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1 Abstract

Many natural systems of interest have non-linear dynamics, the dynamics are
complex. Linearization reduces the complexity. To solve such linear systems,
many classical methods exist. Harrow, Hassidim and Lloyd presented a quantum
algorithm to solve such linear systems. In this project, HHL algorithm is used
to solve a linear system of equations, the algorithm is simulated in python using
qiskit library and then the program is run on a quantum computer. The results
of quantum simulation and quantum computer are then compared.

2 Introduction

To study the evolution of systems with non-linear dynamics, the systems are
linearized at their equilibrium points. Most data-processing techniques use lin-
earized versions of systems, but as the data becomes large, solving these systems
requires more computational resources. The fastest known classical method
solves linear systems in polynomial time. Quantum Computing promises an
exponential speed over the classical methods, but it suffers from limitations in
actual hardware implementations[7].

An algorithm to solve a linear system of equations was presented by Harrow,
Hassidim and Lloyd [5]. The general form of a linear system of equations is
shown in (1). There areM equations with M unknown variables. A is aM ×M
matrix and is assumed to be Hermitian i.e. it is the conjugate transpose of
itself (2). A and b⃗ are known, while x⃗ is the unknown vector whose solution we
desire. Dimensions of x⃗ and b are M × 1. If A is not Hermitian then it can be
converted into a Hermitian matrix A′ as shown in (3), then the resulting system
of equations is shown in (4,5,6)[5].

Ax⃗ = b⃗ (1)

A = (A∗)T (2)

A′ =

[
0 A
A∗ 0

]
(3)
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x⃗′ =

[
0
x⃗

]
(4)

b⃗′ =

[
b⃗
0

]
(5)

A′x⃗′ = b⃗′ (6)

To solve a linear system with M unknowns we need m qubits where

m = log2(M) (7)

M = 2m (8)

To represent the vectors x⃗ and b⃗ as quantum states, we need to re-scale them
into unit vectors. This is done by dividing the vectors with their norms as shown
in (9,10) [1].

|b⟩ = b⃗

||b||
(9)

|x⟩ = A−1⃗b

||A−1⃗b||
(10)

2.1 Classical Methods for Solving Linear System of Equa-
tions

Gaussian Elimination and Conjugate Gradient Method are, traditionally, used
to solve a linear system of equations.

In Gaussian Elimination, row reduction techniques applied on A are applied
on b⃗ as well. A is transformed into identity and the resultant b⃗ vector, after
the sequence of operations, is the solution vector x⃗ [3]. The Complexity of this
method is O(M3). There are forms, other than identity, that matrix A can be
reduced to but is not elaborated further in the report.

In Conjugate Gradient Method, an initial guess is used as a starting point,
and then the direction of the steepest descent is determined. It is much faster
than the Gaussian Elimination with complexity of O(M) [7]. It is an iterative
algorithm[2] that is applicable on sparse systems which are too large to be
handled using direct methods.

2.2 Quantum Mechanical Concepts

2.2.1 Superposition

It is just a linear combination of 2 or more basis states as shown in (11). Where
the coefficients co and c1 are complex numbers. Typically, superposition can
be created using a Hadamard Gate. It does not have a classical counterpart
(unlike the Not gate). It creates equal superposition (equal probability) of the
basis states.

|ψ⟩ = co |0⟩+ c1 |1⟩ (11)
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2.2.2 Entanglement

When 2 or more states cannot be represented as a tensor product of the indi-
vidual qubits, the states are said to be entangled. A completely entangled state
is shown in (12)

|ψ⟩ = c0 |00⟩+ c1 |11⟩ (12)

2.2.3 Eigenvalue and vectors

We can decompose every non-zero square matrix into a product of its eigenvec-
tors and a diagonal matrix containing all the eigenvalues, this procedure is also
called Eigenvalue Decomposition shown in (13).

A = V⃗ −1λV⃗ (13)

The eigenvalues are scalars and each eigenvalue has an eigenvector associated
with it. If you pass an eigenvector of matrix A as an input to the matrix A then
the output is a scaled version of the same eigenvector.

2.2.4 Controlled Operation

The controlled gate has a target qubit and a control qubit, the gate operates
on the target qubit only when the control qubit is in the state |1⟩, if the control
qubit is in the state |0⟩, then the target qubit passes through the gate as is.

2.3 Types of Encoding

2.3.1 Hamiltonian Encoding

The Hamiltonian represents the total energy of a system. It generates the time
evolution of the quantum states. For a hermitian matrix A, which is encoded as
the Hamiltonian of a unitary operator U , the operator U is defined as in (14).
However, A does not have to be unitary in this definition.

U = eiAt (14)

This is just one type of Hamiltonian encoding, other forms also exist.

2.3.2 Amplitude Encoding

In (11) the amplitudes or coefficients of |ψ⟩ basis vector |0⟩ and |1⟩ are c0 and
c1, respectively. In amplitude encoding, this is represented as[

c0
c1

]
(15)

where, the square of the coefficients are the probability amplitudes of the re-
spective states. Consequently, sum of square all the coefficients should be unity.∑

i

c2i = 1,∀i (16)
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2.3.3 Basis Encoding

In Basis encoding, decimal numbers are converted to their binary representation
and then the binary representation is assigned respective quantum basis states
|0⟩ and |1⟩. Example, for the decimal representation,[

0
3

]
(17)

The binary representation is [
00
11

]
(18)

Then its basis state representation is |0011⟩.

3 Mathematical Formulation

3.1 Preliminaries

To begin, there are 3 main divisions of the total qubits required to implement
the HHL algorithm. The b-register consists of m qubits, in this the information
regarding b⃗ is encoded. The c-register consists of n qubits, it has information
regarding the clock or timing of the controlled rotation part of the algorithm
[7]. In addition to b-register and c-register, a single ancillary qubit is also a part
of the algorithm. Total qubits required to implement HHL are m+n+1. HHL,
itself, consists of basically three operations:

1. Quantum Phase Estimation (QPE)

2. Ancillary Bit Rotation

3. Inverse Quantum Phase Estimation (IQPE)

QPE itself consists of 3 operations:

1. Superposition via Hadamard Gates

2. Unitary Rotation

3. Quantum Fourier Transform (QFT)

A schematic of HHL algorithm is illustrated in Figure 1. QPE is carried out
on the b-register and c-register, Hadamard gates create superposition of the
c-register which then acts as control inputs for the unitary rotations applied
to the b-register. Inverse Quantum Fourier Transform (IQFT) is applied to
the c-register. After IQFT, The ancillary qubit is then rotated and measured,
resulting in discarding of the ancillary qubit. Then the process of QPE is applied
in reverse and we obtain a solution of the x⃗.

To represent the qubits, little-endian convention is used, in this the rightmost
(ending) qubit represents the least significant bit (LSB). Ancillary qubit is the
LSB. This convention is used in qiskit as well.
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Figure 1: Schematic of HHL Algorithm [7]
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The Hamiltonian matrix A can be written as an weighted outer product
of its basis vectors. The weights would be the eigenvalues of A and the basis
vectors would be the eigenvectors of A.

A =

M−1∑
i=0

λi |ui⟩ ⟨ui| (19)

Similarly, b⃗ can also be represented as a weighted sum of the eigenvectors of A.

|b⟩ =
M−1∑
j=0

bj |uj⟩ (20)

From Eigenvalue decomposition in Section 2.2.3, taking the inverse of A would
result in

A−1 = (V⃗ −1λV⃗ )−1 = V⃗ −1λ−1(V⃗ −1)−1 = V⃗ −1λ−1V⃗ (21)

We can now simple write A−1 as

A =

M−1∑
i=0

λ−1
i |ui⟩ ⟨ui| (22)

Therefore x⃗ can be written as

|x⟩ = A−1 |b⟩ =
M−1∑
i=0

λ−1
i |ui⟩ ⟨ui|

M−1∑
j=0

bj |uj⟩ (23)

We know that ⟨ui|uj⟩ = 1 only when i = j. Hence,

|x⟩ =
M−1∑
i=0

λ−1
i bi |ui⟩ (24)

This is the result that will be stored in the b-register but it will be encoded in
the basis of |0⟩ and |1⟩. Here we do assume that the weights are normalized,
for appropriate representation as unit vectors. Since, the square of the weights
give us their respective probability amplitudes (sum of total probability can’t
be greater than 1), the squared sum of weights should be equal to 1.

All qubits are initialized at state |0⟩. The b-register has m qubits, c-register
has n qubits and there is one ancillary qubit which is the LSB, the respective
subscripts are also shown in the initial state.

|ψ0⟩ = |0⟩⊗m
b |0⟩⊗n

c |0⟩a (25)

Before Quantum Phase Estimation, the values of the b⃗ are stored in the b-
register, but these are not just the coefficients of the b⃗, but rather the probability
amplitudes of the coefficients of b⃗ [4][5].

|ψ1⟩ = |b⟩b |0⟩
⊗n
c |0⟩a (26)
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3.2 Quantum Phase Estimation

QPE is an eigenvalue phase estimation routine. The unitary operator (14) is
part of a controlled gate in the QPE routine. The phase of the eigenvalue of U
is proportional to the eigenvalue of the matrix A, this is because the eigenvalues
of U are roots of unity. Hence, after OPE the eigenvalues of A are expected to
be stored in the c-register [7].

Hadamard Gates are applied on the qubits of the c-register (clock qubits)
which would serve as the control qubits in the next operation. This results in a
superposition of the clock qubits.

|ψ2⟩ = |b⟩b (
1

2
n
2
(|0⟩+ |1⟩))⊗n

c |0⟩a (27)

The number of qubits in the c-register, n, determine the number of times the
controlled gate is applied on the b-register. If there are n qubits, these qubits
can be represented as |cn−1cn−2..c1c0⟩. If the qubit c0 is in the state |1⟩ then
the U is applied onto the b-register 20 times, if the qubit cn−1 is in the state |1⟩
then the operator U is applied onto the b-register 2n−1 times. Assume that U
has an eigenvalue e2πiθ and its associated eigenvector |b⟩, then

U |b⟩ = e2πiθ |b⟩ (28)

This results in the phase θ being encoded as the basis state in the c-register.
Because the operation is only carried out when the clock qubit is |1⟩ and that

the operation can be represented as a multiplication factor of e2πiθ2
j

with |1⟩ of
|cj⟩ [7]. Then the states of the c-register becomes

(|0⟩+ e2πiθ2
n−1

|1⟩)⊗ (|0⟩+ e2πiθ2
n−2

|1⟩)⊗ ...⊗ (|0⟩+ e2πiθ2
0

|1⟩) (29)

where the the last term is the LSB of the c-register. This (29) can be represented
as a summation

N−1∑
k=0

e2πiθk |k⟩ (30)

The State after the Unitary rotation now has the following expression

|ψ3⟩ = |b⟩b (
1√
N

N−1∑
k=0

e2πiθk |k⟩)c |0⟩a (31)

where N = 2n.
The IQFT (U†

Q) is applied to the c-register only. Note that QFT and IQFT
are just rotations that result in a change of basis.

U†
Q |k⟩ = 1√

N

N−1∑
y=0

e
−2πiyk

N |y⟩ (32)
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1√
N

N−1∑
k=0

e2πiθkU†
Q |k⟩ = 1√

N

N−1∑
y=0

N−1∑
k=0

e−2πik(θ− y
N ) |y⟩ (33)

LHS of (33) will be 1 only when y = Nθ otherwise it will be 0. We can now
rewrite the LHS as

1√
N

N−1∑
k=0

e0 |Nθ⟩ (34)

Therefore the state now becomes

|ψ4⟩ = |b⟩b |Nθ⟩c |0⟩a (35)

Because the eigenvectors of U and A are related by (14), U is also diagonal in
A’s eigenvector, |ui⟩ basis. So, if |b⟩ = |uj⟩, then

U |b⟩ = eiλjt |uj⟩ (36)

By Comparing (28) and (36), we conclude that

θ =
λjt

2π
(37)

We define a scaled version of the eigenvalue λj as (38) and using (20) we can
rewrite |ψ4⟩. Note that λ is not usually an integer, so the value of t is chosen
such that λ′ is an integer [7].

λ′j =
Nλjt

2π
(38)

|ψ4⟩ =
M−1∑
j=0

bj |uj⟩ |λ′j⟩ |0⟩a (39)

This concludes the QPE routine of HHL algorithm.

3.3 Ancillary Qubit Rotation

To extract probability amplitudes, a theoretical controlled rotation [1][6] of the
ancillary qubit is implemented.

|ψ5⟩ =
M−1∑
j=0

bj |uj⟩ |λ′j⟩ (
√
1− C2

λ
′2
j

|0⟩a +
C

λ′j
|1⟩a) (40)

Where C is a constant. When the ancillary qubit is measured, the measurement
would be either |0⟩ or |1⟩. The required measurement is |1⟩ and all the other
results will be ignored until |1⟩ is measured.

|ψ6⟩ =
1√∑M−1

j=0 | bjCλ′
j
|2

M−1∑
j=0

bj |uj⟩ |λ′j⟩
C

λ′j
|1⟩a (41)

Here, it is clear that C should be as large as possible because it determines the
probability of obtaining |1⟩. We can measure the ancillary qubit before or after
the IQPE as it serves no further purpose.
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3.4 Inverse Quantum Phase Estimation

After the measurement of the ancillary qubit, the b-register and the c-register
are in an entangled state. We need IQPE to de-entangle these 2 registers. The
solution, so far, is encoded as the amplitudes of eigenvector basis vectors |uj⟩,
if we use this as the measurement basis then the solution will be correct. But
we don’t have a way to measure in the eigenvector basis. So, only after de-
entangling can we measure the b-register in |0⟩ and |1⟩ basis.

QFT is applied on the c-register

UQ |λ′j⟩ =
1

sqrtN

N−1∑
j=0

e
2πiyλ′

j
N |y⟩ (42)

The state after QFT is

|ψ7⟩ =
1√∑M−1

j=0 | bjCλ′
j
|2

M−1∑
j=0

bj |uj⟩
C

λ′j
(

1√
N

N−1∑
j=0

e
2πiyλ′

j
N |y⟩) |1⟩a (43)

The Inverse of the controlled unitary Rotations is applied, the process is the
same except that the QPE Unitary Rotation of (14) is now U−1 as shown in
(44)

U−1 = e−iAt (44)

Using similar arguments made in QPE and taking into consideration the b-
register only, for simplicity we obtain (45)

1√
N

N−1∑
j=0

e−iλjtye
2πiyλ′

j
N |y⟩ (45)

We know, λjt = 2πθ. Therefore, the two exponential term cancel each other
out and the b-register becomes

1√
N

N−1∑
y=0

|y⟩ (46)

The complete state at this point is

|ψ8⟩ =
1√∑M−1

j=0 | bjCλ′
j
|2

1√
N

M−1∑
j=0

bjC |uj⟩
λ′j

N−1∑
y=0

|y⟩ |1⟩a (47)

Substituting the result from (24), we get

|ψ8⟩ =
C√∑M−1

j=0 | bjCλ′
j
|2

1√
N

|x⟩b
N−1∑
y=0

|y⟩ |1⟩a (48)
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It is clear that, b-register and c-register are no longer entangled. |x⟩ is now
stored in the b-register.

We complete the IQPE by applying Hadamard Gates on the c-register. Using
the result in (49), to simplify (48) we get,

(UH |0⟩)⊗n =
1√
N

N−1∑
y=0

|y⟩ (49)

|ψ9⟩ =
C√∑M−1

j=0 | bjCλ′
j
|2

|x⟩b |0⟩
⊗n
c |1⟩a (50)

From, the result of (51), it can be deduced the constant term should be equal
to 1, because |x⟩, |0⟩ and |1⟩ are unit vectors. Hence, the final result is

|ψ9⟩ = |x⟩b |0⟩
⊗n
c |1⟩a (51)
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