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Abstract

This paper aims to showcase the mathematical apparatus behind Approximate
Quantum Fourier Transforms (AQFT) and their formulation. After establishing a solid
mathematical theory, we will then go on to show the strength of AQFT in various quan-
tum computing algorithms like periodicity estimation and quantum addition, in terms
of its resource efficiency when stacked up against mainstream computational methods.

1 Introduction
The quantum Fourier transform (QFT) is required as a fundamental for many quantum
algorithms, such as Shor’s factoring algorithm. A drawback of implementing the QFT,
however, is that it can require a large number of qubits. A large number of qubits with
gates acting on them means there is a higher chance of decoherence. What we mean by
decoherence here is the entanglement of the input states with those present within the en-
vironment. In such cases, the power of the AQFT is that it reduces the number of gates
needed to perform the algorithm. Since there are fewer gates, gate-associated decoherence
is consequently minimized by applying the AQFT.

Moreover, the quantum Fourier transform, like the ordinary Fourier transform, is a power-
ful tool for uncovering periodicities. In some cases, the AQFT can actually perform better
than the QFT in estimating the period of a periodic function. This is because the AQFT is
less sensitive to certain types of errors in the input data, such as small variations or noise.
In such instances, the AQFT can be more efficient and robust than the QFT.

For the case of quantum addition, the AQFT significantly reduces the run-time need to
perform the algorithm. Since there are much fewer gates needed, a more efficient non-
classical algorithm can be implemented, making the computation more powerful.

2 Mathematical Formulation of AQFT

2.1 Quantum Fourier Transform
The discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples
of a function into a same-length sequence of equally-spaced samples of the discrete-time
Fourier transform (DTFT), which is a complex-valued function of frequency. The DFT is
a unitary transformation on a s-dimensional vector,

f(0), f(1), f(2), . . . , f(s− 1)

and is defined by the expression

f̃(c) =
1√
s

s−1∑
a=0

exp(2πiac/s)f(a) (1)
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where f(a) and f̃(c) are usually complex numbers. s is assumed to be a power of 2, i.e.
s = 2L where L is some integer. We usually use powers of 2 when binary coding, for the
sake of convenience. If a and c are L-bit integers, they can be represented as:

a =
L−1∑
i=0

ai2
i; c =

L−1∑
i=0

ci2
i (2)

The quantum Fourier transform is simply the DFT but in terms of qubits instead of bits. It
is precisely the same function and can be written as

|j⟩ = 1√
N

N−1∑
k=0

exp
(
2πi

N
kj

)
|k⟩ (3)

where N = 2n where n denotes the number of qubits we are dealing with.

The product ac in (1) can be be expanded using the binary notation in (2). Let us first
expand ac and then investigate the consequences in (1).

ac = (a0c0) + 2(a0c1 + a1c0) + 22(a0c2 + a1c1 + a2c0) + . . .

+2L−1(a0cL−1 + . . .+ aL−1c0) +O(2L) (4)

Note that powers of a1c1 are not stacked together for the term (a0c1 + a1c0)2 because in
general both a1 and c1 would have 2 multiplied with them such their product would have
the power 22. Then, in terms of the binary representation, the exp(2πiac/2L) in the R.H.S.
of equation 1 becomes

exp(2πiac/2L) = exp
(
2πi(a0c0)/2

L
)
exp
(
2πi(a0c1 + a1c0)/2

L−1
)
. . .

× exp(2πi(a0cL−1 + . . .+ aL−1c0)/2). (5)

We can then write the full expression to be

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

(
2πi

2L

L−1∑
j,k=0

ajck2
j+k

)
(6)

2.2 How the QFT is approximated
Notice that from the right hand of the expression in (4) the arguments in the exponential
become smaller and smaller. In the approximate Fourier transform parameterised by an
integer m, the L − m smallest terms are neglected. In all the remaining terms the argu-
ments are then multiples of 2π

2m
.The 2mth root of unity becomes the basic element of the

approximate Fourier transform as opposed to 2nth root of unity which used in the ordinary
Fourier transform. (The ordinary Fourier transform is obtained for m = L ; when m = 1
we obtain the Hadamard transform, for which all terms but the last one is dropped.)

Keeping the above discussion in mind, the Fourier transform in (6) becomes:

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

(
2πi

2L

L−1∑
j,k=0

ajck2
j+k

)
(7)

Whenever j + k ≥ N we have terms that are of higher order than N − 1 which do not
contribute to the transform. Therefore, equation 7 becomes

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

2πi

2L

L−1∑
0≤j,k≤L−1
0≤j+k≤L−1

ajck2
j+k

 (8)

The condition j + k ≤ L − 1 is just saying that the power of 2 should not exceed L − 1.
On the other hand, a and b should always lie between 0 and L − 1 which is once again
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encapsulated by the above equation. Both these conditions must be satisfied so that we stay
consistent with the expansion in (4).

Let us now parameterize equation 8 by an integer m which lies in the interval 0 < m < L
such that we would ignore the lower order powers in equation 4, only taking into account
powers which are greater than L−m. With that, equation 8 becomes:

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

2πi

2L

L−1∑
0≤j,k≤L−1

L−m≤j+k≤L−1

ajck2
j+k

 (9)

Note that what changed from equation 8 to equation 9 is the lower bound of the sum within
the exponential. Moreover, when L = m, equation 9 reduces to the ordinary QFT.

In equation 9, since L − m ≤ j + k, the argument of exponential is some multiple of
2πi2(L−m)

2L
= 2πi

2m
. The argument of the exponential in AQFT differs from that of QFT by

2πi

2L

∑
j+k<L−m

ajck2
j+k

The execution time of the AQFT grows with ∼ Lm.

3 Applications

3.1 Estimating Periodicity
The quantum Fourier transform is a powerful method for unveiling periodicities. Any pe-
riodicity in probability amplitudes describing a quantum state of a register on a computa-
tional basis can be estimated via the Quantum Fourier Transform, proceeded by a measure-
ment of the register. Reading the qubits of the register in the reversed order gives us the
result. To explain, let’s take a look at Shor’s algorithm, which can be written as:

|Ψ⟩ = 1√
N

2L−1∑
a=0

f(a) |a⟩ ,

Where N serves as the normalization factor and f(a) is the state of a quantum register of
size L in which the probability amplitudes f(a) occur with a periodicity of r and an offset
of l. Assuming we don’t know the offset, measurements performed on the state will not
yield r or its integer multiples. Furthermore, by performing QFT on the register and then
measuring the state, we get a number c̄ whose probability does not equal unity because
of the register’s finite size. On the other hand, using the AQFT, we get a probability that
satisfies

ProbA ≥ 8

π2
sin2

(mπ

4L

)
.

In cases where QFT forms a part of a randomized algorithm, the computation must be
repeated a few times to highlight the correct answer. For such circumstances, the AQFT is
polynomially less efficient. If we consider Shor’s quantum factoring algorithm and replace
the AQFT with the QFT. In order to obtain a correct factor with a prescribed probability of
success, we have to repeat the computation several times. Let k and k′ be the number of
times we need to run QFT and AQFT, respectively, to get at least one correct result. Their
ratio gives us:

k′

k
=

log
(
1− 4

π2

)
log(1−H)

< C

(
L

m

)3

where H = 8
π2 sin

2(4m
Lπ

) and C is an upper bound found through graphical means.
This shows that for the quantum factoring algorithm, AQFT has a shorter runtime.
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3.2 Decoherence
Let us take a look at a simple mathematical model of decoherence. If we assume that the
environment effectively acts as a measuring apparatus, a single qubit in state c0 |0⟩+ c1 |1⟩
evolves together with the environment as

(c0 |1⟩+ c1 |1⟩) |a⟩ −→ c0 |0⟩ |a0⟩+ c1 |1⟩ |a1⟩ (10)

where states |a⟩,|a0⟩, and |a1⟩ are the states of the environment; |a0⟩, and |a1⟩ cannot be
assumed to be orthogonal, as they usually aren’t. The elements of the density matrix evolve
as

ρij(0) = ci(0)c
∗
j(0) −→ ρij(t) = ci(t)c

∗
j(t)⟨ai(t)|aj(t)⟩; i, j = 0, 1 (11)

Another way to think about this is if the environment is regarded as a bosonic heat bath,
which introduces phase fluctuations to the qubit states, such that it induces random phase
fluctuations in the coefficients c0 and c1 as following

c0 |0⟩+ c1 |1⟩ −→ c0e
−iϕ |0⟩+ c1e

iϕ |1⟩ (12)

The direction and the magnitude of each phase fluctuation ϕ is chosen randomly following
the Gaussian distribution

P (ϕ)dϕ =
1√
2πδ

exp

[
−1

2

(
ϕ

ρ

)2
]
dϕ (13)

where the distribution width δ defines the strength of the coupling to the quantum states of
the environment.

If we evaluate the performance of the AQFT by introducing a quality factor, Q, which
measures the likelihood of obtaining an integer that is closest to any integer multiple of
2L/r when the transformed register state is measured. In a decoherence-free environment,
we achieve Q = 1 for integer values of 2L/r, and for a randomly selected r, the quality
factor for the QFT is approximately 4/π2, while the AQFT of degree m has a quality factor
of approximately 8π2 sin2(4πmL).

For δ > 0, a maximum for Q is obtained for m < L. Thus, for the case of decoherence, the
AQFT is better than QFT.

3.3 Quantum Addition
In the context of quantum computing, addition algorithms have typically been based on
classical methods but modified for reversible computation. While faster quantum addition
algorithms have been developed using carry-save techniques, they still follow a classical
approach. However, it’s possible that the most efficient addition algorithm for a quantum
computer may differ significantly from classical methods.

To perform quantum addition, a series of conditional rotations that are mutually commu-
tative are utilized. This structure is similar to the quantum Fourier transform, but with the
difference that the rotations are dependent on n external bits. This feature is particularly
useful when adding classical data to quantum data. The addition is performed according to
Figure 1.
The gates used in 1 are conditional rotation gates. The conditional rotation gate performs a
phase rotation between two qubits conditioned on their superposition (visualized in Figure
2).

Due to the strong similarity between the implementation of quantum addition and the
QFT, it’s not unexpected to find a more effective approximate implementation of quantum
addition that utilizes the same methodology as the AQFT.
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Figure 1: Logic Circuit to perform quantum addition using AQFT

Figure 2: Conditional rotation gate.

The main distinction between quantum addition and the quantum Fourier transform (QFT)
lies in the fact that all operations in quantum addition commute with one another, while the
Hadamard transforms used in the QFT require a specific order of operations. As a result,
a quantum computer with the ability to execute multiple independent gate operations con-
currently will have a proportionally faster runtime.

Specifically, if a quantum computer can perform n2 independent 2-qubit gate operations
concurrently, quantum addition can be completed in roughly n + 1 time intervals. How-
ever, if the AQFT method is used to eliminate rotations below a certain threshold, quantum
addition can be completed in log(2n) time intervals.
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