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1 Abstract

Simon’s algorithm is one of the first quantum algorithms to demonstrate an ex-
ponential speedup over classical algorithms for a specific problem. In this report,
we provide a comprehensive analysis of Simon’s algorithm, including its theoret-
ical background, implementation, and applications. We present the algorithm’s
complexity analysis and compare it to classical algorithms for solving the same
problem. Our findings demonstrate the significant potential of Simon’s algorithm
in solving complex problems that are difficult to tackle with classical algorithms.
We also discuss the quantum circuit implementation for Simon’s algorithm. In ad-
dition, we present a detailed computational code for implementing this algorithm
and analyze its time and space complexity.

2 Introduction

Quantum computing has emerged as a promising paradigm for solving computa-
tionally difficult problems in a wide range of fields, including computer science and
cryptography. Among the many quantum algorithms that have been proposed, Si-
mon’s algorithm stands out for its ability to efficiently solve the hidden subgroup
problem, which has important implications for a variety of applications. The hid-
den subgroup problem (HSP) is a topic of research in mathematics and theoretical
computer science. It is a problem of finding a subgroup of a given group that
is hidden by a function. The HSP captures problems such as factoring, discrete
logarithm, graph isomorphism, and the shortest vector problem.

In this report, we provide a comprehensive analysis of Simon’s algorithm, includ-
ing its theoretical foundations, computational implementation, and experimental
results. We begin by introducing the key concepts of quantum computing that
underlie the algorithm, including quantum superposition, entanglement, and in-
terference. We then provide a detailed explanation of Simon’s algorithm, including
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its input, output, and the steps involved in its computation. We also discuss the
applications of Simon’s algorithm in computer science and cryptography, and com-
pare its performance to classical algorithms for solving the same problem. Finally,
we present our findings on the experimental implementation of Simon’s algorithm,
including its limitations and potential future developments. Overall, this report
aims to provide a comprehensive understanding of Simon’s algorithm and its sig-
nificance in the field of quantum computing.

3 Mathematical Formulation

3.1 Simon’s Problem

We are given an unknown blackbox function f , which is guaranteed to be either
one-to-one ( 1 : 1 ) or two-to-one ( 2 : 1 ), where one-to-one and two-to-one
functions have the following properties:

One-to-One: Maps exactly one unique output for every input. An example with
a function that takes 4 inputs is:

f(1) −→ 1 , f(2) −→ 2 , f(3) −→ 3 , f(4) −→ 4

Two-to-One: Maps exactly two inputs to every unique output. An example with
a function that takes 4 inputs is:

f(1) −→ 1 , f(2) −→ 2 , f(3) −→ 1 , f(4) −→ 2

This two-to-one mapping is according to a hidden bitstring, b , where:

given
x1 , x2 : f(x1) = f(x2)

it is guaranteed :
x1 ⊕ x2 = b

Suppose we have a blackbox f , how quickly can we tell if f is one-to-one or two-
to-one? Then, if f turns out to be two-to-one, how quickly can we find out b? As
it is clear, both cases boil down to the same query of finding b .

3.2 Classical Solution

Classically, if we want to measure b with 100% certainty for a given f , we have
to check up to 2n−1 + 1 inputs, where n is the number of bits in our input. This
means checking over half of all the possible inputs until we find two cases with the
same output. We could solve the problem with our first two tries only. But if get
an f that is one-to-one, or get really unlucky with an f that’s two-to-one, then
we have to go with the full 2n−1 + 1 check . There are known algorithms that can
do the job in O(2n/2) checks (Randomized algorithm), but generally speaking the
complexity grows exponentially with n.
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Figure 1: Quantum Circuit

3.3 Quantum Solution

The quantum circuit that implements Simon’s algorithm is shown in Figure (1).
Where the query function, Qf acts on two quantum registers as:

|x⟩|a⟩ −→ |x⟩|a ⊕ f(x)⟩

In the specific case that the second register is in the state |0⟩ = |0⟩|0⟩....|0⟩ the
above equation becomes

|x⟩|0⟩ −→ |x⟩|f(x)⟩

The Simon’s algorithm acts in the following steps [1]:

3.3.1 1st step

Two input registers, each of n-qubits length, are initialized to the zero state:

|ψ1⟩ = |0⟩⊗n|0⟩⊗n

3.3.2 2nd step

Hadamard gate applies to the first register:

|ψ2⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩|0⟩⊗n
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3.3.3 3rd step

Now we apply query function Qf :

|ψ3⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩|f(x)⟩

3.3.4 4th step

We get a cerain value of f(x) after measuring the second register. Because of the
value obtained on the second register, our first register must have some specific
related values. If our second register gets f(x) value, first register must possess
two values

x and y = x⊕ b

Both of these values will be in equal superposition

|ψ4⟩ =
1√
2
(|x⟩+ |y⟩)

Notice that we have not written here the second register as it is already measured.

3.3.5 5th step

Now Hadamard gate is applied on the first register:

|ψ5⟩ =
1√
2n+1

∑
z∈{0,1}n

[(−1)x.z + (−1)y.z]|z⟩

3.3.6 6th step

Now comes the measurement of first register and it will give us result only if:

x.z = y.z

x.z = (x⊕ b).z

x.z = x.z ⊕ b.z

b.z = 0(mod 2)

We will get certain value of z whose dot product with is zero. By repeating this
algorithm n times, we will get n different values of z. In this way, we can get b
(our secret string).
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