Introduction to Quantum Information Science and Quantum Technologies

Assignment 4
Muhammad Abdullah Ijaz and Muhammad Sabieh Anwar

"What a fine day for science." - Dexter

Question 1

(a) Prove using the L'Hopital's rule that

$$
\lim _{x \rightarrow 0} x \ln (x) .
$$

(b) Prove from the first principle definition that the conditional entropy of event B given A is

$$
H(B \mid A)=H(A, B)-H(A)
$$

Question 2

The Shannon entropy is given by

$$
H(A)=-\sum_{i} p\left(a_{i}\right) \log p\left(a_{i}\right)
$$

(a) Show, using the Lagrange multiplier method, that entropy is maximized when $p\left(a_{i}\right)=1 / d$.
(b) If the probabilities are replaced by

$$
p\left(a_{i}^{\prime}\right)=\sum_{j} \lambda_{i j} p\left(a_{i}\right), \quad \lambda_{i j} \in\{0,1\}
$$

use the concavity of the function $f(x)=-x \log (x)$ to show that

$$
H\left(A^{\prime}\right) \geq H(A)
$$

Question 3

(a) Show that $\hat{\rho}$ is a positive operator which means that $\langle\psi| \hat{\rho}|\psi\rangle \geq 0$ for any $|\psi\rangle$.
(b) Show that its eigenvalues ρ_{m} are real and positive. Hence

$$
\rho=\sum_{m} \rho_{m}\left|\rho_{m}\right\rangle\left\langle\rho_{m}\right|
$$

where $\left|\rho_{m}\right\rangle$ are the corresponding eigenvectors.
(c) How does the purity of a quantum state change as it evolves under a unitary operation?

Question 4

Any density matrix can be written as,

$$
\hat{\rho}=\frac{1}{2}(\hat{I}+\vec{r} \cdot \vec{\sigma})
$$

where $\vec{r}=\left\{r_{x}, r_{y}, r_{z}\right\}$ and $\vec{\sigma}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$.
(a) Find \vec{r} given that $\hat{\rho}=|+\rangle\langle+|$ using the trace operator. Where the state

(b) Derive the expectation values of $\hat{\rho}$ for the operators $\sigma_{ \pm}=\frac{1}{2}\left(\sigma_{x} \pm i \sigma_{y}\right)$.
(c) Show that if $\hat{\rho}$ is a pure state, the trace of $\hat{\rho}^{2}$ is always unity.

Question 5

For what value of ε will the state

$$
\hat{\rho}=(1-\varepsilon)|00\rangle\langle 00|+\varepsilon\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|
$$

be entangled? Use the positivity of the partial transpose test. Here $\left|\phi^{+}\right\rangle$is bell state.

Question 6

What is the purity of the Weiner state defined as

$$
\hat{\rho}=(1-\varepsilon) \frac{\hat{I}}{4}+\varepsilon\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|
$$

where $\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$ is the singlet state?

Question 7

(a) Show that for the density matrix formalism, the density matrix evolves under a time-independent Hamiltonian as per the Liouville-von Neumann equation,

$$
\frac{d \hat{\rho}}{d t}=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}]
$$

(b) Hence solve for $\hat{\rho}(t)$ given,

$$
\begin{gathered}
\hat{\rho}(0)=\frac{\hat{I}+\sigma_{x}}{2} \\
\hat{H}=\frac{\hbar w \sigma_{z}}{2}
\end{gathered}
$$

(c) Plot \vec{r} against time for $\hat{\rho}(t)$ and represent this evolution on the Bloch sphere.

Question 8

Consider the following circuit with $\hat{\rho}_{\text {in }}=3 / 4|00\rangle\langle 00|+1 / 4|11\rangle\langle 11|$.

Find the density matrix after the Bell creation circuit. What is the reduced matrix for the second qubit? (Trace out the first qubit).

41
a) $\lim _{x \rightarrow 0} x \ln x$

$$
=\lim _{x \rightarrow 0} \frac{\ln (x)}{1 / x}
$$

$$
=\lim _{x \rightarrow 0} \frac{\frac{d}{\partial x}(\ln x)}{\frac{\partial}{d x}(1 / x)}
$$

$$
=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}
$$

$$
=\lim _{x \rightarrow 0}-x
$$

$$
=0
$$

b) $H(B \mid A)=\sum_{i} P\left(a_{i}\right) H\left(B \mid A=a_{i}\right)$

$$
\begin{aligned}
&=-\sum_{i} P\left(a_{i}\right) \sum_{j} P\left(b_{j} \mid a_{i}\right) \log P\left(b_{j} \mid a_{i}\right) \\
&=-\sum_{i j} P\left(b_{j} \mid a_{i}\right) P\left(a_{i}\right) \log P\left(b_{j} \mid a_{i}\right) \\
&=-\sum_{i j} P\left(a_{i}, b_{j}\right) \log P\left(b_{j} \mid a_{i}\right) \\
&=-\sum_{i j} P\left(a_{i}, b_{j}\right) \log \left[\frac{P\left(a_{i}, b_{j}\right)}{P\left(a_{i}\right)}\right] \\
&=-\sum_{i j} P\left(a_{i}, b_{j}\right) \log P\left(a_{i}, b_{j}\right) \\
&=-\sum_{i j} P\left(\sum_{j} P\left(a_{i}, b_{j}\right)\right) \log P\left(a_{i}\right) \log P\left(a_{i}, b_{j}\right) \\
&+\sum_{i} P\left(a_{i}\right) \log P\left(a_{i}\right) \\
&= H(A, B)-H(A)
\end{aligned}
$$

Q 2
a) A has d ponitile ortcomes

$$
\begin{gathered}
H(A)=-\sum_{i=1}^{d} P\left(a_{i}\right) \log P\left(a_{i}\right) \\
\text { where } \sum_{i=1}^{d} P\left(a_{i}\right)=1 \quad \text { in a constraint } \\
\left.\frac{d}{d P\left(a_{i}\right)} H(A)+\lambda\left(\sum_{i} P\left(a_{i}\right)-1\right)\right]=0 \\
\frac{d}{d(P(a,))}\left[-\sum_{i} P\left(a_{i}\right) \log P\left(a_{i}\right)+\lambda\left[\sum_{i} P\left(a_{i}\right)-1\right]\right]=0 \\
-\sum_{i}\left[-\frac{P\left(a_{i}\right)}{P\left(a_{i}\right)}+\log P\left(a_{i}\right)+\lambda\right] \frac{d}{d P} P\left(a_{i}\right)=0 \\
\Rightarrow-1+1+\log P\left(a_{i}\right)=0 \\
\log P\left(a_{i}\right)=1-\lambda \\
P\left(a_{i}\right)=2^{1-\lambda} \\
-1 \\
\sum_{i} P\left(a_{i}\right)=2^{1-\lambda}=d\left(2^{1-1}\right)=1 \\
2^{1-\lambda}=1 / d \\
1-\lambda=\log \left(\frac{1}{d}\right) \\
1-\lambda=-\log (d) \\
1+\log (d)=\lambda
\end{gathered}
$$

Hence

$$
\begin{aligned}
p\left(a_{i}\right) & =2^{1-1}=2^{-\log d}=2^{\log (1 / d)} \\
& =1 / d
\end{aligned}
$$

So $H(A)$ is maximiged for a mipor dustictution.
b) From

$$
f(x)=-x \log x \quad \text { ah }
$$

we have,

$$
\begin{aligned}
f\left(\sum_{j} \lambda_{i j} p\left(a_{j}\right)\right) & =-\sum_{j} \lambda_{i j} p\left(a_{j}\right) \log \left[\sum_{k} \lambda_{i k} p\left(a_{k}\right)\right] \\
& =H\left(A^{\prime}\right)
\end{aligned}
$$

Since $f(x)$ is concave, which means

$$
f\left(\sum_{i} \alpha_{i} x_{i}\right) \geqslant \sum_{i} \alpha_{i} f\left(x_{i}\right)
$$

where α^{\prime} 's contain the λ terms.
Thus $\sum_{j} \lambda_{i j} f\left(P\left(a_{i}\right)\right)$

$$
=-\sum_{j} \lambda_{i j} P\left(a_{i}\right) \log P\left(n_{i}\right)=H(A)
$$

Therefore $H\left(A^{\prime}\right) \geqslant H(A)$.

Cl 3
a) Using that

$$
\rho=\sum_{k} v_{k}\left|\lambda_{k} X \lambda_{k}\right|
$$

Then

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
\langle\psi| \rho|\psi\rangle & =\sum_{k} w_{k}\langle\psi| \lambda_{k} X \lambda_{k}|\psi\rangle \\
& =\sum_{k} w_{k} \mid\left\langle\psi \mid \lambda_{k}\right\rangle^{2}
\end{aligned}
\end{aligned}
$$

as $w_{k} \geqslant 0$ and $\left|\left\langle\psi \mid \lambda_{k}\right\rangle\right|^{2} \geqslant 0$ for all k

Then

$$
\Rightarrow \quad \sum_{k} \omega_{k}\left|\left\langle\psi \mid \lambda_{k}\right\rangle\right|^{2} \geqslant 0
$$

Hence ρ is a posture operators.
b) It follows that

If $\left.|\psi\rangle=| |_{m}\right\rangle$, where $\left.\left.\right|_{m}\right\rangle$ is the $m^{\text {th }}$ eigenvector with eyenvalue ρ_{m}

$$
\begin{aligned}
\left\langle\rho_{m}\right| \rho\left|\rho_{m}\right\rangle & =\sum_{k} \sigma_{k} w_{k}\left|\left\langle_{m} \mid \lambda_{k}\right\rangle\right|^{2} \\
& =\omega_{m}=\rho_{m}
\end{aligned}
$$

Hence

$$
\rho=\sum_{m} \rho_{m} \rho_{m} x_{\rho_{m}} \mid
$$

Since $\rho_{m}=\left\langle\rho_{m}\right| \rho_{n}\left|\rho_{n}\right\rangle 0$

$$
\rho_{n} \geqslant 0
$$

So ρ_{m} is posture and real.
c)

$$
\begin{aligned}
\rho(t) & =U_{\rho}(0) U^{t} \\
\rho^{2}(t) & =\left[U_{\rho}(0) U^{t}\right]^{2} \\
& =U_{\rho}(0) U^{+} U_{\rho}(0) U^{t} \\
& =U_{\rho}(0)^{2} U^{t}
\end{aligned}
$$

Vang that $U^{+} U=I$

Then

$$
\operatorname{Tr}\left[\rho^{2}(t)\right]=\operatorname{Tr}\left[U_{\rho}^{2}(0) U^{t}\right]
$$

- Using the cyclic property of trace

$$
\begin{aligned}
\operatorname{Tr}(A B) & =\operatorname{Tr}(B A) \\
\left.\Rightarrow \operatorname{Tr} \int \rho^{2}(t)\right] & =\operatorname{Tr}\left[U^{+} U \rho^{2}(0)\right] \\
& =\operatorname{Tr}\left[\rho^{2}(0)\right]
\end{aligned}
$$

Hence purity does not change under unitary evolutions.

Cl 4
a) r_{x}, r_{y} and r_{z} are the expectation value of measuring the matrix ρ, in the pauli operators σ_{x}, σ_{y} and σ_{z} respectively.

- Uni the relation

$$
\begin{aligned}
& r_{i}=T_{r}\left[\rho \sigma_{i}\right] \\
& r_{x}=\operatorname{Tr}\left[\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right] \\
& =\operatorname{Tr}\left[\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right] \\
& =\frac{1}{2} \operatorname{Tr}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
& =\frac{2}{2}=1 \\
& r_{y}=\operatorname{Tr}\left[\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\right\} \\
& =\operatorname{Tr}\left[\frac{1}{2}\left[\begin{array}{ll}
i & -i \\
i & -i
\end{array}\right]\right] \\
& =0 \\
& v_{z}=\operatorname{Tr}\left[\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right] \\
& =\operatorname{Tr}\left[\frac{1}{2}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\right] \\
& =0 \\
& \vec{v}=[1,0,0]
\end{aligned}
$$

b)

$$
\begin{aligned}
& \sigma_{ \pm}=\frac{1}{2}\left(\sigma_{x} \pm i \sigma_{y}\right) \\
&=\frac{1}{2}\left[\begin{array}{cc}
0 & 1 \pm i(-i) \\
1 \pm i(i) & 0
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{cc}
0 & 1 \pm 1 \\
1 \mp 1 & 0
\end{array}\right] \\
& \operatorname{Tr}\left[\rho \sigma_{ \pm}\right]=\frac{1}{4} \operatorname{Tr}\left\{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \pm 1 \\
1 \mp 1 & 0
\end{array}\right]\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
T_{r}\left[\rho \sigma_{t}\right] & =\frac{1}{4} \operatorname{Tr}\left\{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\right\} \\
& =\frac{1}{4} \operatorname{Tr}\left\{\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right] \\
& =\frac{1}{2}
\end{aligned}
$$

Similarly $\operatorname{Tr}\left[\rho \sigma_{-}\right]=\frac{1}{2}$

- Altorvaturely Trace is a linear froction

$$
\begin{aligned}
\operatorname{Tr}\left[\rho \sigma_{ \pm}\right] & =\operatorname{Tr}\left[\rho\left(\frac{\sigma_{x} \pm i \sigma_{y}}{2}\right)\right] \\
& =\frac{1}{2}\left\{\operatorname{Tr}\left[\rho \sigma_{x}\right] \pm i \operatorname{Tr}\left[\rho \sigma_{y}\right]\right\} \\
& =\frac{1}{2}\left\{r_{x} \pm ; r_{y}\right\}
\end{aligned}
$$

c) If $\hat{\rho}$ is pure then \vec{r} lies on the suappree of the Nock uptere: $|\vec{r}|^{2}=1$

$$
\begin{aligned}
\hat{\rho}^{2} & =\frac{1}{4}[\hat{I}+\vec{r} \cdot \vec{\sigma}]^{2} \\
& =\frac{1}{4}\left[\hat{I}+2 \vec{r} \cdot \vec{\sigma}+(\vec{r} \cdot \vec{\sigma})^{2}\right]
\end{aligned}
$$

woe

$$
\begin{aligned}
(\vec{r} \cdot \vec{\sigma})^{2}= & \left(r_{x} \sigma_{x}+r_{y} \sigma_{y}+r_{z} \sigma_{z}\right)^{2} \\
= & r_{x}^{2} \sigma_{x}^{2}+r_{x} r_{y} \sigma_{x} \sigma_{y}+r_{x} r_{y} \sigma_{x} \sigma_{z} \\
& +r_{y} r_{x} \sigma_{y} \sigma_{x}+r_{y}^{2} \sigma_{y}^{2}+r_{y} r_{z} \sigma_{y} \sigma_{z} \\
& +r_{z} r_{x} \sigma_{z} \sigma_{x}+r_{z} r_{y} \sigma_{j} \sigma_{y}+r_{z}^{2} \sigma_{j}^{2} \\
= & {\left[r_{x}^{2}+r_{y}^{2}+r_{z}^{2}\right] I+r_{x} r_{y}\left[\sigma_{z}, \sigma_{y}\right] } \\
& +r_{y} r_{z}\left[\sigma_{y}, \sigma_{z}\right]+r_{z} r_{x}\left[\sigma_{z}, \sigma_{x}\right] \\
= & |r|^{2} I+2 ;\left[r_{x} r_{y} \sigma_{z}+r_{y} r_{z} \sigma_{z}\right. \\
& \left.+r_{z} r_{x} \sigma_{y}\right]
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \hat{\rho}^{2} & =\frac{1}{4}\left[I\left(1+|v|^{2}\right)+2\left[r_{x}+i r_{y} r_{j}, r_{y}+i r_{y} r_{x}, r_{y}+i r_{x} r_{y}\right] \cdot \vec{\sigma}\right] \\
& =\frac{1}{4}\left[I\left(1+\mid r^{2}\right)+2 \vec{r}^{\prime} \cdot \vec{\sigma}\right]
\end{aligned}
$$

So for pure innate

$$
\begin{aligned}
& \text { are tate } \\
& \begin{aligned}
\hat{\rho}^{2}= & \frac{1}{2}\left[I+\vec{r}^{\prime} \cdot \vec{\sigma}\right] \\
r\left[\hat{\rho}^{2}\right] & =\frac{1}{2} \\
& \operatorname{Tr}[I] \\
& =1
\end{aligned}
\end{aligned}
$$

Ces

$$
\hat{\rho}=(1-\varepsilon) 100 \times 00|+\varepsilon| \phi^{+} \times \phi^{+1}
$$

where $\left.\quad\left|\phi^{\dagger}\right\rangle=\frac{1}{\sqrt{2}}[100\rangle+|11\rangle\right]$

$$
\begin{aligned}
\hat{\rho} & =\left[\begin{array}{cccc}
1-\varepsilon & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cccc}
\varepsilon / 2 & 0 & 0 & \varepsilon / 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\varepsilon / 2 & 0 & 0 & \varepsilon / 2
\end{array}\right] \\
& =\left[\begin{array}{cc:cc}
1-\varepsilon / 2 & 0 & \varepsilon / 2 \\
0 & -0 & 0 & 0 \\
0 & 0 & 0 & \varepsilon / 2
\end{array}\right] \\
\hat{\rho}^{P T} & =\left[\begin{array}{cccc}
1-\varepsilon / 2 & 0 & 0 & 0 \\
0 & 0 & \varepsilon / 2 & 0 \\
0 & \varepsilon / 2 & 0 & 0 \\
0 & 0 & 0 & \varepsilon / 2
\end{array}\right]
\end{aligned}
$$

Evigenvalues of $\hat{\rho}^{P T}:\{1-\varepsilon / 2, \varepsilon / 2, \varepsilon / 2,-\varepsilon / 2\}$
Ore eigenvalue is clways negative hence thes atate is always entangled.

Q 6

$$
\begin{aligned}
& \hat{\rho}=\frac{(1-\varepsilon)}{4} \hat{I}+\varepsilon\left|\psi^{-} \times \psi^{-}\right| \\
& \text {wher } \quad\left|4^{-}\right\rangle=\frac{1}{\sqrt{2}}\{|01\rangle-|10\rangle\} \\
& \hat{\rho}=\frac{1-\varepsilon}{4}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]+\frac{\varepsilon}{2}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
(1-\varepsilon) / 4 & 0 & 0 & 0 \\
0 & (1+\varepsilon) / 4 & -\varepsilon / 2 & 0 \\
0 & -\varepsilon / 2 & (1+\varepsilon) / 4 & 0 \\
0 & 0 & 0 & (1-\varepsilon) / 4
\end{array}\right] \\
& \operatorname{Tr}\left[\hat{\rho}^{2}\right]=\operatorname{Tr}[\cdots] \\
& =\left[\frac{(1-\varepsilon)}{h}\right]^{2}+\left[\frac{1+\varepsilon}{h}\right]^{2}\left[-\frac{\varepsilon}{2}\right]^{2}+\left[-\frac{\varepsilon}{2}\right]^{2}\left[\frac{1+\varepsilon}{4}\right]^{2}+\left[\frac{1-\varepsilon}{4}\right]^{2} \\
& =\frac{2}{16}(1-\varepsilon)^{2}+\frac{2 \varepsilon^{2}}{4(16)}(1+\varepsilon)^{2} \\
& =\frac{1}{32}\left[\varepsilon^{4}+3 \varepsilon^{3}+5 \varepsilon^{2}-8 \varepsilon+4\right]
\end{aligned}
$$

For $\hat{\rho}$ to be pure

$$
\begin{aligned}
& \operatorname{Tr}\left[\hat{\rho}^{2}\right]=1 \\
& \varepsilon=\{1.77,-2,-1.38 \pm 2.44 i\}
\end{aligned}
$$

Hence $\hat{\rho}$ is not puire.

Q 7
a) Using the Schrodinger Equation

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle & =\hat{H}|\psi(t)\rangle \\
\frac{\partial}{\partial t}|\psi\rangle & =-\frac{i \hat{H}}{\hbar}|\psi\rangle
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} \hat{\rho} & =\frac{d}{d t}\left[\sum_{k} w_{k}\left|\psi_{k} \times \psi_{k}\right|\right] \\
& =\sum_{k}\left(\frac{\partial w_{k}}{\partial t}\right)\left|\psi_{k} X \psi_{k}\right| \\
& +\sum_{k} w_{k}\left\{\left[\frac{\partial\left|\psi_{k}\right\rangle}{\partial t}\right]\left\langle\psi_{k}\right|+\left|\psi_{k}\right\rangle\left[\frac{\partial\left\langle\psi_{k}\right|}{\partial t}\right]\right\}
\end{aligned}
$$

* A sumption, the states $\left.1 \psi_{k}\right\rangle$ wore no $\frac{\partial w_{k}}{\partial t}=0$

$$
\begin{aligned}
& \text { sumption, the states }\left|\psi_{k}\right\rangle \text { wove ho } \frac{\omega_{k}}{\partial t} \\
&=\sum_{k} w_{k}\left\{\frac{-i \hat{H}}{\hbar}\left|\psi_{k} \times \psi_{k}\right|+\frac{i \dot{H}}{\hbar}\left|\psi_{k} X \psi_{k}\right| \hat{H}\right\} \\
&=\frac{-i \hat{H}}{\hbar} \hat{\rho}+\frac{i+}{\hbar}+\frac{i \hat{\rho} \hat{H}}{\hbar} \\
&=\frac{-i}{\hbar}[\hat{H} \hat{\rho}-\hat{\rho} \hat{H}] \\
& \frac{d \hat{\rho}}{\partial t}=\frac{-i}{\hbar}[\hat{H}, \hat{\rho}]
\end{aligned}
$$

b)

$$
\begin{aligned}
U & =\exp [-i H t / \hbar] \\
& =\exp \left[-i\left[\frac{\hbar w \sigma_{z}}{2}\right] \frac{t}{\hbar}\right] \\
& =\exp \left[-i w \sigma_{z} t / 2\right] \\
U^{+} & =\exp \left[i w \sigma_{z} t / 2\right] \\
\hat{\rho}(0) & =\frac{\hat{I}+\sigma_{z}}{2}
\end{aligned}
$$

Then
where $\quad U \sigma_{x} U^{+}=e^{-i \omega t / 2 \sigma_{z}} \sigma_{x} e^{i \omega t / 2 \sigma_{z}}$

* Vain the relation $e^{-i \theta C} A e^{i \theta C}=A \cos (\theta)+B \sin (\theta)$
shared in lars, where: $[A, B]=i C$

$$
\begin{aligned}
& \text { shared in cars, where : let } c=2 \sigma_{z}, \theta=\frac{\omega t}{h} \\
& \Rightarrow \quad \begin{aligned}
{\left[\sigma_{x}, \sigma_{y}\right] } & =2 i \sigma_{z}, \sigma_{x} \\
U & =e^{-i \theta c} A e^{i \theta c} \\
& =\sigma_{x} \cos \left(\omega^{t} / 4\right)+\sigma_{y} \sin (\omega t / n)
\end{aligned} \\
& \text { Then } \hat{\jmath}(t)=\frac{1}{2}\left[\hat{I}+\left\langle\cos \left(\omega^{t} / 4\right), \sin \left(\omega^{t / n}\right), 0\right\rangle \vec{\sigma}\right]
\end{aligned}
$$

c) $\vec{v}(t)=\langle\cos (\omega t / 4)$, $\sin (\omega t / 4), 0\rangle$
$\vec{r}(t)$ agoint t

On the Block phere,

Ce

$$
v=\hat{v}_{\text {wat }} \otimes \hat{u}_{H}
$$

where

$$
\begin{aligned}
& \text { where } \\
& U_{1}=\hat{1} \otimes \hat{U}_{H} \\
& U_{2}=\hat{1} \otimes\left|0 X 01+\sigma_{x} \otimes\right| 1 X \mid 1 \quad, \sigma_{x} \equiv \hat{N} \\
& u=U_{2} U_{1} \\
&=\left[\hat{I} \otimes 10 X 01+\sigma_{x} \otimes \mid 1 X \| 1\right]\left[\hat{I} \otimes \hat{U}_{H}\right] \\
& \Rightarrow U=I \otimes 10 \times 01 \hat{U}_{H}+\sigma_{x} \otimes|1 X| 1 \hat{U}_{H} \\
& u^{+}=I \otimes U_{H} 10 \times 01+\sigma_{x} \otimes U_{H}|1 X| 1
\end{aligned}
$$

* Ding the mathis representation

$$
\begin{aligned}
& \text { the mathis representation } \\
& \begin{aligned}
u & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \otimes\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right]
\end{aligned} \$. \$ \text {. }
\end{aligned}
$$

$$
8 \cdot 2
$$

- Sinichasly

$$
\begin{aligned}
U^{+} & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \otimes\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

- Checting

$$
\begin{aligned}
U U^{+} & =\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]=\hat{I}
\end{aligned}
$$

Then $\hat{\rho}_{2}=U \hat{\rho}_{m} U^{+}$

$$
=\frac{1}{4}\left(\frac{1}{2}\right)\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

$$
=\frac{1}{8}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
3 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

$$
\Rightarrow \hat{\rho}_{2}=\frac{1}{8}\left[\begin{array}{rrrr}
3 & 0 & 0 & 3 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
3 & 0 & 0 & 3
\end{array}\right]
$$

* Tabing partial houce to find the rednced mathix

$$
\begin{aligned}
\rho_{B} & =\operatorname{Tr}_{A}\left[\hat{\rho}_{2}\right] \\
& =\frac{1}{8}\left[\begin{array}{ll}
3+1 & 0+0 \\
0+0 & 1+3
\end{array}\right] \\
& =\frac{1}{8}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\frac{\hat{I}}{2}
\end{aligned}
$$

