
Implementation of the HHL algorithm

Sameen Aziz
Roll number: 2023-10-0231

April 7, 2023

1 Abstract

Quantum computers have proven their superiority over classical computers in sev-
eral problems. Many quantum algorithms have been developed which significantly
reduce the computation time as compared to classical algorithms. One such prob-
lem is that of solving a system of linear equations. The HHL algorithm, developed
to solve a system of linear equations, provides an exponential speedup over classi-
cal methods. The HHL algorithm can only provide an approximate solution, yet
it has proven to be practical in fields such as machine learning and differential
equations. In the following sections, the mathematical formulation, as well as the
implementation of the HHL algorithm, is discussed.

2 Introduction

Quantum computers employ the principles of quantum mechanics, such as super-
position and entanglement, to perform computations much more efficiently than
their classical counterparts. For some problems, such as finding the prime factors
of a large integer, quantum computers have been able to provide exponential speed-
ups over classical computers [3]. One such domain where quantum computers have
proven their superiority over classical computers is that of linear algebra. Solving
a system of linear equations [3], quantum verification of matrix product [2], and
commutativity testing of a set of matrices [4] are some of the problems that have
been quite efficiently tackled with the help of quantum computers. In this report,
the algorithm developed to solve a system of linear equations, known as the HHL
algorithm, will be discussed.

Linear equations are of prime importance and find their applications in several
fields, such as science, engineering, economics, finance, etc. They are used to
solve differential equations and partial differential equations and are also used
in regression analysis. Several classical techniques have been developed to solve
systems of linear equations. However, as the size of the data set grows, so does

1

the computation power and time needed to solve the system of linear equations
corresponding to that data on a classical computer [3].

In 2009, Harrow, Hassidim, and Llyod proposed the HHL algorithm to solve a
system of linear equations on a quantum computer. On a classical computer,
solving a system of N linear equations in N variables takes time of order N . The
HHL algorithm can cut down this time to the order log(N) in some cases. The
HHL algorithm can prove to be useful when the user is not interested in the actual
solution vector but is rather interested in the result of applying some operator to
it. The said algorithm cannot, however, provide an exact solution to the system
of linear equations since that would require time of order N as explained below,
which eliminates the advantage it has over classical algorithms, and that may be
considered one of its limitations [3].

Let A be an N × N matrix and let b⃗ be an N -dimensional vector. Then, the
task is to find some vector x⃗ such that Ax⃗ = b⃗. Classically, we are able to find
the exact elements of the solution vector x⃗; however, as mentioned above, the
problem becomes quite an arduous one when N is large. With the help of the
HHL algorithm, we are not able to find the vector x⃗ exactly since the algorithm
stores x⃗ in the form of a quantum state |x⟩; therefore, to find all the elements of
x⃗ would require us to perform the experiment at least N times. However, if we
want to find, say, the expectation value of some operator M , that is, we want to
find ⟨x|M |x⟩, then that can be accomplished using the HHL algorithm. Moreover,
normalization, weights in different parts of space, moments, etc., are some other
functions on x⃗ that can be obtained using the HHL algorithm [3].

Furthermore, the HHL algorithm imposes a few restrictions on the system of linear
equations, which might limit its applications, such as the matrix A should be
Hermitian, should be a sparse matrix, meaning that most of its elements should
be zero, and should have a low condition number κ, where κ is a measure of how
sensitive a matrix is to perturbations [3].

Despite the seemingly slightly hopeless state of affairs, the HHL algorithm has
found its applicability in machine learning, such as solving the problem of least-
squares fitting efficiently [6]. The HHL algorithm was also applied to the finite
element method, which finds numerical approximations to the solutions of bound-
ary value problems for partial differential equations [5].

3 Mathematical Formulation

Let us begin by writing the equation Ax⃗ = b⃗ in the language of quantum mechanics,
where A, x, and b are used as defined above.

A|x⟩ = |b⟩.

Applying A−1 on both sides gives the following

|x⟩ = A−1|b⟩.

2

A can be written in terms of its eigenvalues and eigenvectors as

A =
N−1∑
i=0

λi|ui⟩⟨ui|,

where |ui⟩ is an eigenvector of A corresponding to the eigenvalue λi and λi ∈ R
for all values of i. Similarly,

A−1 =
N−1∑
i=0

λ−1
i |ui⟩⟨ui|.

Let us say we are given the quantum state |b⟩ =
∑

i bi|i⟩. Then |b⟩ can be written
in the eigenbasis of A as

|b⟩ =
N−1∑
j=0

bj|uj⟩,

where bj ∈ C. Then,

|x⟩ =

(
N−1∑
i=0

λ−1
i |ui⟩⟨ui|

)
N−1∑
j=0

bj|uj⟩,

|x⟩ =
N−1∑
i=0

N−1∑
j=0

λ−1
i bj|ui⟩⟨ui|uj⟩,

but ⟨ui|uj⟩ = δij, and δij = 1 only when i = j. Thus, we are left with

|x⟩ =
N−1∑
i=0

λ−1
i bi|ui⟩.

which is our desired solution vector [1].

An overview of how this algorithm is implemented is given below. However, the
actual implementation and a detailed explanation of the methodology have not
been made a part of this report.

To implement the HHL algorithm on a quantum computer, we begin by creating
two quantum registers, both of which are initialized to |0⟩. One of these is used to
store the solution vector |x⟩ and is denoted by nb and also, N = 2nb . The other
one is used to store the eigenvalues of A and is denoted by n. There is also an
auxiliary qubit denoted by |0⟩a, which will be measured at the end [1].

Now since A and A−1 are not unitary, A−1 cannot be directly applied to |b⟩. A
can, however, be made unitary in the following manner

U = eiAt.

Here, U is a unitary matrix whose eigenvalues and eigenvectors are the same as
those of A. Thus, we can apply quantum phase estimation on U to estimate the
eigenvalues of A [3].

3

Let’s say the initial state of the system looks like

|ψ⟩0 = |0⟩nb
|0⟩n|0⟩a,

Then, the state |b⟩ is fed into the register labeled as nb.

|ψ⟩1 = |b⟩nb
|0⟩n|0⟩a.

Then, Quantum Phase Estimation (QPE) is applied, after which the state looks
like

|ψ⟩2 =
N−1∑
j=0

bj|uj⟩nb
|λ̃j⟩n|0⟩a.

After this, the ancilla qubit is rotated, and we get

|ψ⟩3 =
N−1∑
j=0

bj|uj⟩nb
|λ̃j⟩n

(√
1− C2

λ̃j
2 |0⟩a +

C

λ̃j
|1⟩a

)
,

where C is some normalization constant. The next step is to apply inverse QPE,
after which we obtain the following state

|ψ⟩4 =
N−1∑
j=0

bj|uj⟩nb
|0⟩n

(√
1− C2

λ̃j
2 |0⟩a +

C

λ̃j
|1⟩a

)
.

Then, as the final step, the auxiliary qubit is measured. If the outcome is |0⟩a,
the computation is repeated. If we get |1⟩a as our measurement outcome, then the
final state of the register is

|ψ⟩5 =
1√∑N−1

j=0 | bjC
λ̃j

|2

N−1∑
j=0

bjC

λ̃j
|uj⟩nb

|0⟩n.

which corresponds to the solution vector|x⟩ [1].

References

[1] Hector Jose Morrell Jr au2, Anika Zaman, and Hiu Yung Wong. Step-by-step
hhl algorithm walkthrough to enhance the understanding of critical quantum
computing concepts, 2023.

[2] Harry Buhrman and Robert Spalek. Quantum verification of matrix products,
2005.

[3] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Physical Review Letters, 103(15), oct 2009.

[4] Yuki Kelly Itakura. Quantum algorithm for commutativity testing of a matrix
set, 2005.

[5] Ashley Montanaro and Sam Pallister. Quantum algorithms and the finite ele-
ment method. Physical Review A, 93(3), mar 2016.

[6] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data
fitting. Phys. Rev. Lett., 109:050505, Aug 2012.

4

	Abstract
	Introduction
	Mathematical Formulation

