
HHL Algorithm for Linear Systems of
Equations

Danial Imam (22120009), Amber Riaz (22120010)
Introduction to Quantum Information - PHY 612

April 2023

Abstract

The HHL algorithm, proposed by Aram Harrow, Avinatan Hassidim,
and Seth Lloyd in 2009, is used for solving linear systems of equations
using the principles of quantum computing. To solve such a system,
we cast our problem in the form A|x⟩ = |b⟩, where |x⟩ and |b⟩ are
normalized vectors and A is a hermitian matrix. The process involves
finding the eigenvalues of the matrix by making use of the Quantum
Phase Estimation (QPE) sub-routine. This in turn makes use of the
inverse Quantum Fourier Transform (QFT). The determined eigenval-
ues are then used to implement a controlled rotation to effectively find
the inverse of the matrix A. This allows us to calculate |x⟩ = A−1|b⟩.
The final step is to uncompute the phase estimation. We next discuss
the step by step implementation of this algorithm on physical hard-
ware and simulate the results on IBM’s quantum computers. Finally,
we compare the operation counts of the classical algorithms with the
HHL algorithm which promises an exponential boost to computation
speed.

Keywords: HHL, quantum computing, linear systems, quantum phase
estimation.

i

Contents

1 Introduction 1

2 Mathematical Formulation 1

2.1 Formulating the problem . 1

2.2 Tracing the evolution of the state 3

3 Implementation Methodology 4

3.1 Encoding |b⟩ . 6

3.2 Hamiltonian Simulation . 6

3.3 Quantum Phase Estimation 7

3.4 Ancilla Rotation . 8

3.5 Time and resource efficiency 9

4 Results 10

5 Conclusion 12

A Python Code i

B State evolution for chosen example iii

ii

1 Introduction

Linear systems of equations are widespread in many sub-fields of physics,
engineering, mathematics, finance, and computer science. Classically, the
best algorithms for solving an N ×N system, such as Gaussian elimination
which incorporates pivoting, take polynomial time, i.e., O(N3) [4]. But with
advances in these fields, we encounter ever larger systems of equations where
even polynomial time is too costly.This is where the strength of quantum
computing shines, which can offer exponential speed ups to computation
time. The HHL algorithm is one such implementation of quantum computing
principles. Introduced in 2009 by Harrow, Hassidim and Lloyd, it can be
used to solve the matrix equation A|x⟩ = |b⟩, where A is a hermitian matrix.
This quantum advantage, however, comes at the cost of detail in the output
information. To wit, the algorithm does not provide the complete solution
vector. Instead, it generates a function of the solution vector, which would
still enable the user to extract useful information about the solution vector.
This can be thought of as finding the expectation value of an operator M
acting on the solution vector as ⟨x|M |x⟩ and measuring the outcome [5, 3].

This algorithm serves as a subroutine of more advanced algorithms such as
those pertaining to Machine Learning and the modeling of quantum sys-
tems [4]. Indeed, with advances in quantum computing it may gain further
importance as its limitations are overcome.

2 Mathematical Formulation

2.1 Formulating the problem

Our problem is expressed as:

A|x⟩ = |b⟩, (1)

where A is an N × N hermitian matrix, and |x⟩ and |b⟩ are normalized
vectors. Using the spectral decomposition theorem, we can express A as:

A =
N−1∑
j=0

λj|uj⟩⟨uj|, (2)

Since A is hermitian, its eigenbasis is orthonormal. We can also calculate the
inverse of A as:

A−1 =
N−1∑
j=0

λ−1
j |uj⟩⟨uj|. (3)

1

Further, we express |b⟩ in the eigenbasis of A as:

|b⟩ =
N−1∑
i=0

bi|ui⟩. (4)

Now, the solution vector for Eq. (1) is given by:

|x⟩ = A−1|b⟩.

By substituting in equations (3) and (4) into the above, we get:

|x⟩ =

(
N−1∑
j=0

λ−1
j |uj⟩⟨uj|

)(
N−1∑
i=0

bi|ui⟩

)

=
N−1∑
j=0

N−1∑
i=0

λ−1
j bi|uj⟩⟨uj|ui⟩.

Hence:

|x⟩ =
N−1∑
j=0

λ−1
j bj|uj⟩. (5)

Note that |x⟩ is normalized, hence:

N−1∑
j=0

|λ−1
j bj|2 = 1 (6)

nl

nb

|0⟩ R̂ |1⟩

|0⟩⊗nl

QPE QPE†

|0⟩

|0⟩⊗nb Ûb |x⟩

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ |ψ5⟩

Figure 1: Circuit diagram.

2

2.2 Tracing the evolution of the state

We can trace the evolution of the state in a step-wise fashion with reference
to Fig. 1. The circuit contains three registers: the first register is based
on nb qubits, so that it can be encoded with the value of |b⟩. The size
of the |b⟩ vector is thus N × 1 where N = 2nb . The second register, also
known as the clock register, is based on nl qubits. This is meant to hold the
eigenvalues of A. The final register is a single ancilla qubit. In the diagram,
the convention followed is that the most significant bit is at the bottom and
the least significant bit is at the top.

We initialize the state as [4]:

|ψ0⟩ = |0⟩⊗nb|0⟩⊗nl |0⟩.

We encode the information for |b⟩ onto the nb register using a unitary oper-
ation Ûb such that Ûb|0⟩ = |b⟩ to obtain the following:

|ψ1⟩ = |b⟩⊗nb|0⟩⊗nl |0⟩.

Next, we apply the Quantum Phase Estimation subroutine to encode the
eigenvalues on to the nl register. This results in the following state:

|ψ2⟩ = |b⟩⊗nb|λ̃j⟩⊗nl |0⟩.

We now want to find the inverse of the eigenvalues. To this end, we apply
a controlled rotation on the ancilla qubit in the top register, based on the
value of the nl register [1]. Thus we obtain following state:

|ψ3⟩ =
N−1∑
j=0

bj|uj⟩|λ̃j⟩

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
.

In the above equation, C is a normalization constant for the third register.
The next step is to perform a measurement on the third register. The desired
outcome is |1⟩, which will result in the following state:

|ψ4⟩ =
1√∑N−1

j=0

∣∣∣ bjCλj

∣∣∣2
N−1∑
j=0

bj|uj⟩|λ̃j⟩
(
C

λj
|1⟩
)
,

where the pre-factor is there to ensure normalization post measurement. If
the measurement had resulted in the |0⟩ state, we would have repeated the

3

procedure until we obtained the desired state. With a little manipulation,
the state |ψ4⟩ becomes:

|ψ4⟩ =
C√∑N−1

j=0

∣∣∣ bjCλj

∣∣∣2
N−1∑
j=0

bjλ
−1
j |uj⟩|λ̃j⟩|1⟩.

If C is real, we can cancel it out; secondly, we make use of the normalization
condition from Eq. (6) to obtain the following simplified expression:

|ψ4⟩ =
N−1∑
j=0

bjλ
−1
j |uj⟩|λ̃j⟩|1⟩.

We then enter the uncompute stage, where we apply the inverse phase es-
timation, hence returning the nl register to the |0⟩ state. The state now
becomes:

|ψ5⟩ =
N−1∑
j=0

bjλ
−1
j |uj⟩|0⟩⊗nl |1⟩.

Now we know from Eq. (5) that |x⟩ =
∑N−1

j=0 λ
−1
j bj|uj⟩, so:

|ψ5⟩ =
N−1∑
j=0

|x⟩|0⟩⊗nl |1⟩.

We can see that the final state |ψ5⟩ is proportional to our solution vector.

3 Implementation Methodology

In this section, we explain the gate level implementation of the HHL algo-
rithm and present a worked example simulated on python.

Here we have chosen a 2× 2 hermitian matrix A such that:

A =

(
3
4

1
4

1
4

3
4

)
,

and the following |b⟩ vector:

|b⟩ =
(
0
1

)
.

4

The solution vector for this system is x =
(

− 1
2
3
2

)
, and the ratio of the squares

of the magnitudes of its components is 1 : 9 which we will later compare with
the results of the simulation to verify its accuracy.

The eigenvectors for A are |u0⟩ =

(
− 1√

2
1√
2

)
and |u1⟩ =

(
1√
2

1√
2

)
, whereas its

eigenvalues are λ0 =
1
2
and λ1 = 1. Using this information, we can diagonalize

A as follows:
A = PΛP−1.

∴ A =
1

2

(
−1 1
1 1

)(
1
2

0
0 1

)(
−1 1
1 1

)
(7)

State preparati n QPE Inverse QFT C ntr lled R tati n

QFT Inverse QPE

ancilla

clock0

clock1

b

2c

ancilla

clock0

clock1

b

2c

ψ0

X

ψ1

H

H

U

−π/2, −π/2, π/2, 3π/4
U

U2

π, 0, π, 0
U

H
P (−π/2)

H

ψ2
π
RY

π/3
RY

ψ3

0

ψ4

H
P (π/2)

H
U2 inv

π, 0, π, 0
U

U inv

−π/2, π/2, −π/2, −3π/4
U

H

H

ψ5

1

Figure 2: Simulated circuit on python.

Fig. 2 shows the python implementation of the algorithm for the above chosen
example. The state labels correspond to those used in Fig. 1 for consistency.
The code used to generate this circuit is provided in Appendix A. Detailed
calculations for state evolution for our specific example are presented in Ap-
pendix B.

We will now go through the various stages of the algorithm, first providing a

5

general explanation of the procedure and then its application to our chosen
example.

3.1 Encoding |b⟩

From a practical stand point, this can be one of the more challenging parts of
the HHL algorithm implementation. We assume that there exists an operator
that can efficiently encode the vector |b⟩ onto the first register, or that |b⟩ is
the output of a different algorithm which feeds into our circuit.

In our example, where b =

(
0
1

)
, the application of a simple not gate will

suffice.

3.2 Hamiltonian Simulation

In quantum mechanics, when given a Hamiltonian H, we can write the time
evolution of a quantum state as |ψ(t)⟩ = e−iHt/ℏ|ψ(0)⟩, where e−iHt/ℏ is a
unitary operator.

We can treat matrix A which is one of the main inputs of the HHL algorithm
as a Hamiltonian, the only precondition being that A is hermitian, as is the
case for a true Hamiltonian. However, quantum gates can only implement
unitary operations. Thus, we modify our hermitian matrix to form U = eiAt,
which is unitary. We can now use U for our Quantum Phase Estimation
subroutine. There are multiple ways to implement this operator at a gate
level, depending on the complexity of the Hamiltonian. For our numerical
example involving a single qubit vector |b⟩, U can be implemented on Qiskit
using the following four-parameter gate, with the appropriate choice of input
parameters [4]:

Uθϕγλ =

(
eiγ cos θ

2
−ei(γ+λ) sin θ

2

ei(γ+ϕ) sin θ
2

ei(γ+λ+ϕ) cos θ
2

)
. (8)

Any single-qubit unitary operation can be carried out using the above oper-
ator, and it is trivial to modify it to form a control U gate for use in QPE:

Uc = U ⊗ |1⟩⟨1|+ I ⊗ |0⟩⟨0|.

6

3.3 Quantum Phase Estimation

A unitary matrix acting on its eigenvector is represented as follows:

U |u⟩ = ei2πϕ|u⟩. (9)

If the unitary matrix is of the form U = eiAt, with A being a hermitian
matrix bearing the eigenvalues λi, then Eq. (9) can be written as:

eiAt|u⟩ = eiλit|u⟩. (10)

Comparing Eq. (9) and (10), we obtain:

ϕi =
λit

2π
. (11)

If the input vector is not an eigenvector of the unitary operator, it can be
expressed as a linear combination of the eigenvectors, and due to the linearity
of operators, the transformation acts on each of these eigenvectors.

The Quantum Phase Estimation (QPE) process acts on the clock register as
|0⟩⊗nl → |ϕi2

nl⟩ = |λ̃i⟩. Using Eq. (11), we can write the output of the QPE
as:

|λ̃i⟩ =
λit2

nl

2π
.

In our example, nl = 2 and, in order to obtain integer values, t is chosen to
be π. Hence we obtain:

|λ̃0⟩ = |110⟩ = |012⟩,
|λ̃1⟩ = |210⟩ = |102⟩.

(12)

This is an instance of Basis Encoding, where the eigenvalue is mapped onto
the computational basis of the qubits, which involves the use of the binary
representation of the eigenvalues [1].

Next, given that A is a hermitian matrix we can exponentiate it to create
a unitary operator U = eiAt. We can determine the exact form of U by
comparing with Eq. (7):

U =
1

2

(
−1 1
1 1

)(
i 0
0 −1

)(
−1 1
1 1

)
where the diagonal elements of the second matrix are obtained by:

eiλ0t = ei
π
2 = i,

eiλ1t = eiπ = −1.

7

Hence:

U =
1

2

(
−1 + i −1− i
−1− i −1 + i

)
, (13)

and

U2 =

(
0 1
1 0

)
. (14)

In order to implement U and U2 in the simulated circuit in Fig. 2, we make
use of the four parameter unitary gate from Eq. (8).

By setting θ = −π
2
, ϕ = −π

2
, λ = π

2
, and γ = 3π

4
in Eq. (8), we can implement

U . Next, by setting θ = π, ϕ = 0, λ = π, and γ = 0, we can implement U2.

Applying the inverse of QPE at the end of the algorithm is a simple matter of
finding the inverse of each unitary gate and applying it in reverse order. We
can clearly see from Eq. (14) that U2 is real and symmetric, hence (U2)−1 =
(U2)† = U2. Next, we can easily find the inverse of U by conjugating and
transposing it:

U−1 = U † =
1

2

(
−1− i −1 + i
−1 + i −1− i

)
.

We can implement this using the four parameter arbitrary unitary gate from
Eq. (8) by setting θ = −π

2
, ϕ = π

2
, λ = −π

2
, and γ = −3π

4
.

3.4 Ancilla Rotation

At this stage of the algorithm, we wish to encode the inverse of the calculated
eigenvalue onto the amplitude of the ancilla register as follows:

|0⟩ → 1

λ̃
|0⟩.

Such a transformation, however, is not possible. Instead, we apply the fol-
lowing change on the ancilla qubit:

|0⟩ →

√
1−

(
C

λ̃

)2

|0⟩+ C

λ̃
|1⟩, (15)

In order to affect the above change, we must apply the controlled rotation
Ry(θi). C must be chosen such that it is not larger than the smallest eigen-
value, so as not to disturb normalization. In our example, we set C = 1.

By comparing Eq. (15) with the representation of an arbitrary quantum state
|ψ⟩ = cos(θ

2
) + eiϕ sin(θ

2
), we can determine the required angle of rotation:

θi = 2arcsin
1

λ̃i
. (16)

8

Hence, for λ̃0 = 1, we find that θ0 = π, and the required rotation is Ry(π).
For λ̃1 = 2, we find that θ1 =

π
3
, and the required rotation is Ry(

π
3
).

In effect, we want to apply [4]:

Θ(c1c0) =
π

3
c1 + πc0,

where Θ(c1c0) is a function that takes the values encoded in the clock register
in binary form, and outputs the required rotation angle θ. This is achieved
using two controlled rotation gates as shown in Fig. 2.

In contrast with QPE, the ancilla rotation is an instance of Amplitude En-
coding, where the relevant information, i.e., the inverse of the eigenvalue, is
encoded into the amplitude of a qubit [1].

3.5 Time and resource efficiency

As stated in the introduction, classical algorithms such as Gaussian elimina-
tion can solve a system of equations in O(N3) time. If the matrix is sparse
and well-conditioned, and we are only interested in a summary statistic of
the solution vector rather than the exact solution, the run time is reduced
to O(N

√
κ), [2] where κ, the condition number, is the ratio of the smallest

eigenvalue to the largest one. The condition number indicates how sensitive
the system is to perturbations.

Using the HHL algorithm, we can get a run time of O(κ2 log N
ϵ
) [2]. Here

we assume that the matrix is s-sparse, which means that there are at most
s non zero elements in a given row, and ϵ is the error that we are willing to
tolerate in the solution.

Focusing on individual sections of the algorithm, the quantum phase esti-
mation stage is one of the dominant sources of error. The computational
complexity depends upon the extent of accuracy we require in eigenvalues
and the number of qubits required to encode eigenvalues. Computational
complexity scales with the factor O(1/ϵ), where ϵ is the desired accuracy of
the estimated eigenvalues [2]. The QPE part of the HHL is comparatively re-
source intensive as it uses a large number of qubits and gates, which increases
with the size of the system.

The eigenvalue inversion stage of the algorithm can also be resource intensive,
as it it a non-unitary transformation, and may require multiple attempts to
produce the desired |1⟩ state.

9

00 01 10 11

0

150

300

450

600
Co

un
t

191

59

174

576

Figure 3: Simulator results for 1000 shots.

4 Results

We ran the circuit shown in Fig. 2, with our chosen example as input, first
on a high performance simulator, and then proceeded to run the same circuit
on real quantum hardware.

The results of the simulation are presented in Fig. 3 with 1000 shots fired.
Recall that we are only interested in case where the measurement of the
ancilla results in |1⟩. Therefore we look at the bins marked 01 and 11,
whose heights correspond to the magnitude squared of the first and second
coefficients of the solution vector |x⟩ respectively.

The calculated ratio thus obtained is 1 : 9.762, which is very close to the true
ratio of the solution vector based on the classical solution, i.e., 1 : 9 from
Section 3.

Running the same circuit on actual quantum hardware generated the results
presented in Fig. 4. The corresponding ratio in this case is 1 : 1.234 which is
significantly different from the true value. This difference is due to noise from
the environment and decoherence arising from the usage of a real quantum
computer as opposed to a simulator [5].

10

00 01 10 11

0

80

160

240

320
Co

un
t

202

252
235

311

Figure 4: Quantum computer results for 1000 shots.

The circuit we have implemented can be generalized to some extent, as we
can input any 2×1 vector |b⟩ without needing to change other elements of the
circuit. (Note that solving for a different matrix A would require significant
changes to the circuit with our current implementation methodology).

Hence we input several different vectors and compared the solutions from the
simulator to the classical solutions. A summary of the results is presented in
Table 1.

Input state Probability Ratio of |x⟩ Relative Error

Classical Simulation

|+⟩ 1 : 1 1 : 1.315 31.5%
|−⟩ 1 : 1 1 : 0.992 0.8%
|0⟩ 1 : 0.111 1 : 0.119 7.2%
|1⟩ 1 : 9 1 : 9.762 8.5%

Table 1: Results for different inputs of vector |b⟩

11

5 Conclusion

We have explained the working and implementation of the HHL algorithm
and demonstrated its usage with an example. We then compared the solution
thus obtained with the classically obtained solution to check the accuracy
of the algorithm. Further, we contrasted the solution obtained via a high
performance quantum simulator against results from a real 7-qubit quantum
computer and explained the discrepancy in the results. Finally we subjected
our circuit to a range of inputs to verify its flexibility and found the results
to be accurate.

References

[1] Bojia Duan, Jiabin Yuan, Chao-Hua Yu, Jianbang Huang, and Chang-
Yu Hsieh. A survey on HHL algorithm: From theory to application in
quantum machine learning. Physics Letters A, 384(24):126595, 2020.

[2] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algo-
rithm for linear systems of equations. Phys. Rev. Lett., 103:150502, Oct
2009.

[3] Abhijith J., Adetokunbo Adedoyin, John Ambrosiano, Petr Anisimov,
William Casper, Gopinath Chennupati, Carleton Coffrin, Hristo Djid-
jev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Alexan-
der Malyzhenkov, David Mascarenas, Susan Mniszewski, Balu Nadiga,
Daniel O’malley, Diane Oyen, Scott Pakin, Lakshman Prasad, Randy
Roberts, Phillip Romero, Nandakishore Santhi, Nikolai Sinitsyn, Pieter J.
Swart, James G. Wendelberger, Boram Yoon, Richard Zamora, Wei Zhu,
Stephan Eidenbenz, Andreas Bärtschi, Patrick J. Coles, Marc Vuffray,
and Andrey Y. Lokhov. Quantum algorithm implementations for begin-
ners. ACM Transactions on Quantum Computing, 3(4):1–92, jul 2022.

[4] Hector Jose Morrell Jr, Anika Zaman, and Hiu Yung Wong. Step-by-
step hhl algorithm walkthrough to enhance the understanding of critical
quantum computing concepts. arXiv preprint arXiv:2108.09004, 2021.

[5] Qiskit contributors. Qiskit: An open-source framework for quantum com-
puting, 2023.

12

A Python Code

#################### importing ####################################

from qiskit import QuantumCircuit, Aer, execute

from qiskit.visualization import plot_histogram

from qiskit import QuantumRegister, ClassicalRegister

from qiskit.quantum_info import Statevector

from matplotlib import pyplot as plt

from pylatexenc import *

from qiskit.circuit.library import QFT

import numpy as np

from numpy import pi

from matplotlib import pyplot as plt

#################### initializing #################################

#################### initializing (part (a)) #####################

######## no of qubits in each register#########

n_a = 1 ## ancilla

n_l = 2 ## clock register

n_b = 1 ## input vector

#################### initializing (part (b)) #####################

######## initializing all registers ##########

b = QuantumRegister(n_b, name=’b’)

clock = QuantumRegister(n_l, name=’clock’)

ancilla = QuantumRegister(n_a, name=’ancilla’)

measurement = ClassicalRegister(2, name=’c’)

hhl = QuantumCircuit(ancilla, clock, b, measurement)

hhl.barrier(label=’ψ_0’)

#################### Encoding b ###################################

hhl.x(b)

hhl.barrier(label=’ψ_1’)

#################### Quantum Phase Estimation #####################

######## Applying controlled rotations ######

hhl.h(clock)

hhl.cu(-pi/2, -pi/2, pi/2, 3/4*pi, clock[0], b, label=’U’)

hhl.cu(pi, 0, pi, 0, clock[1], b, label=r’U^2’)

hhl.barrier()

####### Inverse Quantum Fourier Transform ###

hhl.h(clock[1])

i

hhl.cp(-np.pi/2, clock[0], clock[1])

hhl.h(clock[0])

hhl.swap(clock[0], clock[1])

hhl.barrier(label=’ψ_2’)

#################### ancilla rotation #############################

hhl.cry(pi, clock[0], ancilla)

hhl.cry(pi/3, clock[1], ancilla)

hhl.barrier(label=’ψ_3’)

#################### ancilla measurement ##########################

hhl.measure(ancilla, measurement[0])

hhl.barrier(label=’ψ_4’)

#################### inverse QPE ##################################

######## Quantum Fourier Transform ###########

hhl.swap(clock[0], clock[1])

hhl.h(clock[0])

hhl.cp(np.pi/2, clock[0], clock[1])

hhl.h(clock[1])

hhl.barrier()

######## Applying controlled rotations ######

hhl.cu(pi, 0, pi, 0, clock[1], b, label=r’U^2 inv’)

hhl.cu(-pi/2, pi/2, -pi/2, -3/4*pi, clock[0], b, label=’U inv’)

hhl.h(clock)

hhl.barrier(label=’ψ_5’)

#################### measure x ####################################

hhl.measure(b,measurement[1])

#################### labelling ####################################

fig = plt.figure(figsize=(16, 8))

ax = fig.add_subplot()

height = 0.8

ax.text(0.5, height, ’State preparation’, size=8)

ax.text(4.5, height, ’QPE’, size=8)

ax.text(10, height, ’Inverse QFT’, size=8)

ax.text(14, height, ’Controlled Rotation’, size=8)

ax.text(4, -5.5, ’QFT’, size=8)

ax.text(10, -5.5, ’Inverse QPE’, size=8)

hhl.draw(’mpl’, ax=ax, fold=17, filename=’python_circuit.eps’)

ii

B State evolution for chosen example

We initialize the state as follows:

|ψ0⟩ = |0⟩|00⟩|0⟩.

After state preparation, we get:

|ψ1⟩ = |1⟩|00⟩|0⟩.

Expressing |b⟩ in the eigenbasis of A we obtain:

|ψ1⟩ =
1√
2
(|u0⟩+ |u1⟩) |00⟩|0⟩ =

1√
2
|u0⟩|00⟩|0⟩+

1√
2
|u1⟩|00⟩|0⟩.

After performing phase estimation, the eigenvalues are encoded into the clock
register as follows:

|ψ2⟩ =
1√
2
|u0⟩|01⟩|0⟩+

1√
2
|u1⟩|10⟩|0⟩.

The ancilla rotation produces the following state:

|ψ3⟩ =
1√
2
|u0⟩|01⟩

√1−
(
1

1

)2

|0⟩+ 1

1
|1⟩

+
1√
2
|u1⟩|10⟩

√1−
(
1

2

)2

|0⟩+ 1

2
|1⟩

 ,

∴ |ψ3⟩ =
1√
2
|u0⟩|01⟩|1⟩+

√
3

2
√
2
|u1⟩|10⟩|0⟩+

1

2
√
2
|u1⟩|10⟩|1⟩.

Assuming the ancilla measurement produces the desired state of |0⟩, we ob-
tain:

|ψ4⟩ =
√
8

5

(
1√
2
|u0⟩|01⟩|1⟩+

1

2
√
2
|u1⟩|10⟩|1⟩

)
,

where the pre-factor is the normalization factor.

⇒ |ψ4⟩ =
2√
5
|u0⟩|01⟩|1⟩+

1

2
√
5
|u1⟩|10⟩|1⟩.

Next, the inverse of the phase estimation is performed to return the clock
register to its default state as follows:

|ψ5⟩ =
2√
5
|u0⟩|00⟩|1⟩+

1

2
√
5
|u1⟩|00⟩|1⟩,

iii

∴ |ψ5⟩ =
(

2√
5
|u0⟩+

1

2
√
5
|u1⟩

)
|00⟩|1⟩.

Finally, we convert the first register back into the Zeeman basis from the
eigenbasis as follows:

|ψ5⟩ =
(
− 1√

10
|0⟩+ 3√

10
|1⟩
)
|00⟩|1⟩.

From the above, we can see that the ratio of the probability of obtaining |0⟩
to that of |1⟩ is 1 : 9, in accordance with the classical solution.

iv

	Introduction
	Mathematical Formulation
	Formulating the problem
	Tracing the evolution of the state

	Implementation Methodology
	Encoding b
	Hamiltonian Simulation
	Quantum Phase Estimation
	Ancilla Rotation
	Time and resource efficiency

	Results
	Conclusion
	Python Code
	State evolution for chosen example

