
Implementation of HHL Algorithm for Solving a Linear Systems of

Equations

Hassaan Ahmed (21060001)

28th April 2023

1 Abstract

Many natural systems of interest have non-linear dynamics, the dynamics are complex. Linearization reduces
the complexity. To solve such linear systems, many classical methods exist. Harrow, Hassidim and Lloyd
presented a quantum algorithm to solve such linear systems. In this project, HHL algorithm is used to solve a
linear system of equations, the algorithm is simulated in python using qiskit library and then the program is
run on a quantum computer. The results of quantum simulation and quantum computer are then compared.

2 Introduction

To study the evolution of systems with non-linear dynamics, the systems are linearized at their equilibrium
points. Most data-processing techniques use linearized versions of such systems, but as the data becomes large,
solving these systems requires more computational resources. The fastest known classical method solves linear
systems in polynomial time. Quantum Computing promises an exponential speed over the classical methods,
but it suffers from limitations in actual hardware implementations[11].

An algorithm to solve a linear system of equations was presented by Harrow, Hassidim and Lloyd [8]. The
general form of a linear system of equations is shown in (1). There areM equations withM unknown variables.

A is a M ×M matrix and is assumed to be Hermitian i.e. it is the conjugate transpose of itself (2). A and b⃗
are known, while x⃗ is the unknown vector whose solution we desire. Dimensions of x⃗ and b are M × 1. If A is
not Hermitian then it can be converted into a Hermitian matrix A′ as shown in (3), then the resulting system
of equations is shown in (4,5,6)[8].

Ax⃗ = b⃗ (1)

A = (A∗)T (2)

A′ =

[
0 A
A∗ 0

]
(3)

x⃗′ =

[
0
x⃗

]
(4)

b⃗′ =

[
b⃗
0

]
(5)

A′x⃗′ = b⃗′ (6)

To solve a linear system with M unknowns we need m qubits where

m = log2(M) (7)

M = 2m (8)

To represent the vectors x⃗ and b⃗ as quantum states, we need to re-scale them into unit vectors. This is done by
dividing the vectors with their norms as shown in (9,10) [2].

|b⟩ = b⃗

||b||
(9)

|x⟩ = A−1⃗b

||A−1⃗b||
(10)

1

2.1 Classical Methods for Solving Linear System of Equations

Gaussian Elimination and Conjugate Gradient Method are, traditionally, used to solve a linear system of
equations.

In Gaussian Elimination, row reduction techniques applied on A are applied on b⃗ as well. A is transformed
into identity and the resultant b⃗ vector, after the sequence of operations, is the solution vector x⃗ [6]. The
Complexity of this method is O(M3). There are forms, other than identity, that matrix A can be reduced to
but is not elaborated further in the report.

In Conjugate Gradient Method, an initial guess is used as a starting point, and then the direction of the
steepest descent is determined. It is much faster than the Gaussian Elimination with complexity of O(M) [11].
It is an iterative algorithm[4] that is applicable on sparse systems which are too large to be handled using direct
methods.

2.2 Quantum Mechanical Concepts

2.2.1 Superposition

It is just a linear combination of 2 or more basis states as shown in (11). Where the coefficients co and c1 are
complex numbers. Typically, superposition can be created using a Hadamard Gate. It does not have a classical
counterpart (unlike the Not gate). It creates equal superposition (equal probability) of the basis states.

|ψ⟩ = co |0⟩+ c1 |1⟩ (11)

2.2.2 Entanglement

When 2 or more states cannot be represented as a tensor product of the individual qubits, the states are said
to be entangled. A completely entangled state is shown in (12)

|ψ⟩ = c0 |00⟩+ c1 |11⟩ (12)

2.2.3 Eigenvalue and vectors

We can decompose every non-zero square matrix into a product of its eigenvectors and a diagonal matrix
containing all the eigenvalues, this procedure is also called Eigenvalue Decomposition shown in (13).

A = V⃗ −1ΛV⃗ (13)

The eigenvalues are scalars and each eigenvalue has an eigenvector associated with it. If you pass an eigenvector
of matrix A as an input to the matrix A then the output is a scaled version of the same eigenvector.

2.2.4 Controlled Operation

The controlled gate has a target qubit and a control qubit, the gate operates on the target qubit only when the
control qubit is in the state |1⟩, if the control qubit is in the state |0⟩, then the target qubit passes through the
gate as is.

2.3 Types of Encoding

2.3.1 Hamiltonian Encoding

The Hamiltonian represents the total energy of a system. It generates the time evolution of the quantum states.
For a hermitian matrix A, which is encoded as the Hamiltonian of a unitary operator U , the operator U is
defined as in (14). However, A does not have to be unitary in this definition.

U = eiAt (14)

This is just one type of Hamiltonian encoding, other forms also exist.

2.3.2 Amplitude Encoding

In (11) the amplitudes or coefficients of |ψ⟩ basis vector |0⟩ and |1⟩ are c0 and c1, respectively. In amplitude
encoding, this is represented as [

c0
c1

]
(15)

2

Figure 1: Schematic of HHL Algorithm [11]

where, the square of the coefficients are the probability amplitudes of the respective states. Consequently, sum
of square all the coefficients should be unity. ∑

i

c2i = 1,∀i (16)

2.3.3 Basis Encoding

In Basis encoding, decimal numbers are converted to their binary representation and then the binary represen-
tation is assigned respective quantum basis states |0⟩ and |1⟩. Example, for the decimal representation,[

0
3

]
(17)

The binary representation is [
00
11

]
(18)

Then its basis state representation is |0011⟩.

3 Mathematical Formulation

3.1 Preliminaries

To begin, there are 3 main divisions of the total qubits required to implement the HHL algorithm. The b-register
consists of m qubits, in this the information regarding b⃗ is encoded. The c-register consists of n qubits, it has
information regarding the clock or timing of the controlled rotation part of the algorithm [11]. In addition
to b-register and c-register, a single ancillary qubit is also a part of the algorithm. Total qubits required to
implement HHL are m+ n+ 1.

HHL, itself, consists of basically three operations:

1. Quantum Phase Estimation (QPE)

2. Ancillary Bit Rotation

3. Inverse Quantum Phase Estimation (IQPE)

QPE itself consists of 3 operations:

1. Superposition via Hadamard Gates

2. Unitary Rotation

3. Quantum Fourier Transform (QFT)

A schematic of HHL algorithm is illustrated in Figure 1. QPE is carried out on the b-register and c-register,
Hadamard gates create superposition of the c-register which then acts as control inputs for the unitary rotations
applied to the b-register. Inverse Quantum Fourier Transform (IQFT) is applied to the c-register. After IQFT,
The ancillary qubit is then rotated and measured, resulting in discarding of the ancillary qubit. Then the
process of QPE is applied in reverse and we obtain a solution of the x⃗.

3

To represent the qubits, little-endian convention is used, in this the rightmost (ending) qubit represents the
least significant bit (LSB). Ancillary qubit is the LSB. This convention is used in qiskit as well.

The Hamiltonian matrix A can be written as an weighted outer product of its basis vectors. The weights
would be the eigenvalues of A and the basis vectors would be the eigenvectors of A.

A =

M−1∑
i=0

λi |ui⟩ ⟨ui| (19)

Similarly, b⃗ can also be represented as a weighted sum of the eigenvectors of A.

|b⟩ =
M−1∑
j=0

bj |uj⟩ (20)

From Eigenvalue decomposition in Section 2.2.3, taking the inverse of A would result in

A−1 = (V⃗ ΛV⃗ −1)−1 = V⃗ Λ−1V⃗ −1 (21)

We can now simple write A−1 as

A =

M−1∑
i=0

λ−1
i |ui⟩ ⟨ui| (22)

Therefore x⃗ can be written as

|x⟩ = A−1 |b⟩ =
M−1∑
i=0

λ−1
i |ui⟩ ⟨ui|

M−1∑
j=0

bj |uj⟩ (23)

We know that ⟨ui|uj⟩ = 1 only when i = j. Hence,

|x⟩ =
M−1∑
i=0

λ−1
i bi |ui⟩ (24)

This is the result that will be stored in the b-register but it will be encoded in the basis of |0⟩ and |1⟩. Here we
do assume that the weights are normalized, for appropriate representation as unit vectors. Since, the square of
the weights give us their respective probability amplitudes (sum of total probability can’t be greater than 1),
the squared sum of weights should be equal to 1.

All qubits are initialized at state |0⟩. The b-register has m qubits, c-register has n qubits and there is one
ancillary qubit which is the LSB, the respective subscripts are also shown in the initial state.

|ψ0⟩ = |0⟩⊗m
b |0⟩⊗n

c |0⟩a (25)

Before Quantum Phase Estimation, the values of the b⃗ are stored in the b-register, but these are not just the
coefficients of the b⃗, but rather the probability amplitudes of the coefficients of b⃗ [7][8].

|ψ1⟩ = |b⟩b |0⟩
⊗n
c |0⟩a (26)

3.2 Quantum Phase Estimation

QPE is an eigenvalue phase estimation routine. The unitary operator (14) is part of a controlled gate in the
QPE routine. The phase of the eigenvalue of U is proportional to the eigenvalue of the matrix A, this is because
the eigenvalues of U are roots of unity. Hence, after OPE the eigenvalues of A are expected to be stored in the
c-register [11].

Hadamard Gates are applied on the qubits of the c-register (clock qubits) which would serve as the control
qubits in the next operation. This results in a superposition of the clock qubits.

|ψ2⟩ = |b⟩b (
1

2
n
2
(|0⟩+ |1⟩))⊗n

c |0⟩a (27)

The number of qubits in the c-register, n, determine the number of times the controlled gate is applied on
the b-register. If there are n qubits, these qubits can be represented as |cn−1cn−2..c1c0⟩. If the qubit c0 is in
the state |1⟩ then the U is applied onto the b-register 20 times, if the qubit cn−1 is in the state |1⟩ then the
operator U is applied onto the b-register 2n−1 times. Assume that U has an eigenvalue e2πiθ and its associated
eigenvector |b⟩, then

U |b⟩ = e2πiθ |b⟩ (28)

4

This results in the phase θ being encoded as the basis state in the c-register. Because the operation is only
carried out when the clock qubit is |1⟩ and that the operation can be represented as a multiplication factor of

e2πiθ2
j

with |1⟩ of |cj⟩ [11]. Then the states of the c-register becomes

(|0⟩+ e2πiθ2
n−1

|1⟩)⊗ (|0⟩+ e2πiθ2
n−2

|1⟩)⊗ ...⊗ (|0⟩+ e2πiθ2
0

|1⟩) (29)

where the the last term is the LSB of the c-register. This (29) can be represented as a summation

N−1∑
k=0

e2πiθk |k⟩ (30)

The State after the Unitary rotation now has the following expression

|ψ3⟩ = |b⟩b (
1√
N

N−1∑
k=0

e2πiθk |k⟩)c |0⟩a (31)

where N = 2n.
The IQFT (U†

Q) is applied to the c-register only. Note that QFT and IQFT are just rotations that result in
a change of basis.

U†
Q |k⟩ = 1√

N

N−1∑
y=0

e
−2πiyk

N |y⟩ (32)

1√
N

N−1∑
k=0

e2πiθkU†
Q |k⟩ = 1√

N

N−1∑
y=0

N−1∑
k=0

e−2πik(θ− y
N) |y⟩ (33)

LHS of (33) will be 1 only when y = Nθ otherwise it will be 0. We can now rewrite the LHS as

1√
N

N−1∑
k=0

e0 |Nθ⟩ (34)

Therefore the state now becomes
|ψ4⟩ = |b⟩b |Nθ⟩c |0⟩a (35)

Because the eigenvectors of U and A are related by (14), U is also diagonal in A’s eigenvector, |ui⟩ basis. So, if
|b⟩ = |uj⟩, then

U |b⟩ = eiλjt |uj⟩ (36)

By Comparing (28) and (36), we conclude that

θ =
λjt

2π
(37)

We define a scaled version of the eigenvalue λj as (38) and using (20) we can rewrite |ψ4⟩. Note that λ is not

usually an integer, so the value of t is chosen such that λ̃ is an integer [11].

λ̃j =
Nλjt

2π
(38)

|ψ4⟩ =
M−1∑
j=0

bj |uj⟩ |λ̃j⟩ |0⟩a (39)

This concludes the QPE routine of HHL algorithm.

3.3 Ancillary Qubit Rotation

A subroutine to invert the eigenvalues, a controlled rotation [2][9] of the ancillary qubit is implemented. In [3],
A is chosen such that its eigenvalues are powers of 2 in order to simplify the inversion.

|ψ5⟩ =
M−1∑
j=0

bj |uj⟩ |λ̃j⟩ (

√√√√1− C2

λ̃2j
|0⟩a +

C

λ̃j
|1⟩a) (40)

Where C is a constant. When the ancillary qubit is measured, the measurement would be either |0⟩ or |1⟩.
The required measurement is |1⟩ and all the other results will be ignored until |1⟩ is measured. This is because

5

from (40), the desired result i.e. inverted eigenvalue, is a part of the coefficient of |1⟩. This inversion can be
implemented using Ry(θ), where θ is given by (67). Note that this is a non-unitary operation.

|ψ6⟩ =
1√∑M−1

j=0 |bjC
λ̃j

|2

M−1∑
j=0

bj |uj⟩ |λ̃j⟩
C

λ̃j
|1⟩a (41)

After the rotation the state would be as shown in (41). Here, it is clear that C should be as large as possible
because it determines the probability of obtaining |1⟩. We can measure the ancillary qubit before or after the
inverse quantum phase estimation.

3.4 Inverse Quantum Phase Estimation

After the measurement of the ancillary qubit, the b-register and the c-register are in an entangled state. We
need IQPE to de-entangle these 2 registers. The solution, so far, is encoded as the amplitudes of eigenvector
basis vectors |uj⟩, if we use this as the measurement basis then the solution will be correct. But we don’t have
a way to measure in the eigenvector basis. So, only after de-entangling can we measure the b-register in |0⟩ and
|1⟩ basis.

QFT is applied on the c-register

UQ |λ̃j⟩ =
1√
N

N−1∑
j=0

e

2πiyλ̃j
N |y⟩ (42)

The state after QFT is

|ψ7⟩ =
1√∑M−1

j=0 |bjC
λ̃j

|2

M−1∑
j=0

bj |uj⟩
C

λ̃j
(

1√
N

N−1∑
j=0

e

2πiyλ̃j
N |y⟩) |1⟩a (43)

The Inverse of the controlled unitary Rotations is applied, the process is the same except that the QPE Unitary
Rotation of (14) is now U−1 as shown in (44)

U−1 = e−iAt (44)

Using similar arguments made in QPE and taking into consideration the b-register only, for simplicity we obtain
(45)

1√
N

N−1∑
j=0

e−iλjtye
2πiyλ̃j

N |y⟩ (45)

We know, λjt = 2πθ. Therefore, the two exponential term cancel each other out and the b-register becomes

1√
N

N−1∑
y=0

|y⟩ (46)

The complete state at this point is

|ψ8⟩ =
1√∑M−1

j=0 |bjC
λ̃j

|2

1√
N

M−1∑
j=0

bjC |uj⟩
λ̃j

N−1∑
y=0

|y⟩ |1⟩a (47)

Substituting the result from (24), we get

|ψ8⟩ =
C√∑M−1

j=0 |bjC
λ̃j

|2

1√
N

|x⟩b
N−1∑
y=0

|y⟩ |1⟩a (48)

It is clear that, b-register and c-register are no longer entangled. |x⟩ is now stored in the b-register.

6

We complete the IQPE by applying Hadamard Gates on the c-register. Using the result in (49), to simplify
(48) we get,

(UH |0⟩)⊗n =
1√
N

N−1∑
y=0

|y⟩ (49)

|ψ9⟩ =
C√∑M−1

j=0 |bjC
λ̃j

|2
|x⟩b |0⟩

⊗n
c |1⟩a (50)

From, the result of (50), it can be deduced the constant term should be equal to 1, because |x⟩, |0⟩ and |1⟩ are
unit vectors. Hence, the final result is

|ψ9⟩ = |x⟩b |0⟩
⊗n
c |1⟩a (51)

4 Implementation Methodology

The HHL algorithm is implemented in python using the QISKIT library. First, the system is solved classically,
then a simulation is performed using QASM, finally, the algorithm is run on a Quantum Computer.

A 2× 2 system of equations is considered. The test cases have three A matrices, each with slightly different
off diagonal entries. The b⃗ is the same for all the cases. This gives a total of three test cases.

A1 =

[
1 − 1

3
− 1

3 1

]
(52)

A2 =

[
1 − 1

4
− 1

4 1

]
(53)

A3 =

[
1 − 1

5
− 1

5 1

]
(54)

b =
1√
2

[
−1
1

]
(55)

The b⃗ is a special case, because it is an eigenvector of all the A matrices in the test cases. This is important
in verifying the algorithm’s processing error. If the input to a system is the eigenvector of it’s system matrix,
then the output of the system is the same eigenvector but it is scaled by the respective eigenvalue. In our
implementation, this case would yield equal probability of measuring either states.

The Quantum circuit has 4 qubits and 2 classical bits for measurements. There is one ancillary qubit, two
qubits for the c-register and one qubit for the b-register. The ancillary qubit is the least significant qubit. In
the case where the b⃗ is not normalized, it should be first normalized before initializing the b-register otherwise
an error will occur.

There is some pre-processing required before the algorithm can be run. The steps are listed below:

1. Compute eigenvalues (λ) and eigenvectors (V) of A.

2. Set λ̃1 = 1.

3. Calculate the value of t using (56).

4. Calculate λ̃2 using (57).

5. Calculate U,U−1, U2, U−2 using (59) and (60).

6. Calculate the required phases.

t =
2πλ̃1
Nλmin

(56)

Where N is the number of qubits in the quantum circuit.

λ̃2 =
Ntλmax

2π
(57)

From (14) and (21), the diagonalized matrix Udiag would be the matrix exponential of Λ as shown in (58).
U and U2 are calculated using (59) and (60).

7

Udiag =

[
eiλot 0
0 eiλ1t

]
(58)

U = V UdiagV
† (59)

U2 = V U2
diagV

† (60)

The inverse of U is simply calculated using the builtin function of python numpy library. U−2 would be the
same as U2 because it is unitary.

To calculate the phases (ϕ, λ, θ, γ) of the controlled unitary gates, consider the general form of the 2 qubit
unitary matrix in (61). Note that γ is the global phase, since this is a multi-qubit sytems, we can’t ignore the
global phase.

UGEN =

 eiγ cos(
θ

2
) −ei(γ+λ) sin(

θ

2
)

ei(γ+ϕ) sin(
θ

2
) ei(γ+λ+ϕ) cos(

θ

2
)

 (61)

This general form can be used to calculate the phases. Because U is unitary and hermitian i.e. its on-diagonal
entries are same as well its off-diagonal entries, it would have the form of (62).

U =

[
a b
b a

]
(62)

Using (61) and (62), the expressions obtained for calculation of phases are shown in (63, 64, 65, 66).

ϕ =
π

2
(63)

λ = ϕ+ π (64)

θ =
2 tan−1(

b

a
)

eiϕ
(65)

γ =
ln(a)− ln(cos(

θ

2
))

i
(66)

The phases for rotation of the ancillary qubit were calculated using (67)

θa = 2 sin−1 1

λ̃
(67)

Once the pre-processing is done, the HHL algorithm can be run. Note that the pre-processing part has to
be done for each and every case the algorithm is fed. Inside the HHL algorithm, after initializing the b-register,
QPE is done by first applying Hadamard Gates on the c-register followed by controlled unitary rotations on the
b-register (controlled by c-register) followed by IQFT, which is a combination of Hadamard Gates, Controlled
Phase Gates and Swaps on the c-register. Ancillary Qubit Rotation is performed using controlled RY gates
and then measured. Then the Inverse Quantum Phase Estimation is carried out to finally yield our quantum
circuit. The Quantum Circuit for one of the cases is shown in Figure 2.

5 Results

5.1 Classical Solver

These system of equations are solved by using the python numpy library. The resultant x⃗ are listed below.

x⃗1 =

[
−0.5303
0.5303

]
(68)

x⃗2 =

[
−0.5656
0.5656

]
(69)

x⃗3 =

[
−0.5892
0.5892

]
(70)

Since HHL does not give an exact solution of x⃗, we are instead interested in the probability ratio of the entries
of x⃗. The probability ratio obtained is 1 for all the cases i.e. the outcomes are equally likely.

8

Figure 2: Quantum Circuit for Case 1

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3: Quantum Simulator Histograms

5.2 Quantum Simulator

There are four possible outcomes, the b-register and the ancillary qubit states can be either |0⟩ or |1⟩. The four
possible outcomes would be |00⟩, |01⟩, |10⟩ and |11⟩. We consider the two outcomes where the ancillary qubit
(LSB) is in |1⟩ only i.e. the states |01⟩ and |11⟩. The relative magnitude of the possible solutions are reflected
in the probability amplitudes of the outcomes obtained in the histogram. The histograms obtained from the
simulator for each case are shown in Figure 3.

It is already established from the classical solution, the probability ratio of the 2 outcomes should be 1. The
obtained probability ratios are 0.93, 1.09 and 0.94 for case 1,2 and 3, respectively.

5.3 Quantum Computer

The histograms obtained for each case are shown in Figure 4. The probability ratios obtained are 0.88, 1.45
and 0.91 for case 1,2 and 3, respectively. The absolute error in obtained probability ratios is plotted against
the ratio of eigenvalues (max over min) in Figure 5. The error is higher in the results obtained from a quantum
computer. Since the hardware is imperfect and that some noise affects the hardware implementation, a higher
error was expected.

5.4 Discussion

Figure 5 illustrates the eigenvalue ratio vs the absolute error (compared with the classical solution) in the two
sets of results. The maximum percentage error for the simulator was 9%, this means the accuracy was above
90% which meets the requirements of solving linear system of equations [9]. But the percentage error in the
results obtained from a quantum computer was between 9% and 45%, the performance was not satisfactory for
all but 1 case.

If the histograms are observed case for case, the number of times the desired states (|01⟩ and |11⟩) are
measured is either lower or comparable to the undesired states (|00⟩ and |10⟩). The probability of desired
outcomes is lower than the undesired outcomes for all the results from the quantum computer whereas this is

9

(a) Case 1 (b) Case 2 (c) Case 3

Figure 4: Quantum Computer Histograms

Figure 5: Eigenvalues Ratio vs Error in Probability

also untrue for Case 3 of the results from the simulator.
The error in the HHL algorithm stem from the Quantum Phase Estimation and the Eigenvalue Inversion

Routine (Ancillary Qubit Rotation). Both of these routines are sensitive to small changes i.e. a small error in
calculation of the phases can lead to a significant error in the outcome. The number of ancillary qubits used
in implementing the algorithm, in this report, is 1, the precision of the eigenvalue inversion comes at a cost of
increased number of ancillary qubits [12] [10]. However, increasing the number of ancillary qubits can introduce
other sources of error. Other causes of errors can include quantum gate errors, decoherence of quantum states,
state initialization errors and state measurement errors.

There are some methods to improve the accuracy in literature. In [13], an iterative algorithm is presented
that can improve the accuracy of HHL algorithm as well as reduce computational complexity by making a series
of simpler calculations. In [5], Quantum Singular Value Transformation is presented which can be used as an
alternative to the eigenvalue inversion routine in HHL algorithm and it has been shown that, for certain type
of matrices, the accuracy improves. The HHL requires postselection of the ancillary qubit, it has been shown
in the work of [1] that the algorithm can work postselection-free, given that some conditions are satisfied, and
reduces computational resource.

6 Conclusion

Linear system of equations is ubiquitous in data analysis. HHL allows us to explore the quantum mechanical
advantages in solving such systems. In this report, the evolution of states is presented in mathematical fashion.
The quantum circuit built using this algorithm is run on a simulator and a quantum computer. The results
obtained from simulations were satisfactory while the results obtained from a quantum computer were not.
Some possible sources of limitations in the algorithm along with some research work that has been done in
improving the algorithm were also discussed.

10

References

[1] D. V. Babukhin. Harrow-hassidim-lloyd algorithm without ancilla postselection. Physical Review A, 107(4),
apr 2023.

[2] Stefanie Barz, Ivan Kassal, Martin Ringbauer, Yannick Ole Lipp, Borivoje Dakic, Alán Aspuru-Guzik,
and Philip Walther. Solving systems of linear equations on a quantum computer. arXiv preprint
arXiv:1302.1210, 2013.

[3] Yudong Cao, Anmer Daskin, Steven Frankel, and Sabre Kais. Quantum circuit design for solving linear
systems of equations. Molecular Physics, 110(15-16):1675–1680, aug 2012.

[4] Rati Chandra. Conjugate gradient methods for partial differential equations. Yale University, 1978.

[5] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing. ACM, jun 2019.

[6] Joseph F. Grcar. How ordinary elimination became gaussian elimination. Historia Mathematica, 38(2):163–
218, 2011.

[7] Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable probability
distributions. arXiv preprint quant-ph/0208112, 2002.

[8] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations.
Physical review letters, 103(15):150502, 2009.

[9] Xiaonan Liu, Lina Jing, Lin Han, and Jie Gao. Hhl analysis and simulation verification based on origin
quantum platform. Journal of Physics: Conference Series, 2113(1):012083, nov 2021.

[10] Xiaonan Liu, Haoshan Xie, Zhengyu Liu, and Chenyan Zhao. Survey on the improvement and application
of hhl algorithm. Journal of Physics: Conference Series, 2333(1):012023, aug 2022.

[11] Hector Jose Morrell Jr, Anika Zaman, and Hiu Yung Wong. Step-by-step hhl algorithm walkthrough to
enhance the understanding of critical quantum computing concepts. arXiv preprint arXiv:2108.09004,
2021.

[12] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press, 2010.

[13] Yoshiyuki Saito, Xinwei Lee, Dongsheng Cai, and Nobuyoshi Asai. An iterative improvement method for
hhl algorithm for solving linear system of equations, 2021.

11

