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Abstract

Let G be a finite abelian group and X be a finite set. Consider a function
f : G → X that is periodic and distinct on each coset in G of a subgroup K of G.
Does there exist a quantum algorithm to find this subgroup K? This is called the
hidden subgroup problem, and can be regarded as a generalisation of a large class of
computational problems that involve finding the period of a periodic function, such
as Shor’s factoring algorithm, discrete logarithms, order of a permutation, and so
on. In this report, we discuss a solution to the hidden subgroup problem, and apply
it to some specific instances.

1 Introduction
If one carefully analyzes some major quantum algorithms, it is discovered that their basic
structure consists in finding a solution to a query pertaining to a function f from a
finite set A to another finite set B. In general, the action of this function is typically
described by means of a certain unitary operator U acting on a set of n quantum registers
|a1⟩, . . . , |an−1⟩, |b⟩ such that U |a1⟩ · · · |an⟩ → |a1⟩ · · · |an−1⟩|b ⊕ f(a1, . . . , an−1)⟩, i.e. the
last register stores the effect of applying the function to the preceding registers. The
query one wishes to solve depends on the specific problem at hand. For instance, in the
Deutsch algorithm, we wish to find the bias of a function on a bit-valued function on an
n-bit string. In other problems, such as order-finding, factoring and discrete logarithms,
one uses the quantum Fourier transform to estimate the eigenvalues of U , which, owing
to the specific form of f , are directly related to the object one seeks, e.g. the order,
factor or the discrete logarithm of a positive integer. What unites all of these seemingly
disparate problems is the fact that in each case, the function f acts on the domain A in
a manner that makes it possible to abstract from these specific problems to a much more
general problem using tools from group theory. For instance, in the Deutsch algorithm,
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the bias of the function depends on how the function acts on the subsets of {0, 1}, while
in the other three problems mentioned above, the function is periodic, and what we seek
is precisely its period, which, again, depends on how the function acts on different “parts”
of its domain. These are all specific instances of a function being distinct and constant on
the cosets of a subgroup of a group. Therefore, all these different problems – and many
others, as we shall see – can be reduced to the problem of finding that subgroup. This
is known as the hidden subgroup problem, which, in the case of a finite abelian group, is
fully solvable in a polynomial amount of elementary quantum operations.

2 Mathematical Formulation
Before we can even precisely define the hidden subgroup problem, it is necessary to un-
derstand the relevant group-theoretic concepts that are used in the formulation of the
problem. This section is devoted to that task.

2.1 Groups, subgroups, cosets, and all that

Definition 1. (Group) A group is an ordered pair (G, ∗), where ∗ is a binary operation
on the set G. The binary operation must satisfy the following axioms:

1. associativity : (a ∗ b) ∗ c = a ∗ (b ∗ c)

2. there exists an element e, called identity, in G such that a ∗ e = e ∗ a = a for all
a ∈ G

3. there exists an inverse a−1 ∈ G for each a ∈ G such that a−1 ∗ a = a ∗ a−1 = e.

For instance, the set of all invertible square matrices forms a group under matrix
multiplication. Often the multiplication operation ∗ is understood from the context, and
so we simply denote the group by G, and write a ∗ b as ab for any a, b ∈ G.

If G is a finite set, then G is called a finite group, and we denote by |G| the number of
elements in G. If the binary operation is commutative, i.e. a ∗ b = b ∗ a for every a, b ∈ G,
then the G is said to be abelian.

For example, the set of integers Z form a group under addition (Z,+). The associa-
tivity property holds for this group and identity element e = 0 and inverse a−1 = −a.
Furthermore, since addition is commutative, Z is an abelian group. But this group is, of
course, not finite. On the other hand, consider Z6 := {0, 1, 2, 3, 4, 5}, the set of integers
defined by addition modulo 6. This is a finite abelian group.

The group action of a group (G, ⋆) on set A can be defined as the map from G×A to
A such that a ⋆ b for a ∈ A and g ∈ G.

2



Definition 2. (Subgroup) A subgroup H of a group G is a nonempty subset of the group
G that is closed under inverses and products. That is, for x, y ∈ H, the inverse x−1 ∈ H
and x ∗ y ∈ H.

We write H ≤ G to denote that H is a subgroup of G. It follows from the definition
above that a subgroup is itself a group. For example, the set {0, 1, 5} is a subgroup of Z6.

Definition 3. (Group homomorphism) Two groups (G, ⋆) and (H, ⋄) are homomorphic
if there exists a map ϕ : G → H such that ϕ(a ⋆ b) = ϕ(a) ⋄ ϕ(b) for all a, b ∈ G.

Intuitively, two groups have the same group-theoretic structure or ‘look the same’ if
they are homomorphic. If a homomorphism also happens to be a bijection, then it is
called an isomorphism. Isomorphic groups are completely equivalent in the sense that
one can work in any one without loss of generality. If two groups G and F are isomorphic,
we write G ∼= F .

For example, the set of real numbers R forms a group under addition ‘+’. Similarly,
the set of nonnegative real numbers R≥0 is a group under ordinary multiplication ‘ · ’.
These two groups are homomorphic, the homomorphism being the exponential function
ex from R to R≥0. Indeed, it is easily seen that ex+y = ex · ey. Furthermore, if we restrict
the additive group to nonnegative real numbers only, then the map is also a bijection, as
can be confirmed by drawing a graph of ex. Thus (R≥0,+) ∼= (R≥0, ·).

Definition 4. (Cosets) If H is a subgroup of group G, the left coset of H in G determined
by g ∈ G is the set gH ≡ {gh | h ∈ H}. The right coset is defined similarly.

Often whether a coset is a ‘left’ or ‘right’ coset is implied by context. In the case of
abelian groups, the left coset will be equal to the left coset.

Definition 5. (Characters) Given a group G, a character is a homomorphism from G to
the group of complex numbers C under ordinary multiplication.

For instance, the function f : (R,+) → (C, ·) such that f(x) = eix is a homomorphism.
Thus it is a character of the additive group of real numbers.

Definition 6. (Dual group) The dual Ĝ of a group G is the set of all characters of G.

The dual of a group is itself a group under functional multiplication, i.e. for any
α, β ∈ Ĝ, we define α · β by (α · β)(g) = α(g)β(g) for all g ∈ G.

If G is a finite abelian group, then the number of characters of G is equal to the
number of elements in G. In other words, |Ĝ| = |G|.
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2.2 Fourier transforms over groups

Given the above definitions – particularly of characters and dual groups – we can finally
define Fourier transforms.

Definition 7. (Fourier Transform) Given the characters of group G, the Fourier trans-
form over a group G is given by

|g⟩ 7→ 1

|G|
∑
j

χj(g) |j⟩

Now that we have defined Fourier transforms, the following theorems would help us
in solving the hidden subgroup problem.

Theorem 1. For each subgroup H ⊂ G, there is a subgroup H⊥ ⊂ Ĝ, where H⊥ =
{k ∈ Ĝ | k(h) = 1 ∀h ∈ H}. The Fourier transform over G maps an equal superposition
on H to an equal superposition over H⊥:

1

|H|
∑
h∈H

|h⟩ 7→
 

|H|
|G|

∑
k∈H⊥

|k⟩

Theorem 2. The Fourier transform over G maps an equal superposition on cosets of H
to an equal superposition over cosets of H⊥.

1

|H|
∑
h∈H

|hg⟩ 7→
 

|H|
|G|

∑
k∈H⊥

χg |k⟩

Theorem 3. Fourier sampling on an equal superposition on a coset of H will yield a
uniformly random element k ∈ H.

2.3 The Hidden Subgroup Problem

We are now ready to formulate the hidden subgroup problem.
Let G be a finite abelian group and X be a finite set. Suppose that there exists a

function f : G → X that is distinct and constant on each coset of a subgroup H of G.
Thus f(g) = f(g′) if and only if g′ = hg for some h ∈ H. Suppose that we possess a
unitary operator U that performs the operation |g⟩|x⟩ → |g⟩|x ⊕ f(g)⟩, where g ∈ G,
x ∈ X and ⊕ is an appropriately chosen binary operation on X. Find the subgroup H.

As we outlined in the Introduction, many textbook quantum algorithms can be re-
garded as specific instances of the hidden subgroup problem. For example, consider the
problem of finding the period r of a periodic function f : Z → X, where X is any finite
set. In other words, we wish to find r such that f(z + r) = f(z) for all z ∈ Z. Now Z
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is a group under addition ‘+’. Consider H = {0, r, 2r, . . .} ≤ Z. It is not difficult to see
that f is constant and distinct on each coset z +H := {z, z + r, z + 2r, . . .} of H. Thus,
finding the period r is equivalent to finding the subgroup H. Fig 1 lists several other
well-known problems that are specific cases of the hidden subgroup problem; in each case,
the relevant groups, functions and subgroups are identified.

Figure 1: Specific examples of the hidden subgroup problem. Credits: Nielsen and Chuang
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