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1 Abstract

In this report, the quantum algorithm developed to solve a system of linear equa-
tions known as the HHL algorithm is discussed. Firstly, the mathematical for-
mulation is presented. Then the implementation methodology is discussed while
mapping the evolution of the state after each step. Finally, based on the method-
ology, a quantum circuit is built for a 2× 2 matrix, as well as for a 4× 4 matrix,
using two different approaches each time. The circuits are tested by computing
the expectation values of the Pauli operators and the results are discussed.

2 Introduction

Quantum computers employ the principles of quantum mechanics to perform com-
putations much more efficiently than their classical counterparts. For some prob-
lems, such as finding the prime factors of a large integer, quantum computers
have been able to provide exponential speed-ups over classical computers [1]. One
such domain where quantum computers have proven their superiority over classi-
cal computers is that of linear algebra. Solving a system of linear equations [1],
quantum verification of matrix product [2], and commutativity testing of a set of
matrices [3] are some of the problems that have been quite efficiently tackled with
the help of quantum computers. In this report, the algorithm developed to solve
a system of linear equations, known as the HHL algorithm, will be discussed.

Linear equations are of prime importance and find their applications in several
fields, such as science, engineering, economics, finance, etc. Several classical tech-
niques have been developed to solve systems of linear equations. However, as the
size of the data set grows, so does the computation power and time needed to solve
the system of linear equations on a classical computer [1].

In 2009, Harrow, Hassidim, and Llyod proposed the HHL algorithm to solve a
system of linear equations on a quantum computer. On a classical computer,
solving a system of N linear equations in N variables takes time of order N . The
HHL algorithm can cut down this time to the order log(N) in some cases. This
algorithm can prove to be useful when the user is not interested in the actual
solution vector but is rather interested in the result of applying some operator to
it. The said algorithm cannot, however, provide an exact solution to the system
of linear equations, and that may be considered one of its limitations [1].

Furthermore, the HHL algorithm imposes a few restrictions on the system of linear
equations, which might limit its applications, such as the matrix A should be
Hermitian, should be a sparse matrix, meaning that most of its elements should
be zero, and should have a low condition number κ, where κ is a measure of how
sensitive a matrix is to perturbations [1].

Despite the seemingly hopeless state of affairs, the HHL algorithm has found its
applicability in machine learning, such as solving the problem of least-squares
fitting efficiently [4]. The HHL algorithm was also applied to the finite element

1



method, which finds numerical approximations to the solutions of boundary value
problems for partial differential equations [5].

3 Mathematical Formulation

Let A be an N ×N matrix and let b⃗ be an N -dimensional vector. Then, the task
is to find some vector x⃗ such that Ax⃗ = b⃗. Let us begin by writing the equation
in the language of quantum mechanics.

A|x⟩ = |b⟩.

Applying A−1 on both sides gives the following

|x⟩ = A−1|b⟩.

A can be written in terms of its eigenvalues and eigenvectors as

A =
N−1∑
i=0

λi|ui⟩⟨ui|,

where |ui⟩ is an eigenvector of A corresponding to the eigenvalue λi and λi ∈ R
for all values of i. Similarly,

A−1 =
N−1∑
i=0

λ−1
i |ui⟩⟨ui|.

Let us say we are given the quantum state |b⟩ =
∑

i bi|i⟩. Then |b⟩ can be written
in the eigenbasis of A as

|b⟩ =
N−1∑
j=0

bj|uj⟩,

where bj ∈ C. Then,

|x⟩ =

(
N−1∑
i=0

λ−1
i |ui⟩⟨ui|

)
N−1∑
j=0

bj|uj⟩,

|x⟩ =
N−1∑
i=0

N−1∑
j=0

λ−1
i bj|ui⟩⟨ui|uj⟩,

but ⟨ui|uj⟩ = δij, and δij = 1 only when i = j. Thus, we are left with

|x⟩ =
N−1∑
i=0

λ−1
i bi|ui⟩.

which is our desired solution vector [6].
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4 Implementation methodology

To implement the HHL algorithm on a quantum computer, we begin by creating
two quantum registers, both of which are initialized to |0⟩. One of these is used to
store the solution vector |x⟩ and is denoted by nb. The other one is used to store
the eigenvalues of A and is denoted by n. There is also an auxiliary qubit denoted
by |0⟩a, which will be measured at the end [6].

Now since A and A−1 are not unitary, A−1 cannot be directly applied to |b⟩. A
can, however, be made unitary in the following manner

U = eiAt.

Thus, we can apply quantum phase estimation on U to estimate the eigenvalues
of A [1].

Let’s say the initial state of the system looks like

|ψ⟩0 = |0⟩nb
|0⟩n|0⟩a.

Then, the state |b⟩ is fed into the register labelled as nb.

|ψ⟩1 = |b⟩nb
|0⟩n|0⟩a.

Then, Quantum Phase Estimation (QPE) is applied, after which the state gets
transformed to

|ψ⟩2 =
N−1∑
j=0

bj|uj⟩nb
|λ̃j⟩n|0⟩a,

where N = 2nb .

After this, the ancilla qubit is rotated, and we get

|ψ⟩3 =
N−1∑
j=0

bj|uj⟩nb
|λ̃j⟩n

(√
1− C2

λ̃j
2 |0⟩a +

C

λ̃j
|1⟩a

)
,

where C is some normalization constant. The next step is to apply inverse QPE,
after which we obtain the following state

|ψ⟩4 =
N−1∑
j=0

bj|uj⟩nb
|0⟩n

(√
1− C2

λ̃j
2 |0⟩a +

C

λ̃j
|1⟩a

)
.

Then, as the final step, the auxiliary qubit is measured. If the outcome is |0⟩a,
the computation is repeated. If we get |1⟩a as our measurement outcome, then the
final state of the register is

|ψ⟩5 =
1√∑N−1

j=0 | bjC
λ̃j

|2

N−1∑
j=0

bjC

λ̃j
|uj⟩nb

|0⟩n|1⟩a,

|ψ⟩5 =
1√∑N−1

j=0 | bj
λ̃j
|2
|x⟩nb

|0⟩n|1⟩a.
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Thus, the solution is stored in the nb register [6].

Figure 1: A schematic of the HHL algorithm circuit [6].

5 Implementation for a 2× 2 matrix

Let us implement the HHL algorithm for the following system of linear equations.

3

2
x1 +

1

2
x2 = 0

1

2
x1 +

3

2
x2 = 1(

3/2 1/2
1/2 3/2

)(
x1
x2

)
=

(
0
1

)
Ax⃗ = b⃗

The solution vector, computed classically, turns out to be

x⃗ =
(
−1/4 3/4

)T
,

where |x0|2 : |x1|2 = 1 : 9.

First, we have to find U = eiAt. To do so, let us begin by diagonalizing A. The

eigenvalues of A are λ0 = 2 and λ1 = 1 and the eigenvectors are v0 =
(

1√
2

− 1√
2

)T
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and v1 =
(

1√
2

1√
2

)T
respectively.

V =
(
v0 v1

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)
Ad = V †AV

Ad =

(
1 0
0 2

)
where Ad represents diagonalized A. To get diagonalized U , we exponentiate the
diagonal elements of Ad.

Ud =

(
ei1t 0
0 ei2t

)
Here t is taken to be π/2. The value of t should be chosen such that λjt/2π ∈ [0, 1)
so as to obtain accurate results from QPE [7]. Inserting t = 3π/4 in Ud, we get

Ud =

(
eiπ/2 0
0 eiπ

)
=

(
i 0
0 −1

)
To obtain U from Ud, we proceed in the following manner.

U = V UdV
†

=
1

2

(
−1 + i 1 + i
1 + i −1 + i

)
.

We also need to find U2 in order to be able to implement QPE successfully.

U2 = V U2
dV

†

=

(
0 −1
−1 0

)
.

To implement inverse QPE, we need U−1 and U−2.

U−1 =
1

2

(
−1− i 1− i
1− i −1− i

)
,

U−2 =

(
0 −1
−1 0

)
.

Now there are a few different methods available to implement these matrices in a
circuit, two of which will be discussed in section 5.1 and section 5.2 below.

After implementing QPE, the next step is to find the angles for the controlled-Y
rotation. The angles can be found using θ = 2arcsin( C

λ̃j
), where λ̃j =

Nλjt

2π
and

C ≤ λ̃j.Thus, θ = π/3 for λ̃0 = 2 and θ = π for λ̃1 = 1 [6].

Then, inverse QPE is applied, and finally, the ancilla qubit and the nb register are
measured at the end.

5



5.1 Implementation using the arbitrary unitary matrix

To implement the unitary matrix U , we need to compare it with the general form
of a 4-parameter arbitrary unitary gate which is given below

U =

(
eiγ cos(θ/2) −ei(γ+λ) cos(θ/2)

ei(γ+ϕ) cos(θ/2) ei(γ+ϕ+λ) cos(θ/2)

)
.

Comparing this general matrix with our matrices, we see that our U can be im-
plemented by choosing θ = π/2, ϕ = −π/2, λ = π/2, γ = 3π/4. U2 can be imple-
mented by choosing θ = π, ϕ = π, λ = 0, γ = 0. To implement U−1, we need to
set θ = π/2, ϕ = π/2, λ = −π/2, γ = −3π/4 and since U2 = U−2, we can use the
parameters used for U2 to implement U−2 [6].

5.2 Implementation using the UnitaryGate class

In Qiskit, the UnitaryGate class allows us to convert a unitary matrix into a unitary
gate. If decomposing a matrix into a series of rotations manually seems daunting,
one need not fear because the UnitaryGate class in Qiskit comes to the rescue.
The unitary gate can then also be converted to a control gate using the control()
command in Qiskit [8].

6 Implementation for a 4× 4 matrix

Let us now try to implement the HHL algorithm for a 4× 4 system.

A =


5 3 1 −2
3 5 2 −1
1 2 5 −3
−2 −1 −3 5

 , b =


0
0
0
1

 .

In this case, implementing U = eiAt is not a straightforward task because, this time,
we do not have the luxury of comparing the elements of our matrix U with those
of an arbitrary unitary matrix as we did above. There are, however, a few other
techniques that can be followed, two of which will be discussed below. The rest
of the implementation scheme is the same as for a 2× 2 matrix already discussed
above and will, therefore, not be explained here.

6.1 Implementation using Trotterization

A Hermitian matrix can be written as a combination of Pauli operators.

H =
∑
i

αiPi,
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where αi =
1
2n
Tr(PiH) [9]. Using this scheme, we see that A can be written as

A = 5(I ⊗ I) + 3(Z ⊗X) + 1(X ⊗ Z) + 2(Y ⊗ Y ).

Now that we have written A as a sum of tensor products of the Pauli matrices,
we can input it into Qiskit, which approximates eiAt following a technique called
Trotterization [10, 8]. Figure 2 shows the circuit that approximates eiAt in Qiskit.

Figure 2: eiAt implementation circuit in Qiskit.

Here, t is taken to be π/8.

6.2 Implementation using the UnitaryGate class

To implement this method, we need only follow the approach described in sec-
tion 5.2. We begin by diagonalizing A and proceed to find U and its powers, as
well as their inverses. In this case, U turns out to be the following matrix

U =


ei11t 0 0 0
0 ei5t 0 0
0 0 ei3t 0
0 0 0 ei1t

 .

As already mentioned above, t is taken to be π/8. The next step is to compute
U2, U4 and U8 and their inverses, which can be done quite easily using Python.

7 Results

7.1 Results for the 2× 2 case

Attached below are the results of the implementation of the HHL algorithm for
the 2× 2 matrix case using both methods described above.
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(a) Simulator results. (b) IBM quantum computer results.

Figure 3: Results for the 2× 2 implementation (arbitrary U method).

(a) Simulator results. (b) IBM quantum computer results.

Figure 4: Results for the 2× 2 implementation (UnitaryGate class method).

In the circuit, the ancillary qubit and the register nb were measured at the end.
The simulator results show that the ancillary qubit collapses to the state |1⟩ most
of the time. The IBM quantum computer results seem, however, quite hopeless,
and the blame may be placed on the noise and errors that may occur on real
hardware.

We also note that the probability ratio of |0⟩b|1⟩a and |1⟩b|1⟩a in the simulator
result is close to the expected value in both cases, which turns out to be 1 : 9.
More information regarding how we reach this conclusion can be found in [6].

The veracity of the circuit was further tested by computing the expectation values
of the Pauli operators. The expectation values were computed using three different
methods: using our circuit, using Qiskit’s HHL solver and using classical methods.
The results are shown below.
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Operator Our HHL circuit Qiskit’s HHL circuit Classical method

X 0.705 0.896 -0.375

Y 0.0 0.0 0i

Z -0.498 -0.277 -0.5

Figure 5: Expectation value computation results (arbitrary U method).

Operator Our HHL circuit Qiskit’s HHL circuit Classical method

X 0.742 0.873 -0.375

Y 0.0 0.0 0i

Z -0.498 -0.236 -0.5

Figure 6: Expectation value computation results (UnitaryGate class method).

We can see that our results are either close to or better than Qiskit’s HHL solver
results indicating that our circuit has been somewhat successful and bringing back
some of the dignity our circuit lost at the IBM results.

7.2 Results for the 4× 4 case

Attached below are the results of the implementation of the HHL algorithm for the
4× 4 matrix case using Trotterization as well as the UnitaryGate class method.

(a) Simulator results. (b) IBM quantum computer results.

Figure 7: Results for the 4× 4 implementation (Trotterization method).
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(a) Simulator results. (b) IBM quantum computer results.

Figure 8: Results for the 4× 4 implementation (UnitaryGate class method).

The simulator results show that the ancillary qubit collapses to the state |1⟩most of
the time. However, IBM quantum computer results again seem quite disappointing,
and the blame may again be placed on noise in an actual quantum computer.
However, in this case, we see that the results obtained using Trotterization, even
on the simulator, are also quite saddening, and as of right now, we are unsure
where to place the blame for that.

Here again, we note that the probability ratio of |00⟩b|1⟩a to |11⟩b|1⟩a in the Uni-
taryGate method simulator results is close to the expected value which is 0.228.
Also, the probability ratio of |01⟩b|1⟩a to |11⟩b|1⟩a is also somewhat close to the
expected values of 0.118 but that of |10⟩b|1⟩a to |11⟩b|1⟩a seems to be not quite
right.

The expectation values of the Pauli matrices were computed, and the results are
shown here.

Operator Our HHL circuit Qiskit’s HHL circuit Classical method

X 0.118 0.0 0.084

Y -0.137 0.0 -0.230

Z 0.984 0.400 0.115

Figure 9: Expectation value computation results (Trotterization method).

Operator Our HHL circuit Qiskit’s HHL circuit Classical method

X 0.769 0.0 0.084

Y -0.301 0.0 -0.230

Z 0.523 0.398 0.115

Figure 10: Expectation value computation results (UnitaryGate class method).
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Looking at the results, we see that we can’t make a definitive statement as to
whether our circuit has been successful or not. We see that the value for ⟨X⟩
obtained is close to the actual value using the Trotterization method but seems to
have gone astray in the UnitaryGate class method. The results obtained for ⟨Y ⟩
are somewhat close to the actual value in both cases. For ⟨Z⟩, the result obtained
using the UnitaryGate method is close to the one obtained through Qiskit’s HHL
circuit, but neither is close to the actual value.

8 Conclusion

Looking at the results of all the cases, we can come to the conclusion that our
circuit implementation of the HHL algorithm has been successful for the 2 × 2
matrix. For the 4×4 matrix case, however, the results have not been able to stand
up to our expectations, especially in the empolyment of the Trotterization scheme.
However, the UnitaryGate class method results seem convincing, indicating that
the problem most likely lies somewhere in the Trotterization scheme and not in the
general implementation of the circuit. As to where the problem lies is, however,
yet to be determined and needs further research.

11



Bibliography

[1] AramW. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm
for Linear Systems of Equations”. In: Physical Review Letters 103.15 (2009).
doi: 10.1103/physrevlett.103.150502. url: https://doi.org/10.
1103%2Fphysrevlett.103.150502.

[2] Harry Buhrman and Robert Spalek. Quantum Verification of Matrix Prod-
ucts. 2005. arXiv: quant-ph/0409035 [quant-ph].

[3] Yuki Kelly Itakura. Quantum Algorithm for Commutativity Testing of a Ma-
trix Set. 2005. arXiv: quant-ph/0509206 [quant-ph].

[4] Nathan Wiebe, Daniel Braun, and Seth Lloyd. “Quantum Algorithm for
Data Fitting”. In: Phys. Rev. Lett. 109 (5 2012), p. 050505. doi: 10.1103/
PhysRevLett.109.050505. url: https://link.aps.org/doi/10.1103/
PhysRevLett.109.050505.

[5] Ashley Montanaro and Sam Pallister. “Quantum algorithms and the finite el-
ement method”. In: Physical Review A 93.3 (2016). doi: 10.1103/physreva.
93.032324. url: https://doi.org/10.1103%2Fphysreva.93.032324.

[6] Hector Jose Morrell Jr au2, Anika Zaman, and Hiu Yung Wong. Step-by-
Step HHL Algorithm Walkthrough to Enhance the Understanding of Critical
Quantum Computing Concepts. 2023. arXiv: 2108.09004 [quant-ph].

[7] Almudena Carrera Vazquez, Ralf Hiptmair, and Stefan Woerner. “Enhancing
the Quantum Linear Systems Algorithm Using Richardson Extrapolation”.
In: ACM Transactions on Quantum Computing 3.1 (2022), pp. 1–37. doi:
10.1145/3490631. url: https://doi.org/10.1145%2F3490631.

[8] Qiskit contributors. Qiskit: An Open-source Framework for Quantum Com-
puting. 2023. doi: 10.5281/zenodo.2573505.

[9] Sebastián V. Romero and Juan Santos-Suárez. PauliComposer: Compute
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