
The Approximate Quantum Fourier Transform
(AQFT) and its Applications

Hania Shahid (24100044)
Rehan Ahmad (24100219)

Sharjeel Ahmad (24100083)

Abstract

This paper aims to showcase the mathematical apparatus behind Approximate
Quantum Fourier Transforms (AQFT) and their formulation. After establishing a solid
mathematical theory, we will then go on to show the strength of AQFT in various quan-
tum computing algorithms like periodicity estimation and quantum addition, in terms
of its resource efficiency when stacked up against mainstream computational methods.

1 Introduction
The quantum Fourier transform (QFT) plays a critical role in various quantum algorithms,
including Shor’s factoring algorithm. However, a significant challenge with implement-
ing QFT is the need for a large number of qubits, which can increase the likelihood of
decoherence. Decoherence, which arises from the entanglement of input states with the
environment, can adversely affect the accuracy and reliability of quantum computations.
To address this issue, the approximate quantum Fourier transform (AQFT) has been devel-
oped, which reduces the number of gates required for the algorithm, thereby minimizing
the impact of gate-related decoherence

In this context, we will explore the impact of using QFT and AQFT in the Shor’s algo-
rithm. Specifically, we will perform the algorithm with N = 21 and x = 9 using both QFT
and AQFT and compare the results. Additionally, we will analyze how decoherence can
affect the outcomes of both implementations. It is worth noting that AQFT can be more
efficient and robust than QFT in certain scenarios where input data may be subject to small
variations or noise. Furthermore, by reducing the number of gates needed, AQFT can
enable more efficient non-classical algorithms, leading to more powerful computations.
Through our analysis, we hope to provide insights into the trade-offs between QFT and
AQFT and how they can impact the practical implementation of quantum algorithms.

For the case of quantum addition, the AQFT significantly reduces the run-time need to
perform the algorithm. Since there are much fewer gates needed, a more efficient non-
classical algorithm can be implemented, making the computation more powerful.

2 Mathematical Formulation of AQFT

2.1 Quantum Fourier Transform
The discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples
of a function into a same-length sequence of equally-spaced samples of the discrete-time
Fourier transform (DTFT), which is a complex-valued function of frequency. The DFT is
a unitary transformation on a s-dimensional vector,

f(0), f(1), f(2), . . . , f(s− 1)

and is defined by the expression

1

f̃(c) =
1√
s

s−1∑
a=0

exp(2πiac/s)f(a) (1)

where f(a) and f̃(c) are usually complex numbers. s is assumed to be a power of 2, i.e.
s = 2L where L is some integer. We usually use powers of 2 when binary coding, for the
sake of convenience. If a and c are L-bit integers, they can be represented as:

a =
L−1∑
i=0

ai2
i; c =

L−1∑
i=0

ci2
i (2)

The quantum Fourier transform is simply the DFT but in terms of qubits instead of bits. It
is precisely the same function and can be written as

|j⟩ = 1√
N

N−1∑
k=0

exp
(
2πi

N
kj

)
|k⟩ (3)

where N = 2n where n denotes the number of qubits we are dealing with.

The product ac in (1) can be be expanded using the binary notation in (2). Let us first
expand ac and then investigate the consequences in (1).

ac = (a0c0) + 2(a0c1 + a1c0) + 22(a0c2 + a1c1 + a2c0) + . . .

+2L−1(a0cL−1 + . . .+ aL−1c0) +O(2L) (4)

Note that powers of a1c1 are not stacked together for the term (a0c1 + a1c0)2 because in
general both a1 and c1 would have 2 multiplied with them such their product would have
the power 22. Then, in terms of the binary representation, the exp(2πiac/2L) in the R.H.S.
of equation 1 becomes

exp(2πiac/2L) = exp
(
2πi(a0c0)/2

L
)
exp
(
2πi(a0c1 + a1c0)/2

L−1
)
. . .

× exp(2πi(a0cL−1 + . . .+ aL−1c0)/2). (5)

We can then write the full expression to be

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

(
2πi

2L

L−1∑
j,k=0

ajck2
j+k

)
(6)

2.2 How the QFT is approximated
Notice that from the right hand of the expression in (4) the arguments in the exponential
become smaller and smaller. In the approximate Fourier transform parameterised by an
integer m, the L − m smallest terms are neglected. In all the remaining terms the argu-
ments are then multiples of 2π

2m
.The 2mth root of unity becomes the basic element of the

approximate Fourier transform as opposed to 2nth root of unity which used in the ordinary
Fourier transform. (The ordinary Fourier transform is obtained for m = L ; when m = 1
we obtain the Hadamard transform, for which all terms but the last one is dropped.)

Keeping the above discussion in mind, the Fourier transform in (6) becomes:

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

(
2πi

2L

L−1∑
j,k=0

ajck2
j+k

)
(7)

Whenever j + k ≥ N we have terms that are of higher order than N − 1 which do not
contribute to the transform. Therefore, equation 7 becomes

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

2πi

2L

L−1∑
0≤j,k≤L−1
0≤j+k≤L−1

ajck2
j+k

 (8)

2

The condition j + k ≤ L − 1 is just saying that the power of 2 should not exceed L − 1.
On the other hand, a and b should always lie between 0 and L − 1 which is once again
encapsulated by the above equation. Both these conditions must be satisfied so that we stay
consistent with the expansion in (4).

Let us now parameterize equation 8 by an integer m which lies in the interval 0 < m < L
such that we would ignore the lower order powers in equation 4, only taking into account
powers which are greater than L−m. With that, equation 8 becomes:

|c⟩ = 1√
2L

L−1∑
a=0

|a⟩ exp

2πi

2L

L−1∑
0≤j,k≤L−1

L−m≤j+k≤L−1

ajck2
j+k

 (9)

Note that what changed from equation 8 to equation 9 is the lower bound of the sum within
the exponential. Moreover, when L = m, equation 9 reduces to the ordinary QFT.

In equation 9, since L − m ≤ j + k, the argument of exponential is some multiple of
2πi2(L−m)

2L
= 2πi

2m
. The argument of the exponential in AQFT differs from that of QFT by

2πi

2L

∑
j+k<L−m

ajck2
j+k

The execution time of the AQFT grows with ∼ Lm.

3 Periodicity Estimation

3.1 Estimating Periodicity using QFT
Our main aim is to work through a particular problem in mind. Suppose we have the
number N = 21 and our initial guess is x = 9. We apply Shor’s algorithm to find the prime
factors of r. Firstly, we choose our q such that:

2N2 > q ≥ N2 ⇒ 441 ≤ q < 882. (10)

Here, N = 21, then 441 ≤ q < 882. We choose L = 9 such that q = 512. Since m = 2L,
we get m = 18. Our initial state is of the form:

|ψ0⟩ = |0⟩⊗9|0⟩⊗18. (11)

Note that the input register must contain enough qubits to represent numbers as large as
q−1. In this case, q−1 = 511. On the other hand, the output register must contain enough
qubits to represent numbers as large asN−1. In this case, that corresponds to up to 20, and
so we need 5 qubits to represent the output. On the m-qubits, we perform the Hadamard
gate:

|ψ1⟩ =
1√
512

511∑
a=0

|a⟩ ⊗ |0⟩⊗9. (12)

We now apply the Order-finding Unitary operator:

|ψ2⟩ = U
(a)
N (

1
√
q

q−1∑
a=0

|a⟩)⊗ |0⟩⊗9

=
1√
512

511∑
a=0

|a⟩ ⊗
(
|0⟩⊗9|2a mod 21⟩

)
Which yields:

|ψ2⟩ =
1√
512

511∑
a=0

|a⟩ ⊗ |2a mod 21⟩. (13)

3

The periodicity of the function f(a) = 2a mod 21 is 6. Evaluating the modulus yields
output 1, 2, 4, 8, 16, 11,. If we expand the state for some values of a, and then collect like
terms corresponding to states in the second qubit, we get:

|ψ2⟩ =
1√
512

(|0⟩+ |6⟩+ |12⟩+ |18⟩) . . . |1⟩

+ (|1⟩+ |7⟩+ |13⟩+ |19⟩) . . . |2⟩
+ (|2⟩+ |8⟩+ |14⟩+ |20⟩) . . . |4⟩
+ (|3⟩+ |9⟩+ |15⟩+ |21⟩) . . . |8⟩
+ (|4⟩+ |10⟩+ |16⟩+ |22⟩) . . . |16⟩
+ (|5⟩+ |11⟩+ |17⟩+ |23⟩) . . . |11⟩.

We can see that the state in the second qubit is in the superposition of 6 different states,
each of which corresponds to one of the possible periods of the function f(a) = 2amod 21.
Applying the QFT on the first register yields of our state |ψ2⟩ gives:

|ψ3⟩ =
1

512

512∑
a=0

512∑
y=0

e
2πiay
512 |y⟩ |2a mod 21⟩ (14)

Suppose that after measurement, the state collapses to the states in which xa mod N
holds for some fixed value of z. For example, suppose that the state collapses to z = |8⟩,
then the corresponding values that y can take place is:

(|3⟩+ |9⟩+ |15⟩+ |21⟩)...

The smallest a such that f(a) = 8 is 3. Therefore, l = 3. On the other hand, the value
of f(a) = 8 cycles back after 6. Therefore, k = 6. Hence,

|ψ4⟩ =
1

q

q−1∑
a=0

q−1∑
y=0

e
2πiay

q |y⟩ |z⟩

|ψ4⟩ =
1

512

511∑
a=0

511∑
y=0

e
2πi(3+6r)y

512 |y⟩ |8⟩ (15)

The probability of obtaining some measurement |y⟩ |8⟩ is given by:

P (y|z) =

∣∣∣∣∣1q∑
k

e
2πi(l+rk)y

q

∣∣∣∣∣
2

P (y|8) =

∣∣∣∣∣ 1

512

∑
k

e
2πi(3+6k)y

512

∣∣∣∣∣
2

(16)

where k =
⌊
q−l−1

r

⌋
= 84.

The term |e2πil/q|2 would evaluate to 1. On the other hand, we can compute |1
q

∑
k e

2πi(rk)y/q|2

using the geometric series to obtain:
∣∣∣1q ∑k e

2πi(rk)y/q
∣∣∣2 = 1

q2

∣∣∣ e2πi(rky)/q−1
e2πiry/q−1

∣∣∣2 . Then we can

simplify further using the identity
∣∣(1− eiθ)

∣∣ = 2
∣∣sin(θ

2

)∣∣. After plugging in the particu-
lars, we obtain:

P (y|8) = 1

5122

∣∣∣∣sin(504πy/512)sin(6πy/512)

∣∣∣∣ , (17)

If we plot P (y|8) (non-normalized), we obtain spikes at 84, 168, 252, 336, 420 in the
interval y = [0, 512]:

4

0 100 200 300 400 500
0

50

100

150

200

y

f
(y
)

We would now like to put constraints for c̃ being the closest integer multiple to ⌊ q−l−1
r

⌋ =
⌊84.66⌋ = 84. We put the constraint that c̃ satisfy:

−1

2
< c̃− q

r
λ <

1

2

−1

2
< c̃− 84.66λ <

1

2
(18)

Where λ = 1, 2, 3, . . . , r. Define:

θc̃ =
2πr

q

Then P (y|8) assumes the form:

P (y|8) =

∣∣∣∣∣ 1

512

∑
k

eiθc̃ky

∣∣∣∣∣
2

(19)

As we increase the value of θc̃, the terms in the series rotate around the origin, and the sum
of these terms forms a vector that also rotates. At some point, if we keep increasing θc̃
some of the vectors will start to cancel each other out, resulting in a smaller total distance
from the origin. Therefore, to minimize the probability, we need to find the largest allowed
θc̃, which corresponds to the minimum distance from the origin. We define the angle at
which this occurs at θmax. Our argument can be summarized in the illustration below:

θc̃ θmax

Therefore, P (y|8) is minimized for the maximum value of θc̃. From equation (18), this
occurs at:

θmax ≤
πr

29
=

6π

512

For this value, from [1], we find:

P (y|8) ≥ 6

5122
1

sin2(π
2

6
512

)
≈ 4

π2

1

6

Since there are r such values of c̃, the total probability of seeing one of them is:

P (y|8) ≥ 4

π2
= 0.405 (20)

5

3.2 AQFT and Estimating Periodicity
Let us now introduce AQFT into the mix. From equation (7), we can introduce the differ-
ence between the terms of QFT and AQFT in terms of the correction function ∆(k, j).

∆(k, j) =
2π

2L

jk − L−1∑
0≤a,b≤L−1

L−m≤a+b≤L−1

kajb2
a+b

 (21)

Our aim is to find maximum bound for ∆(k, j) for various values of m with L = 9. To
begin, we make the assumption like in the paper [1] that kiji = 1 for all i so that the terms
in the AQFT is maximized. For any other value, we would have 0 < ∆(k, j) ≤ ∆max(k, j)
:

∆max(k, j) =
2π

29

jk − 8∑
0≤a,b≤8

9−m≤a+b≤8

2a+b

 (22)

For m = 1, we would have AQFT equal to the Hadamard gate and m = 8 the AQFT
would equal the QFT. Rather than use the relation ∆max = 2π

2m
(L − m − 1 + 2m−L) as

employed [1], we would aim to evaluate the sum
∑8

0≤a,b≤8
9−m≤a+b≤8

2a+b directly for various

values of m and see how this changes the probability of obtaining c̃ from equation (20).

To give some idea about how we would go about this, for m = 1, the values of a, b that
satisfy the condition a+b = 8 is the set {(8, 0), (7, 1), (6, 2), (5, 3), (4, 4), (3, 5), (2, 6), (1, 7), (0, 8)}.
Therefore, the total terms in the sum becomes 9(28) = 2304. For m = 2, we obtain all the
values corresponds to 28 in addition to the set {(0, 7), (6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6), (7, 0)}
which gives 9(28) + 8(27) = 3328. We would continue this for various values of m. The
table of result we find for S =

∑8
0≤a,b≤8

9−m≤a+b≤8
2a+b for various values of m is,

Value of m S
1 2304.
2 3328.
3 3776.
4 3968
5 4048
6 4080
7 4092
8 4096
9 4097

Table 1: Values of S for different values of m

The values of ∆max assume the form:

Values of m ∆max

1 22.00
2 9.43
3 3.94
4 1.36
5 0.60
6 0.21
7 0.06
8 0.01
9 0.00

Table 2: Maximum deviation ∆max for different values of m

6

For these various values of m, we can now introduce corrections to probability in equa-
tion (20). Once again, since we are interested in the lower bound for probability, and so we
allow the vectors to fill one half of the circle such that θmax = πr

2L
. The effect of ∆max can

then be seen as a rotation on each vector by the maximum angle ∆max.

∆max

The minimum of the probability is obtained when half of the vectors are rotated by
∆max as shown by the figure above. In this case, vectors in two areas of size ∆max cancel
each other and all we have to do is calculate geometrical sums of the vectors in the two
areas of size π

2
−∆max. In an area of that size there are q

r

(
1
2
− ∆max

π

)
vectors. Hence, the

sum in equation (19) becomes modified and reads as thus,∣∣∣∣∣∣∣
q
r (

1
2
−∆max

π)−1∑
j=0

ei
πr
q
j

∣∣∣∣∣∣∣
2

=
sin2

(
1
2
(π
2
−∆max)

)
sin2

(
π
2
q
r

)
Such that,

ProbA ≥ 2r

q2
sin2

(
1
2
(π
2
−∆max)

)
sin2

(
π
2
q
r

) ≈ 8

π2
sin2

(
1

2
(
π

2
−∆max)

)
(23)

The expression (23) is useful in our analysis because it gives us the bound for ∆max.
From equation (23), we see that for ∆max = π

2
, we have ProbA = 0. Therefore to avoid a

non-zero probability ∆max must always be bounded by: ∆max <
π
2
. For L = 9, we see that

only for the following values of m do we have non-zero probability:

m > 3 (24)

Therefore, for AQFT to give us a meaningful probability of the state P (y|⃗c), m must
have a larger value than 3. For these values,

ProbA >
8

π2
sin2

(π
4

m

L

)
(25)

From equation (25), these probabilities correspond to:

m Minimum Probability to obtain c̃
8 (QFT equivalent) 0.4058

7 0.326
6 0.250
5 0.1801
4 0.11870

Table 3: Minimum Probability to obtain c̃ for different values of m

From the table, we see that the minimum probability of obtaining the current value of
c̃ for these values of m remain significant enought that given enough reruns, AQFT is a
viable alternative to QFT.

Let us now consider the gates costs. For QFT, the number of gates required (not includ-
ing the number of swaps) is (L(L+1))

2
. The major distinction between AQFT and QFT is that

AQFT reduces the number of controlled rotations performed on each qubit. If k is the qubit
that acts as control, then AQFT imposes the constraint θjk ≡ π

2k−j <
π
2m

as discussed in [1]

7

In that case, we need n Hadamard operations (just like in a normal QFT) and (2n−m)(m−1)
2

controlled rotations. For L = 9, the number of gates required for different values of m are
as follows:

m Number of Gates Required for L = 9
8 (QFT equivalent) 45

7 42
6 39
5 35
4 30

Table 4: Number of Gates Required for L = 9 for different values of m

Therefore, using m = 4 for L = 9 reduces the number of gates required to perform
QFT by 1

3
while still obtaining a meaningful value for c̃. This insight becomes increasingly

more meaningful as we consider many real-world implementations of quantum systems
which are sensitive to gate-related decoherence. Our analysis can then be carried out for
any number of qubits L to choose a meaningful value of m that minimizes the number of
gates required while also giving a big enough probability to obtain c̃

3.3 Qiskit Code Implementation
For Qiskit Implementation, we created a code that highlights how AQFT differs from QFT
for a scalable Quantum circuit from L = 1 to L = 8 Qubits. The main insight that we uti-
lized was putting the constraint on the number of rotation gates using m. Only controlled
rotation gates that met the criterion θjk ≡ π

2k−j <
π
2m

were included in the circuit. Fur-
thermore, we carried out the Shor’s factoring on Qiskit for the case of N = 21 with the
initial guess this time being 21. For this, the most challenging part was creating a function
that carries modular exponentiation 2x mod 21. Although the task of carrying out modu-
lar exponentiation classically is not a big issue and can be achieved by exponentiation by
squaring approach, creating quantum circuit implementations for modular exponentiation
is a much more difficult task. We can develop a trial-and-error analysis for a small-scale
system like ours (512 qubits) rather than getting to the general case N. The general case is
discussed in the paper [4]. On the other hand, a good source for implementing small-scale
algorithms is [5]. The approach we utilized to implement our function was to take inspi-
ration from the case 2x mod 15 whose circuital design can be implemented from swaps
(0, 3), (3, 2), (2, 1) where 3 represents the leftmost qubit, and 0 represents the right-most
qubit. We noticed that the change for the circuit 2x mod 21 is that after 16, we have to
account for the change 11. That is, we need somehow to implement the transformation
16 ⇒ 11. By trial and luck method, we were able to find that a conditional flip achieves
this aim. Finally, we generated the periodicity of 2x mod 21, which was only achieved
in this case by introducing a threshold value of 50, below which all counts were ignored.
The reason we had to introduce this was that in our case, q

r
was not an exact integer, unlike

algorithms on the net, which usually take the case 2x mod 15 in which r divides q exactly.

4 Decoherence

4.1 Theoretical Background
Decoherence refers to the phenomenon experienced when quantum states interact with the
environment and become correlated [6]. This is because quantum information spills into
the environment, creating impure and/or mixed states, preventing them from interfering to
produce accurate results. In general, quantum computation requires a precisely calibrated
and controlled system evolution due to the probabilistic and seemingly random nature of
quantum particles like photons. Even an infinitesimally small (by classical standards) inter-
action with the environment would non-unitarily evolve the pure input quantum state into
a mixed state which can be illustrated through a reduced density operator as such [1]:

8

ρ = Trenviournment(ρtotal), (26)

Trenviournment is the trace over all the quantum states, and ρtotal is the combined density
operator of the environment and the quantum computer.

Let us now take a look at a simple mathematical model of decoherence. If we assume
that the environment effectively acts as a measuring apparatus, a single qubit in state c0 |0⟩+
c1 |1⟩ evolves together with the environment as:

(c0 |1⟩+ c1 |1⟩) |a⟩ −→ c0 |0⟩ |a0⟩+ c1 |1⟩ |a1⟩ , (27)

where states |a⟩,|a0⟩, and |a1⟩ are the states of the environment; |a0⟩, and |a1⟩ cannot
be assumed to be orthogonal, as they usually aren’t. The elements of the density matrix
evolve as

ρij(0) = ci(0)c
∗
j(0) −→ ρij(t) = ci(t)c

∗
j(t)⟨ai(t)|aj(t)⟩, (28)

where i = 0 and j = 1. These states become increasingly orthogonal as the quantum
state continuously interacts with the surroundings; however, the coefficients ci do not vary.
Eventually, the off-diagonal elements will vanish due to the ⟨a0(t)| |a1(t)⟩ element, but the
diagonal itself is not altered.

Another way to illustrate decoherence is imagining the environment as a bosonic heat
bath. This introduces phase fluctuations to the qubit states and induces random phase
fluctuations in the coefficients c0 and c1 as follows;

c0 |0⟩+ c1 |1⟩ −→ c0e
−iϕ |0⟩+ c1e

iϕ |1⟩ . (29)

The direction and the magnitude of each phase fluctuation ϕ are chosen at random
through the Gaussian distribution;

P (ϕ)dϕ =
1√
2πδ

exp

[
−1

2

(
ϕ

ρ

)2
]
dϕ. (30)

In the equation above, δ signifies the strength of the coupling to the quantum states of
the environment. The density matrix can be remodeled as ρij = ⟨cic∗j⟩ where the average
value is taken over various phase fluctuations in a specified time period. Just like before,
the off-diagonals of the density matrix tend to zero after an extended period of time.

4.2 AQFT and Decoherence
We now create a quantum network that consists of gates A and B. Gate A acts as a simple
Hadamard gate, while gate B is a two-bit state which introduces a phase factor of exp(iθjk)
to the |11⟩ state. Here, θjk = π

2k−j and this allows us to model our decoherence. Note that
we have not attached any decoherence-causing element to gate A as a single qubit opera-
tion for decoherence is computationally quick to carry out like the ion trap model [7] while
conditional two-qubit operations would change out time scale.

We introduce the quality factor of Q, which represents the probability of hitting the
closest possible integer multiple of 2L/r when the register’s state is measured after a quan-
tum evolution and/or transformation. Without decoherence, we can assume Q = 1 for
integer values of 2L/r. Now for the Quantum Fourier Transform, the quality factor is on
the order of 4/π2. Still, for the Approximate Quantum Fourier Transform of degree ’m’,
our quality factor comes out on the order of 8

π2 (
4m
πL

).

The quality factor Q acts as a function of δ and m, which showcases how strong the
system is coupled with the environment. For δ > 0, the highest value of Q is generated for
m < L, which implies that using AQFT would save for resources than QFT.

9

This result is not very surprising when considering that AQFT uses fewer gates in the
quantum network than the QFT and that introducing phase fluctuations in the B gate of
AQFT produces less decoherence. Hence by decreasing our m we are able to mitigate the
effects of decoherence at the expense of having approximation which reduces the value of
Q. This ”opportunity cost” between the two factors peaks for the maximum value of Q for
m ∈ [1, L]. This proves that for cases of decoherence, it is computationally more efficient
to use AQFT rather than QFT.

4.3 Factoring and Decoherence
In order to introduce decoherence to Shor’s algorithm, we introduce the environment as an
external system to the quantum network. The new input is as follows:

|ψ̃1⟩ =
1
√
q

q−1∑
a=0

|a, 0⟩× |ϵ⟩ , (31)

where the degrees of freedom of the external system (environment) are represented by
ϵ. At the beginning of the computation, the quantum state and environment are completely
untangled or uncorrelated. But we know for the calculation of xa mod N ; there must be
some interaction between the state and environment; this leads to the evolution as follows:

|ψ̃2⟩ =
1
√
q

q−1∑
a=0

|a, xamodN⟩× |ϵa⟩ . (32)

The state is now partially correlated with the quantum state. If the quantum bits of the
system are diagonal in the pointer basis of the environment, then decoherence has no effect
when measuring the second label of |ψ̃2⟩ the computation of the qubits for the factoring
algorithm. So for the purposes of this explanation, we mute the second label and take a
look at the first label by tracing over the environment. The result is the reduced density
matrix:

ρred =
1

q

q−1∑
a=0

′
q−1∑
a=0

′
[1− βaa′] |a⟩ ⟨a′| , (33)

where 1 − βaa′ = |⟨ϵa⟩ ϵ′a|
2 gauges the degree with which the quantum state and the

environment have become correlated. The impact of decoherence can be approximated
using a different function: 1 − βaa′ ≡ δaa′ + (1 − δaa′)β where β is a constant. β = 1
would represent a state of full decoherence while β = 0 would represent a state of full
coherence. In the limit of β −→ 1 we can quantify β as the fractional loss of information to
the environment as the state evolves. This can be written as:

Sf

Smax

= 1− (1− β)2, (34)

where Sf is the difference in entropy between the final and initial quantum computer
state, while Smax is the system’s entropy after it is completely decoherent. To clarify this,
for β ≈ 0.5, the probability of obtaining the correct and incorrect answer is almost the
same. Finally, once (1−β)−1 ∼ O(exp

[
(logN)1/3

]
), the quantum computer needs around

exp
[
(logN)1/3

]
number of trials in order to factor N . This means the quantum computer

uses just as many resources as a classical computer after a certain level of decoherence
has been reached in the system. This phenomenon of decoherence has been the largest
reason for skepticism in developing quantum computers, as the fragile nature of the system
makes decoherence almost inevitable. However, due to the emergence of techniques like
AQFT and quantum error correction, we have become more and more equipped to deal
with decoherence while maintaining algorithmic efficiency.

10

4.4 Qiskit Implementation
Decoherence was implemented on the N = 21 and x = 2 Shor’s factoring algorithm dis-
cussed in section 3.3. In order to model Decoherence over the system, the ”qiskit aer.noise”
library was imported, and the ”pauli error” function was used to generate noise in the algo-
rithm. The Pauli error was added to the controlled X-gates used in the algorithm to generate
the unitary gates needed. The computational load put on the processor to stimulate deco-
herence was immense. To subvert this issue, the number of counting qubits was reduced
to 5 in order to compile the data in a reasonable amount of time. A histogram was plotted
from the factoring algorithm’s counts with and without decoherence as shown in the figures
below:

Figure 1: Histogram with Decoherence
Figure 2: Histogram without Decoher-
ence

A threshold of over 20 counts to remove redundant data due to the non-perfect division
of 512 by 6. When comparing both figures, we can see 6 peaks for both plots that have
significantly more counts than the rest. These represent the which would lead potentially
result in the correct factors. However, on average, the plot containing decoherence has a
lower count rate for the 6 main peaks than the plot without decoherence. This is due to
the fact that the noise generated via decoherence spreads out the data over more possible
phases, which implies that the factoring algorithm would, on average, need to run more
times to reach the correct factors than if decoherence was not implemented. In a real
quantum computer, decoherence is almost inevitable. AQFT is preferred in certain cases
because it limits the amount of decoherence added in the system compared to QFT, which
may lead to greater computational efficiency.

5 Quantum Addition

5.1 A basic addition circuit
In quantum computing, addition algorithms are typically based on classical methods but
modified for reversible computation. While faster quantum addition algorithms have been
developed using carry-save techniques, they still follow a classical approach. However, it’s
possible that the most efficient addition algorithm for a quantum computer may differ sig-
nificantly from classical methods. Such an algorithm makes use of the QFT and therefore
the AQFT can also be implemented, as will be shown later.

A typical circuit for performing addition uses 3n qubits. Let us delve deeper into the
methodology for addition mod (N). There are two reversible gates required: SUM and
CARRY (shown in Figure 3).

The SUM subroutine adds the first two qubits to the third qubit in the following manner:

|i, j, k⟩ ⇒ |i⊕ j ⊕ k⟩ (35)

It is unitary and also the inverse of itself.

11

Figure 3: SUM and CARRY subroutines.

CARRY is a subroutine also used in the addition circuit and is usually read left to right.
Given the four input qubits are called c, a, b, d respectively, then CARRY operates in the
following way.

|c, a, b, d⟩ ⇒ |c, a, a⊕ b, d⊕ ab⊕ ac⊕ bc⟩ (36)

However, for the addition, we will also have to perform CARRY in the opposite direction,
from right to left. Thus, the position of the vertical bar in the diagram is put on the other
side. We call this function RCARRY which works as:

|u, x, y, v⟩ ⇒ |u, x, v ⊕ uy ⊕ xy ⊕ x⟩ (37)

This is the inverse of the CARRY function; both the CARRY and RCARRY operators are
unitary.
For performing the addition of two 3-bit numbers, the circuit in Figure 4 is employed. We
have here as input a3a2a1 and b3b2b1 and the |0⟩ as carry qubits. On the output end we
get a3a2a1 and (a + b). The carry qubits start out as |0⟩ and are also |0⟩ after the circuit
has been run. The reason they are zero is because the they serve as carry qubits during the
operation and are disentangled from the a and b qubits. At the end of the third CARRY, the
carry qubits ’carry’ appropriate information, the ai qubits are unchanged and the bi qubits
are in the state (ai ⊕ bi). Then, after applying XOR restores b3 to its original state so that
SUM can subsequently applies the mod (2) sum onto ai and bi and store the result in the
bi qubits. Having then used the carried information, the reverse carry returns the qubit back
to the input state |0⟩ without affecting the other qubits, such that the next significant sum
bit can be put into the bi qubits. Note that the last carry qubit is not restored to its original
state but is not a new state of |(a+ b)4⟩. Because the operators we have used are invertible,
the adder circuit is completely invertible. Moreover, the adder can be run backwards to
perform an operation that is somewhat a subtractor [9]. Because we are using carry qubits,
and also have a and b as input qubits, this circuit uses 3n qubits in total.

Figure 4: Circuit for addition.

5.2 Quantum Addition using QFT and thus AQFT
We now move on to finding ways to reduce the number of qubits used for the addition.
The circuit in Figure 5 uses the QFT to implement addition [10]. It starts by performing
the QFT on ai. A series of rotators that are dependent on bi being in the state |1⟩ are
applied onto the transformed ai states, which we will call |ϕ(a)⟩. To add a phase shift to

12

the complex exponentials in |ϕ(a)⟩, a circuit similar to the QFT is implemented, which uses
a number of controlled phase gates, but no Hadamard gates. So |ϕn−1(a)⟩ is transformed
to |ϕn−1(a+ b)⟩ similarly to |ϕ(a)⟩. This is repeated a total of n times. Lastly, we apply
the inverse QFT to |ϕ(a+ b⟩ to acquire the sum a+ b.

Figure 5: Adder circuit that uses the QFT.

To perform quantum addition, a series of conditional rotations that are mutually com-
mutative are utilized. This structure is similar to the quantum Fourier transform, but with
the difference that the rotations are dependent on n external bits. This feature is particularly
useful when adding classical data to quantum data.

Due to the strong similarity between the implementation of quantum addition and the QFT,
it’s not unexpected to find a more effective approximate implementation of quantum addi-
tion that utilizes the same methodology as the AQFT. If we replace the QFT and inverse
QFT in Figure 5 and the number of bits we have is compatible with the accuracy of the
AQFT, then we can create an adder circuit that is significantly more efficient.

The main distinction between quantum addition and the quantum Fourier transform (QFT)
lies in the fact that all operations in quantum addition commute with one another, while the
Hadamard transforms used in the QFT require a specific order of operations. As a result,
a quantum computer with the ability to execute multiple independent gate operations con-
currently will have a proportionally faster runtime.

Specifically, if a quantum computer can perform n2 independent 2-qubit gate operations
concurrently, quantum addition can be completed in roughly n + 1 time intervals. How-
ever, if the AQFT method eliminates rotations below a certain threshold, quantum addition
can be completed in log(2n) time intervals [3].

5.3 Implementation and Algorithms
Let us now come to actually simulating the algorithm and getting results that are significant.
To do this, we use the Qiskit library and use functions to simulate a Hadamard gate. This
Hadamard gate is then run on all the qubits in a given input register; the number of times
the Hadamard is applied is parameterized used the AQFT. A simplified version of this is
what we have tried to implement in the addition part of our code. This code can be run for
different inputs and provides a corresponding output. A more rigorous implementation of
the circuit and algorithm in Figure 5 is given in [10], with the code being in C. Although this
does not use the Qiskit library, which is only available in Python, it is a far more beautiful
implementation. However, by making use of the ease that Qiskit functions provide when
simulating quantum circuits, multiple adder circuits have been written in [8], one of which
implements the AQFT circuit as well.

13

References
[1] Barenco, Adriano, et al. “Approximate Quantum Fourier Transform and

Decoherence.” Physical Review A, vol. 54, no. 1, 1996, pp. 139–146.,
https://doi.org/10.1103/physreva.54.139.

[2] D. Coppersmith, ”An approximate Fourier transform useful in quantum factoring”,
2002, IBM Research Report, ArXiv, quant-ph/0201067v1.

[3] Thomas G. Draper, ”Addition on a Quantum Computer”, arXiv, 2000, quant-
ph/0008033.

[4] Beauregard, Stephane. ”Circuit for Shor’s algorithm using 2n+ 3 qubits.” arXiv
preprint quant-ph/0205095 (2002).

[5] Gamel, Omar, and Daniel FV James. ”Simplified Factoring Algorithms for Vali-
dating Small-Scale Quantum Information Processing Technologies.” arXiv preprint
arXiv:1310.6446 (2013).

[6] Chuang, Isaac, et al. ”Quantum computers, factoring, and decoherence”. Science, vol.
270, no. 5242, pp. 1633-1635, 1995.

[7] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Physical
Review Letters, vol. 74.20, no. 4091, 1995.

[8] Suau, Adrien, CERFACS, GitHub Repository, 2018, https:
//github.com/nelimee/quantum-tools/blob/
b9d19c6a1bdcb4e30316f152d9c441fb63ace6ec/gates/add.py

[9] A. Pittenger, “An introduction to quantum computing algorithms”, Birkhauser: 2000.

[10] Van der Lans, Mike, ”Quantum Algorithms and their Implemen-
tation on Quantum Computer Simulators”, Thesis, Delft Univer-
sity of Technology, http://resolver.tudelft.nl/uuid:
f05164dd-b853-41a1-a9e9-394cb7a1105e (2018)

14

	Introduction
	Mathematical Formulation of AQFT
	Quantum Fourier Transform
	How the QFT is approximated

	Periodicity Estimation
	Estimating Periodicity using QFT
	AQFT and Estimating Periodicity
	Qiskit Code Implementation

	Decoherence
	Theoretical Background
	AQFT and Decoherence
	Factoring and Decoherence
	Qiskit Implementation

	Quantum Addition
	A basic addition circuit
	Quantum Addition using QFT and thus AQFT
	Implementation and Algorithms

