
,

where the probability amplitudes are unknown. and $|\phi\rangle$ cannot be recreated on a different channel.

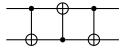
- (a) Suggest a method to measure α and list any approximations you make.
- (b) Write the state $|\phi\rangle$ as a uniform superposition of the states $\{|+\rangle, |-\rangle\}$. How will your method of measuring α given this form evolve?
- (c) Let us assume that we have a unitary \hat{U} , such that

$$\hat{U} | \phi \rangle \otimes | 0 \rangle = | \phi \rangle \otimes | \phi \rangle$$
.

Prove the no-cloning theorem.

Question 5

Before we directly address the quantum teleportation circuit, we need to look at the SWAP gate, without which we would be unable to simulate our problems on the quantum computer.



- (a) Write the matrix form of the SWAP gate.
- (b) Determine the performance of this gate on the state $|\phi\rangle \otimes |\psi\rangle$. Where these states are defined as,

$$|\phi\rangle = \alpha |0\rangle + \beta |1\rangle,$$

$$|\psi\rangle = \delta |0\rangle + \gamma |1\rangle.$$

(c) Distinguish this gate from the entanglement circuit.

Question 6

(a) Draw and describe a circuit that measures and distinguishes between the four Bell states:

$$|\phi\pm\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle),$$
$$|\psi\pm\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle).$$

(b) Is the representation given below correct?

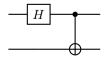
$$\hat{I} = |00\rangle \langle 00| + |01\rangle \langle 01| + |10\rangle \langle 10| + |11\rangle \langle 11|.$$

- (c) Rewrite the \hat{I} as a "mixture" of the four Bell states.
- (d) Show that the Bell states are orthogonal w.r.t each other.

Question 7

Finally, we reach our first quantum algorithm, Quantum teleportation.

(a) Construct the truth table for the entanglement circuit.



(b) In class, we developed the quantum teleportation circuit for the initial state $|\phi+\rangle$. Repeat the derivation and design a new circuit for the state $|\psi+\rangle$.

Question 8

Using geometrical arguments, find the optimal number of Grover iterations needed to track a search state. Remember, the Grover operator is:

$$\hat{G} = (2 |\psi\rangle \langle \psi| - \hat{I}) \hat{O}_f.$$

Feel free to refer to the class notes.