Introduction to Quantum Information Science and Quantum Technologies

Assignment 1 Muhammad Abdullah Ijaz and Muhammad Sabieh Anwar

"It always seems impossible until it's done." - Someone

Question 1

Let us begin with the state,

$$\left|\psi\right\rangle = c_0 \left|0\right\rangle + c_1 \left|1\right\rangle.$$

which represents the superposition state of two basis states $\{|0\rangle, |1\rangle\}$ which are the computational or Zeeman (Z) basis. The coefficient c_0 and c_1 are the probability amplitudes for the states $|0\rangle$ and $|1\rangle$ respectively.

- (a) Using the argument of orthogonality, where $\langle i|j\rangle = \delta_{ij}$, determine the inner-product $\langle 0|\psi\rangle$.
- (b) Find the probability of measuring $|\psi\rangle$ in the states:
 - (a) $|0\rangle$,
 - (b) $\frac{1}{\sqrt{2}} |0\rangle \frac{1}{\sqrt{2}} |1\rangle$,
 - (c) $\frac{1}{\sqrt{2}} |0\rangle + i \frac{1}{\sqrt{2}} |1\rangle.$
- (c) If the quantum system we are working with is a photon, with the degree of freedom corresponding to the photon's path in the Mach-Zehnder interferometer, explain the answer to the last part.

Question 2

Extending on the previous part, let us define another state $|\psi\rangle$

$$\left|\psi\right\rangle = \frac{1}{\sqrt{2}}\left|0\right\rangle + c_{1}\left|1\right\rangle,$$

which represents the superposition state of two basis states $\{|0\rangle, |1\rangle\}$ where the probability amplitude coefficient is known.

- (a) Using the argument of normalization, where $|c_0|^2 + |c_1|^2 = 1$, determine the probability amplitude coefficient for the state $|1\rangle$.
- (b) Find the state $|\phi\rangle$, which is orthogonal to $|\psi\rangle$.
- (c) Repeat the previous two parts for $|\psi_0\rangle = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ c_1 \end{pmatrix}$, using the vector notation. You can assume that the relative phase is zero.
- (d) Another common set of basis is,

$$\begin{split} |+\rangle &= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \\ |-\rangle &= \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle). \end{split}$$

Express the state $|\psi\rangle$ as a superposition of $|+\rangle$ and $|-\rangle$, which means find d_+ and d_- in,

$$|\psi\rangle = d_+ |+\rangle + d_- |-\rangle.$$

Question 3

Here I take a leap of faith and assume that you have successfully attempted both the previous questions. So let us now define a $|\psi\rangle$ which lives on the Bloch sphere,

$$|\psi\rangle = cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}sin\left(\frac{\theta}{2}\right)|1\rangle$$

- (a) Explain, why the argument of \cos and \sin are $\theta/2$ instead of just θ .
- (b) Construct the Bloch sphere and label the Z and X axis, along with the angles $\{\theta, \phi\}$ corresponding to each.
- (c) Find the angles $\{\theta', \phi'\}$ for the state $|\psi_{orth}\rangle$ such that $|\psi_{orth}\rangle$ points exactly away from $|\psi\rangle$ on the Bloch sphere, which means that,

$$\langle \psi_{orth} | \psi \rangle = 0.$$

(d) Using the polar representation show mathematically that the states $|\psi\rangle$ and $|\psi_{orth}\rangle$ are orthogonal and are valid basis states. Meaning they can represent any quantum state that lives on the Bloch sphere.

Question 4

Let the matrix \hat{U} be defined such that,

$$\hat{U} = \cos(\theta)\hat{I} + i\sin(\theta)\hat{\sigma}_x.$$

- (a) Prove that this is a unitary matrix.
- (b) Prove that $\hat{U} = e^{i\theta\hat{\sigma}_x}$, and subsequently that \hat{U} is unitary.
- (c) Use the previous solution to show that $\hat{R}_y(\pi) \neq N$, where N is the quantum NOT gate.

Question 5

The Hadamard gate we used in the class represented the action of a 50:50 beamsplitter. From this, we get the relations,

$$\begin{split} \hat{U}_H \left| 0 \right\rangle &= \frac{1}{\sqrt{2}} \left| 0 \right\rangle + \frac{1}{\sqrt{2}} \left| 1 \right\rangle, \\ \hat{U}_H \left| 1 \right\rangle &= \frac{1}{\sqrt{2}} \left| 0 \right\rangle - \frac{1}{\sqrt{2}} \left| 1 \right\rangle. \end{split}$$

According to these relations, the probability of measuring in $\hat{U}_H |0\rangle$ and $\hat{U}_H |1\rangle$ is 1/2. Let us try to reverse engineer this to construct the unitary \hat{U} for a 30:70 beamsplitter.

- (a) Construct any state $|\phi\rangle$ such that the probability of measuring $|0\rangle$ as the outcome in the Zeeman basis is $\frac{1}{3}$.
- (b) Using this find the unitary matrix, such that $\hat{U}|0\rangle = |\phi\rangle$.

Question 6

- (a) Construct the matrix form of $\hat{R}_{\frac{\vec{n}+\vec{z}}{\sqrt{2}}}(\pi)$ and show that this θ rotation qualifies as a legitimate single-qubit Hadamard gate.
- (b) Construct the Hadamard as a combination of two rotations.
- (c) Show that an $\hat{R}_y(\theta)$ rotation can be achieved by the sequence

$$\hat{R}_x(\pi)\hat{R}_y(-\theta)\hat{R}_x(-\pi),$$

where the order of implementation is right to left.

Question 7

A quantum computer programmer intends to transfer the initial state $|0\rangle$ to $|1\rangle$. She implements the transformation $\hat{R}_y(\pi)$ to achieve this. However, when she turns to her computer, she has errors, and the transformation that is really implemented is $\hat{R}_y(\theta + \varepsilon)$ where ε is the error and θ is her intended amount of rotation. The same applies to rotation about any axis and by any amount. So a nominal $\hat{R}_i(\theta)$ is really $\hat{R}_i(\theta + \varepsilon)$, where i = x, y.

- (a) For a real erroneous 180° rotation, what is the probability that her final state is the desired |1⟩ target state?
- (b) She then decides to use three rotations instead of one. So she implements the rotations,

 $\hat{R}_{y}(\pi/2)\hat{R}_{x}(\pi)\hat{R}_{y}(\pi/2).$

Does this sequence perform any better? Explain by drawing the trajectory on the Bloch sphere as well as mathematically. Make a plot of the performance metric as a function of ε .

Question 8

Let us implement our newly learned quantum mechanical skills on the Mach-Zehnder interferometer. In class, we defined the arms of the setup as the two basis states of our system, taking the beamsplitter to be a Hadamard gate and the mirror to have no impact on the system's state.

However, now let us take this same system but redefine the quantum states and see how the algebra and gates implemented in the setup change. Let us define the horizontally traveling photon as the ground state and the vertically traveling photon as the excited state.

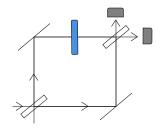


Figure 1: Schematic diagram for the Mach-Zehnder Interferometer.

- (a) The beamsplitter under this redefinition is a Hadamard gate, but what gate is represented by the mirror? (Hint: It is called the NOT gate). Determine how its acts on the ground and excited state.
- (b) Let the input for the setup be a single horizontal photon. What is the state after the first beamsplitter?
- (c) What is the state after the mirrors?
- (d) What is the state after the second beamsplitter? Which detector will detect the photon?

(e) Now, let us add a phase gate at the location shown in Figure 1 and reevaluate the last part. Plot the probability of detection for both detectors against the phase induced by the phase gate.

Question 9

(a) Show that $|\psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\psi(0)\rangle$ is indeed a solution to,

$$i\hbar \frac{d}{dt} \left| \psi(t) \right\rangle = \hat{H} \left| \psi(t) \right\rangle$$

where \hat{H} is time-independent.

(b) A qubit starts off as $|0\rangle$, implemented by a proton spin-1/2. Consider $\omega = \gamma B$ where $\gamma = 1$, ω is a (precessional) frequency, and B is a magnetic field. The desire is to do what is called a 'spin-echo' experiment. This experiment takes the state through the trajectory:

$$|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle + e^{i\pi/3} |1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle + e^{-i\pi/3} |1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

Draw a sequence of magnetic field pulses (say along x, y and z) that are required to achieve this spin-echo. Label the time-axis on the other pulse sequence.

$$P(1+2) = 1 + (c-ic_1]^2$$

The Mach-Zehnder interferometer, an be () upstated into different components, Component A, Anitulization Component B, Massivement BAD DA B A 10) / 1 113 The phase gate (returder in component B) determines the basis of meaturement Hence when the phase included on state 112, (the upper arm) is 1, we get part is if the phase is - 1, we get part is, for phose +i, we get part inj. These measurements can also be translated to the polarization picture, where the 10113 states are 142,142 = 102,112 and realwring in the digonal and circular loss will lead you to the results of port in mod inj.

$$\frac{22}{\sqrt{2}} \qquad (y)_{2} = \frac{1}{\sqrt{2}} \frac{10}{\sqrt{2}} + \frac{10}{\sqrt$$

Then

$$\frac{1}{10} = \frac{1}{10} = \frac{$$

@ 3 $|+\rangle = cor(co)|0\rangle + e^{i\phi} in(co)|1\rangle$ a) Using O as the parameter of "cos' and "sin" fonction leads to degenerary, the same state on be represented by 2 values of theta "O". 10> 107 8 1-> 51 STAD 14(0, \$) >= 10> 1-17 $|4(\pi, \phi)\rangle = |1\rangle$ 1+2 14 (1/2,0)>= 1+> 14(1/2,1))=1-> 11) c) To move a state 14(0, p): to the appointe, we have to update the angles much that $14(0, p) \longrightarrow 14(\pi - 0, \pi + p)$ $= 14 \text{ or the } = 400 \left(\frac{\pi}{2} - \frac{\omega}{2} \right) 10 \right) + e^{i\omega + i\pi} \ln \left(\frac{\pi}{2} - \frac{\omega}{2} \right) 11 \right)$ Lin (0) 10> - e id an (0) 11> 0

d) <414 orth) = [w (a) <01 + e un (a) <11]. [in (a) 10> - e^{ib} con (a) 11)] $= un \left(\frac{u}{2} \right) in \left(\frac{u}{2} \right) - un \left(\frac{u}{2} \right) con \left(\frac{u}{2} \right)$ = 0 Hence 14) and 14arth) are orthogonal, which nears they cannot written as a linear representation of the other and then represent any state on the block sphere. 1\$>= alo>+ Bl1> $|\psi\rangle = \alpha' |\psi\rangle + \beta' |\psi_{orth}\rangle$

04 $\hat{v} = con(0)\hat{I} + i con(0)\hat{e}_{x}$ $\begin{array}{ccc} \cos \Theta & i & him \\ i & him \\ i & him \\ \end{array} \begin{array}{ccc} \cos \Theta \end{array}$. 2 Ut = cos O - i hln O 2) -i Lun D con O 1 U' = 1 con O - i Lin O cor 20 - 12 Lin 20 - i hind cor O (con O - i him O) -i Am O con O $U^{+} = U^{-\prime}$, \tilde{U} is mittary Since hy let A = esig [i O êsi $= 1 + i O G_{2} + i^{2} (0)^{2} G_{3}^{2} + \cdots$ Using $i^2 = -1$, $\hat{\sigma}_{x}^2 = T$ $\hat{I} + i \hat{O} \hat{\sigma}_{31} - \hat{O}^2 \hat{I} - i \hat{O}^3 \hat{\sigma}_{31} + \cdots$ $\frac{1}{1} \begin{bmatrix} 1 - 0^2 + 0^4 + \dots \\ 2! & 5! \end{bmatrix} + \frac{1}{52} \begin{bmatrix} 0 - 0^3 + 0^5 \\ 3! & 5! \end{bmatrix}$ $\cos(6)\hat{I} + i \sin(0)\hat{e}_{sc}$ Û 11

Hence V= e;o = A = e : O Gx $-i\partial \hat{c}_{i} = \begin{bmatrix} e^{i\partial \hat{c}_{i}} \end{bmatrix}$ = A -1 A+ Hence mitary. U VAig $\widehat{R} (\widehat{D}) = \cos \left(\frac{O}{2} \right) \widehat{I} + i \lim_{n \to \infty} \left(\frac{O}{2} \right) n \cdot \widehat{C}$ $\hat{R}_{y}(T) = con(T_{2})\hat{I} + i hm(T_{2})\hat{c}_{y}$ 161 -= ; 0 - ; 0 1 0 0 -1 VNot 0 1 0 Ry (n) 7 UNot Hence have used $R(0) = e^{i\frac{Q}{2}n\cdot s}$ * Note 9 where is actually $R(6) = e^{-i\theta_2}$

7777777777777 QS a) $|\langle 0| \rangle|^2 = \frac{3}{10}$ $\langle 0|\varphi \rangle = e^{i\varphi} \int_{10}^{3}$ $= > 1 \forall > = 3 e^{i \forall} |0> + c |1>$ Uning (\$1\$) = 1 $10) = 100 = 100 + e^{10} = 100$ $\hat{U}_{10} = \boxed{3} 107 + e^{i\theta} \boxed{7} 11$ hy $\hat{U} | N = 1 \neq >$ Refer to 02 $\frac{16}{0.54} = \frac{7}{10} = \frac{10}{10} = \frac{10}{10} = \frac{10}{10}$ Then 53 57 eio 7 - ei 53 U = 1

0.6 $R \rightarrow \Rightarrow (\pi) = \omega \left(\frac{\pi}{2}\right)^{\frac{1}{2}} + i kin \left(\frac{\pi}{2}\right) \left(\frac{\pi}{2}\right)^{\frac{1}{2}}$ 2) 12 52 - 1 slobal) 1 ~H : Hadamard let the notations be in Re and Ry 5 $R_{1}(0)R_{1}(0) = \left[\cos\left(\frac{\alpha}{2}\right)\hat{I} + i\sin\left(\frac{\alpha}{2}\right)\hat{c}_{1}$ $cor\left(\frac{\beta}{2}\right)I - ihin\left(\frac{\beta}{2}\right)\tilde{\sigma}_{g}$ $cor\left(\frac{\phi}{2}\right) = c'$ 1 et $con\left(\frac{\alpha}{2}\right) = c$, c -is] c' i2s' -i's' c' С -15 cc' -iss! - cs'-ic's = -ic's a cs' iss' acc' Comparing elements to elements of Hadamard cc' -iss' = 1/2 (i) -cs' +ic's = 1/2 (ii) cs' -i c's = 1/52 (11) cc' + i ss' = -1/52 (iv)

Egntion (1+11 v) (11)- (1) $con\left(\frac{\omega}{2}\right)con\left(\frac{\omega}{2}\right)=0,$ $con\left(\frac{\omega}{2}\right)con\left(\frac{\omega}{2}\right)=0$ Hence Q = T $R_{X}(n) R_{y}(\beta) = -i \begin{bmatrix} s' & c' \\ c' & -s' \end{bmatrix}$ Ther $\lim_{x \to \infty} \left(\frac{10}{2}\right) = \frac{1}{\sqrt{2}}, \quad \frac{10}{\sqrt{2}}, \quad \frac{10}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ => \$ = N2 Hence $\hat{U}_{\mu} = R_{34}^{2} = R_{x}(\pi) R_{y}(\pi/2)$ e) let $A = R_{x}(n) R_{y}(0) R_{x}(-n)$ = $\int 0 \neq i \sigma_{x} \right] R_{y}(0) \int 0 + i \sigma_{x} \right]$ = $-i^{2} \hat{\sigma_{x}} \left[cor(0) \hat{1} - i Am(0) \hat{\sigma_{y}} \right] \hat{\sigma_{x}}$ = $\omega \left(\frac{\omega}{2}\right) \hat{\sigma}_{x}^{2} - i \lim_{x \to \infty} \left(\frac{\omega}{2}\right) \hat{\sigma}_{x} \hat{\sigma}_{y} \hat{\sigma}_{y}$ $= \cos\left(\frac{R}{2}\right)\hat{I} + i\sin\left(\frac{R}{2}\right)\hat{\sigma}_{j}$ $= R_{y}(-\theta)$

Q7 a) $P = |C|| R_y (\pi + 5) |.0\rangle|^2$ shire $R_{y}(\pi+\epsilon) = cor(\pi+\epsilon)\hat{I} - i \lim_{t \to \infty} (\pi+\epsilon)\hat{\sigma}_{y}$ $= \left[\begin{array}{c} \cos\left(\frac{\pi}{2}\right) \cdot \cos\left(\frac{\epsilon}{2}\right) - \sin\left(\frac{\pi}{2}\right) \sin\left(\frac{\epsilon}{2}\right) \right] \hat{I}$ $-i \int in(\underline{\pi}) cos(\underline{\epsilon}) + cos(\underline{\pi}) in(\underline{\epsilon}) \hat{c}_{y}$ $= -\lambda in \left(\frac{\varepsilon}{2}\right) \hat{I} - i an \left(\frac{\varepsilon}{2}\right) \hat{G}_{y}$ $R_{\gamma}(\pi + \varepsilon) |0\rangle = -\lambda \ln \left(\frac{\varepsilon}{2}\right) |0\rangle - i^{2} \cos \left(\frac{\varepsilon}{2}\right) |1\rangle$ $< 11 R_y (\pi + \varepsilon) | 0 \rangle = + con \left(\frac{\varepsilon}{2}\right)$ $P = \left| \cos\left(\frac{\varepsilon}{z}\right) \right|^2$ = 1 + con (2) = 1 - E² + ... b) $P = |\langle 1| R_y(\pi_z + \varepsilon) R_x(\pi) R_y(\pi_z + \varepsilon) |0\rangle|^2$ · Note: I have assumed Rx to be non-erhoneony, the erroneous colulation is left for the students . $R_{x}(\pi) = -i \epsilon_{x} = -i 0$

 $R_{y}\left(\frac{\eta}{2}+\varepsilon\right) = \left[\cos\left(\frac{\eta}{2}\right)\cos\left(\frac{\varepsilon}{2}\right) - \lambda \ln\left(\frac{\eta}{2}\right)\lambda \ln\left(\frac{\varepsilon}{2}\right)\right]\hat{I}$ $-i\int un\left(\frac{\eta}{\eta_{h}}\right)\cos\left(\frac{\eta}{\eta_{h}}\right) + \cos\left(\frac{\eta}{\eta_{h}}\right)un\left(\frac{\eta}{\eta_{h}}\right)\hat{e_{g}}$ let $\alpha = cos\left(\frac{\varepsilon}{2}\right) + \beta = \lambda m \left(\frac{\varepsilon}{2}\right)$ $P_{j}(\eta_{j}+\varepsilon) = (\alpha - \beta) - i(\alpha + \beta)\hat{e}_{j}$ $= \int \alpha - \beta - (\alpha + \beta)$ $\sqrt{2} \int \alpha + \beta = \alpha - \beta$ $R_{y}R_{x} = -i \left[-(\alpha + \beta) - \alpha - \beta - \beta - \alpha - \beta - \alpha + \alpha + \beta - \alpha + \beta$ $P_{y}R_{x}R_{y} = \frac{-i}{2} \left[-(\alpha+\beta)(\alpha+\beta) + (\alpha-\beta)(\alpha+\beta) + (\alpha-\beta)^{2} + (\alpha-\beta)^{2} + (\alpha+\beta)^{2} + (\alpha+\beta)^{2} + (\alpha+\beta)(\alpha+\beta) + (\alpha-\beta)(\alpha+\beta) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta)) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta)) + (\alpha-\beta)(\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta)) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta) + (\alpha-\beta)(\alpha-\beta))$ $= -i \begin{bmatrix} 0 & 2(\alpha^{2} + \beta^{2}) \\ 2(\alpha^{2} + \beta^{2}) & 0 \end{bmatrix}$ = -i $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $P_{a=1} = \frac{1}{(1 - i)^2} \frac{1}{R_x R_y R_y R_y R_y} = \frac{1}{(1 - i)^2}$ So, the error in the rotation have vanished if $k_{\chi}(H)$ was erroneous :=> $R_{\chi}(H+E)$, ve would be left with an error maller than that we had in part a).

the . These rotations can be presented on where 23 4 block as T カララウ 9 **ササササウサウ サリ サ ラ ウ ウ** For 4) ya 5 Por 1 Л ç >

Cl 8 as let the nurror be the gate U Ulos = 113 : for lover arm V 11> = 10> for yper alm $V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, Hence \hat{A} is a Not gate \hat{A} $\frac{|\Psi_{in}\rangle = |0\rangle}{|\Psi_{i}\rangle = \hat{H}|\Psi_{in}\rangle}$ k) = 1 [10) + 11)] $\frac{|Y_2\rangle = \hat{\chi} |Y_n\rangle}{= \frac{1}{N_2} \left[|1\rangle + |0\rangle \right]}$ 0) d) $1Y_3 \rangle = \hat{H} 1 \langle 4_2 \rangle$ = $\hat{H} [10\rangle + 11\rangle]$ $= \frac{1}{2} \left[10 \right] + 10 - 11$ 10> $P(0) = |\langle 0| 4_3 \rangle|^2$ $P(0) = 1(11 + 3)^2$ 0

$$e_{1} = \frac{14}{3} \sum_{z} = \frac{14}{2} \frac{14}{10} \sum_{z=1}^{z} \frac{1}{10} \sum_{z=$$

 $\frac{\partial \langle \varphi \rangle}{\partial t} = \frac{1}{\lambda} \frac{$ $R_{y}(n/2) = e^{-i\frac{\pi}{3}} + e^{-i\hat{H}_{1}t/k}$ $\frac{\hat{H}_{i}t}{K} = \frac{\pi}{h}\frac{\hat{g}}{y}\frac{v}{v}$ $\dot{H}_1 = h \omega \bar{e}_y , t = \pi$ 50

For the record, $\frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} +$ Rotation about 3-axis by an angle of 7/3 $R_{3}(N_{3}) = e^{-i\pi/6\hat{s}_{3}^{2}} = e^{-i\hat{H}_{2}t/\hbar}$ For the third, $\frac{105+115}{\sqrt{2}} \xrightarrow{105+e^{-i\pi/3}115} \sqrt{2}$ Rotation about x-axis by myle of T $R_{st}(\pi) = e^{-i\pi/2} \frac{\hat{\pi}}{\hat{\pi}} = e^{-i\hat{H}_3 t/K}$ $\hat{H}_3 = K_{12}\hat{s}_2$, t = J $2 + 8 = 2 \omega$ For fowth, $10) + e^{-i\frac{y}{3}} 11 > \frac{y}{3} 10 > + 11 >$ 53 52 . Ving the which it of transformation induced in U2, we can recognize that $U_h = U_2$

. Absen	ption				
] 6	1 = 1Bg 1 =	1831 = 45		
			-		
1					1
Bre				1	1
		1	ć	1	
		1 1		1	1
82		1		1	1
		1 1			
		1		1	1
87					-
	~		i contraction		· · · ·
	1/45	765	71/225	3/6.5	
		Construction of the Constr		and the second se	

