
The Hidden Subgroup Problem
Course Project for PHY 612: Quantum Information Science

Name: Alina Zainab Rizvi, Diya Batool, and Hassan Mehmood
IDs: 23100010, 23100267, 23100127

April 2023

Abstract

Let G be a finite abelian group and X be a finite set. Consider a function
f : G → X that is periodic and distinct on each coset in G of a subgroup K of G.
Does there exist a quantum algorithm to find this subgroup K? This is called the
hidden subgroup problem, and can be regarded as a generalisation of a large class of
computational problems that involve finding the period of a periodic function, such
as Shor’s factoring algorithm, discrete logarithms, order of a permutation, and so
on. In this report, we discuss a solution to the hidden subgroup problem, and apply
it to some specific instances.

Contents
1 Introduction 2

2 Mathematical Preliminaries 2
2.1 Groups, subgroups, cosets, and all that . . . . . . . . . . . . . . . . . . . . 2
2.2 Fourier transforms over groups . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The Hidden Subgroup Problem 6
3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Solving Simon’s Problem using HSP algorithm . . . . . . . . . . . . 9
3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Conclusion 14

1



1 Introduction
If one carefully analyzes some major quantum algorithms, it is discovered that their basic
structure consists in finding a solution to a query pertaining to a function f from a
finite set A to another finite set B. In general, the action of this function is typically
described by means of a certain unitary operator U acting on a set of n quantum registers
|a1⟩, . . . , |an−1⟩, |b⟩ such that U |a1⟩ · · · |an⟩ → |a1⟩ · · · |an−1⟩|b ⊕ f(a1, . . . , an−1)⟩, i.e. the
last register stores the effect of applying the function to the preceding registers. The
query one wishes to solve depends on the specific problem at hand. For instance, in the
Deutsch algorithm, we wish to find the bias of a function on a bit-valued function on an
n-bit string. In other problems, such as order-finding, factoring and discrete logarithms,
one uses the quantum Fourier transform to estimate the eigenvalues of U , which, owing
to the specific form of f , are directly related to the object one seeks, e.g. the order,
factor or the discrete logarithm of a positive integer. What unites all of these seemingly
disparate problems is the fact that in each case, the function f acts on the domain A in
a manner that makes it possible to abstract from these specific problems to a much more
general problem using tools from group theory. For instance, in the Deutsch algorithm,
the bias of the function depends on how the function acts on the subsets of {0, 1}, while
in the other three problems mentioned above, the function is periodic, and what we seek
is precisely its period, which, again, depends on how the function acts on different “parts”
of its domain. These are all specific instances of a function being distinct and constant on
the cosets of a subgroup of a group. Therefore, all these different problems – and many
others, as we shall see – can be reduced to the problem of finding that subgroup. This
is known as the hidden subgroup problem, which, in the case of a finite abelian group, is
fully solvable in a polynomial amount of elementary quantum operations.

2 Mathematical Preliminaries
Before we can even precisely define the hidden subgroup problem, it is necessary to un-
derstand the relevant group-theoretic concepts that are used in the formulation of the
problem. This section is devoted to that task.

2.1 Groups, subgroups, cosets, and all that

Definition 1. (Group) A group is an ordered pair (G, ∗), where ∗ is a binary operation
on the set G. The binary operation must satisfy the following axioms:

1. associativity : (a ∗ b) ∗ c = a ∗ (b ∗ c)

2. there exists an element e, called identity, in G such that a ∗ e = e ∗ a = a for all
a ∈ G

2



3. there exists an inverse a−1 ∈ G for each a ∈ G such that a−1 ∗ a = a ∗ a−1 = e.

For instance, the set of all invertible square matrices forms a group under matrix
multiplication. Often the multiplication operation ∗ is understood from the context, and
so we simply denote the group by G, and write a ∗ b as ab for any a, b ∈ G.

If G is a finite set, then G is called a finite group, and we denote by |G| the number of
elements in G. If the binary operation is commutative, i.e. a ∗ b = b ∗ a for every a, b ∈ G,
then the G is said to be abelian.

For example, the set of integers Z form a group under addition (Z,+). The associa-
tivity property holds for this group and identity element e = 0 and inverse a−1 = −a.
Furthermore, since addition is commutative, Z is an abelian group. But this group is, of
course, not finite. On the other hand, consider Z6 := {0, 1, 2, 3, 4, 5}, the set of integers
defined by addition modulo 6. This is a finite abelian group.

Definition 2. (Subgroup) A subgroup H of a group G is a nonempty subset of the group
G that is closed under inverses and products. That is, for x, y ∈ H, the inverse x−1 ∈ H
and x ∗ y ∈ H.

We write H ≤ G to denote that H is a subgroup of G. It follows from the definition
above that a subgroup is itself a group. For example, the set {0, 1, 5} is a subgroup of Z6.

Definition 3. (Group homomorphism) Two groups (G, ⋆) and (H, ⋄) are homomorphic
if there exists a map ϕ : G→ H such that ϕ(a ⋆ b) = ϕ(a) ⋄ ϕ(b) for all a, b ∈ G.

Intuitively, two groups have the same group-theoretic structure or ‘look the same’ if
they are homomorphic. If a homomorphism also happens to be a bijection, then it is
called an isomorphism. Isomorphic groups are completely equivalent in the sense that
one can work in any one without loss of generality. If two groups G and F are isomorphic,
we write G ∼= F .

For example, the set of real numbers R forms a group under addition ‘+’. Similarly,
the set of nonnegative real numbers R≥0 is a group under ordinary multiplication ‘ · ’.
These two groups are homomorphic, the homomorphism being the exponential function
ex from R to R≥0. Indeed, it is easily seen that ex+y = ex · ey. Furthermore, if we restrict
the additive group to nonnegative real numbers only, then the map is also a bijection, as
can be confirmed by drawing a graph of ex. Thus (R≥0,+) ∼= (R≥0, ·).

Definition 4. (Cosets) If H is a subgroup of group G, the left coset of H in G determined
by g ∈ G is the set gH ≡ {gh | h ∈ H}. The right coset is defined similarly.

Often whether a coset is a ‘left’ or ‘right’ coset is implied by context. In the case of
abelian groups, the left coset will be equal to the right coset.

Definition 5. (Characters) Given a group G, a character is a homomorphism from G to
the group of complex numbers C under ordinary multiplication.

3



For instance, the function f : (R,+) → (C, ·) such that f(x) = eix is a homomorphism.
Thus it is a character of the additive group of real numbers.

Definition 6. (Dual group) The dual Ĝ of a group G is the set of all characters of G.

The dual of a group is itself a group under functional multiplication, i.e. for any
α, β ∈ Ĝ, we define α · β by (α · β)(g) = α(g)β(g) for all g ∈ G.

If G is a finite abelian group, then the number of characters of G is equal to the
number of elements in G. In other words, |Ĝ| = |G|.

2.2 Fourier transforms over groups

Given the above definitions – particularly of characters and dual groups – we can finally
define Fourier transforms.

Definition 7. (Fourier Transform) Given the characters of group G, the Fourier trans-
form over a group G is given by

|g⟩ 7→ 1

|G|
∑
g̃∈Ĝ

g̃(g) |g̃⟩

Now that we have defined Fourier transforms, the following theorems would help us
in solving the hidden subgroup problem.

Theorem 1. For each subgroup H ⊂ G, let H⊥ ⊆ Ĝ be such that H⊥ = {k ∈ Ĝ | k(h) = 1
∀h ∈ H}. The Fourier transform over G maps an equal superposition on H to an equal
superposition over H⊥:

1

|H|
∑
h∈H

|h⟩ 7→
 

|H|
|G|

∑
k∈H⊥

|k⟩

Proof. Let’s consider a state |ψ⟩ such that

|ψ⟩ = 1

|H|
∑
h∈H

|h⟩

Doing a Fourier transform over the state |ψ⟩ we get:

1

|H|
∑
h∈H

|h⟩ 7→
 

1

|H||G|
∑
h∈H

∑
g̃∈Ĝ

g̃(h) |g̃⟩

=
1√

|H||G|

∑
h∈H

 ∑
g̃∈H⊥

g̃(h) |g̃⟩+
∑
g̃ /∈H⊥

g̃(h) |g̃⟩


4



=
1√

|H||G|

∑
h∈H

(1)
∑
g̃∈H⊥

|g̃⟩+ 1√
|H||G|

∑
h∈H

∑
g̃∈H⊥

g̃(h) |g̃⟩

=

 
|H|
|G|

∑
g̃∈H

|g̃⟩+ 1√
|H||G|

∑
h∈H

∑
g̃∈H⊥

g̃(h) |g̃⟩ , (1)

where the third line follows from the fact that g̃(h) = 1 for all g̃ ∈ H⊥ and h ∈ H. Thus
to establish the theorem, all we need to do is to show that the second term above is zero.
We now demonstrate this. To begin with, for each g̃ ∈ H⊥, we have that

αg̃ :=
1√

|H||G|

∑
h∈H

g̃(h) =
1√

|H||G|

∑
h∈H

(1) =

 
|H|
|G|

=
1√
|H⊥|

,

where the last equality comes from |G| = |H||H⊥|. Thus,

1 =
∑
g̃∈Ĝ

|αg̃|2 =
∑
g̃∈H⊥

|αg̃|2 +
∑
g̃ /∈H⊥

|αg̃|2 =
1

|H⊥|
∑
g̃∈H⊥

(1) +
∑
g̃ /∈H⊥

|αg̃|2 = 1 +
∑
g̃ /∈H⊥

|αg̃|2,

whence
|αg̃|2 = 0 ∀g̃ /∈ H⊥.

and so g̃(h) = 0 for every g̃ /∈ H⊥ and h ∈ H.

Theorem 2. The Fourier transform over G maps an equal superposition on cosets of H
to an equal superposition over cosets of H⊥.

1

|H|
∑
h∈H

|hg⟩ 7→
 

|H|
|G|

∑
h̃∈H⊥

h̃(g) |h̃⟩ (2)

Proof. From the fact that g̃ is a homomorphism, we have that g̃(hg) = g̃(h)g̃(g) ∀g̃ ∈ Ĝ
and g, h ∈ G. Doing a Fourier transform on the state |hg⟩, we thus get :

1

|G|
∑
g̃∈Ĝ

g̃(hg) |g̃⟩ = 1

|G|
∑
g̃∈Ĝ

g̃(h)g̃(g) |g̃⟩

Therefore, we can write the complete Fourier transform as

1

|H|
∑
h∈H

|hg⟩ 7→
∑
g̃∈Ĝ

[ 
1

|H||G|
∑
h∈H

g̃(h)g̃(g)

]
|g̃⟩ .

5



As shown in the previous theorem, g̃(h) = 0 for all g̃ /∈ H⊥ and h ∈ H. Therefore, the
preceding sum reduces to 

1

|H||G|
∑
g̃∈H⊥

[∑
h∈H

g̃(h)g̃(g)

]
|g̃⟩ =

 
1

|H||G|
∑
g̃∈H⊥

[∑
h∈H

(1)g̃(g)

]
|g̃⟩

=

 
|H|
|G|

∑
g̃∈H⊥

g̃(g) |g̃⟩ .

Notice that since the characters map group elements to complex numbers, it follows
from ∑

g̃∈Ĝ

|g̃(g)|2 = 1

that g̃(g) is just a phase, which thus has no effect on the probability of measuring |h̃⟩ in
(2). This immediately yields the following theorem.

Theorem 3. Fourier sampling on an equal superposition on a coset of H will yield a
uniformly random element k ∈ H.

3 The Hidden Subgroup Problem

3.1 Formulation

We are now ready to formulate the hidden subgroup problem (HSP):

Let G be a finite abelian group and X be a finite set. Suppose that there exists a
function f : G→ X that is distinct and constant on each coset of a subgroup H of G.
Thus f(g) = f(g′) if and only if g′ = hg for some h ∈ H. Suppose that we possess a
unitary operator U that performs the operation |g⟩|x⟩ → |g⟩|x⊕ f(g)⟩, where g ∈ G,
x ∈ X and ⊕ is an appropriately chosen binary operation on X. Find the subgroup
H.

As we outlined in the Introduction, many textbook quantum algorithms can be re-
garded as specific instances of the hidden subgroup problem. For example, consider the
problem of finding the period r of a periodic function f : Z → X, where X is any finite
set. In other words, we wish to find r such that f(z + r) = f(z) for all z ∈ Z. Now Z
is a group under addition ‘+’. Consider H = {0, r, 2r, . . .} ≤ Z. It is not difficult to see
that f is constant and distinct on each coset z +H := {z, z + r, z + 2r, . . .} of H. Thus,
finding the period r is equivalent to finding the subgroup H. Fig 1 lists several other

6



well-known problems that are specific cases of the hidden subgroup problem; in each case,
the relevant groups, functions and subgroups are identified. ]

Using the results of the previous section, we can construct a general algorithm to solve
the hidden subgroup problem. This we do in the next subsection.

3.2 Implementation

The HSP can be solved using a quantum algorithm that can be divided into steps. This
can be summarized as follows [3]:

|0⟩ |0⟩ FTG−−→ 1√
|G|

∑
a∈G

|a⟩ |0⟩ f :G→X−−−−→ 1√
|G|

∑
a∈G

|a⟩ |f(a)⟩ measurement−−−−−−−−→ 1√
|H|

∑
h∈H

|hg⟩ .

First, set up a random coset state, wherein two quantum registers are taken and
initialized to |0⟩. Both registers are such that they can store the elements belonging to
group G. Once that is done, we take the Fourier transform of the initial quantum register.
To this, we apply the function f : G→ X. The result of applying these steps on the first
register is to be stored in the second register, whose measurement is taken. Suppose we
find the state of the second register to be |f(g)⟩ for some g ∈ G after measurement. Since
f(gh) = f(g) for all h ∈ H, the state of the first register becomes a uniform superposition
over the coset gH.

In the second stage of the algorithm, we take the first register’s Fourier transform and
measure it. This allows us to obtain constraints on the hidden subgroup H. And what is
that constraint? According to the last theorem in the previous section, it is the random
element belonging to H⊥ that is obtained due to the measurement of the register after its
Fourier transformation. These constraints can be solved to find out H.

For future reference, we enlist the essential steps involved the algorithm above below
(p. 9).

7



Figure 1: Specific examples of the HSP. Credits: Nielsen and Chuang [1].

8



The General HSP Algorithm

(1) Prepare two registers in the state |0⟩|0⟩, each large enough to store an element of
the group under consideration.

(2) Apply the quantum Fourier transform (QFT) on the first register.

(3) Store the result of applying the function f of the particular problem under consid-
eration on the first register in the second register (this will be typically achieved
by some sort of a controlled-f gate).

(4) Measure the second register.

(5) Apply the QFT on the first register and measure. This will yield an element of
the dual H⊥ of the hidden subgroup H.

(6) Run multiple simulations to find n elements of H⊥. This will yield n linear
equations relating the n elements of H. Solving them tells us what H is.

3.2.1 Solving Simon’s Problem using HSP algorithm

Now we will see how the recipe given above can help us in solving Simon’s problem. In
this problem, we are given a function f : {0, 1}n → X, X being any finite set, such that
there is an a ∈ {0, 1}n with a ̸= 0n and

• ∀x f(x⊕ a) = f(x).

• if f(x) = f(y) then either x = y or y = x ⊕ a. In the first case, the function is
one-to-one, and in the second case, it is two-to-one.

We want to find a, i.e. determine whether the function is one-to-one or two-to-one. so we
employ the HSP algorithm. The first stage allows us to set up a random coset state a:

ϕ = 1/
√
2|z⟩+ 1/

√
2|z + a⟩ (3)

where z is a random n bit string. We obtain the state of the first register as a superposition
over exactly those values of x that are consistent with those contents for the second
register. Hence, when we observe first register after doing a Fourier transform, we’ll see
a y such that y · a = 0. Therefore, the the measurement output is a random y such that
y · a = 0. Furthermore, each y such that y · a = 0 has an equal probability of occurring.
We can obtain the following equation constraints on our system:

y1a1 ⊕ · · · ⊕ ynan = 0.

9



In this case the group G is defined over the vector space Zn
2 and the hidden subgroup H

is 0, a. We obtain a random k ∈ Zn
2 such that k · s = 0 by doing Fourier sampling such

that repeating this n − 1 times will give us n − 1 linear constraints as we mentioned in
the preceding paragraph.

In order to implement on the Simon’s algorithm, or any other specific algorithm, the
working of the oracle or query function has to be understood; the oracle fb does the
searching for a hidden bitstring. Given a bitstring, fb(x) = fb(y) if and only if y = x⊕ b;
if the bitstring is all-zero, fb is one-to-one function, while a bitstring that is not all-zero
means fb is two-to-one [4].

The state |x⟩ |0⟩ is input to the oracle (when it’s two-to-one). The value of the secret
bit string b ∈ {0, 1}n determines how the oracle changes the input second register. For
all x ∈ 0, 1n, the output is |x⟩ |f(x⊕ a)⟩. For details as to how to implement this in an
algorithm, see the Qiskit textbook [4].

3.3 Simulations

The major theme explored in our project is that the HSP is the most general framework for
analyzing and solving problems that involve finding the period of some function in some
sense, and that many well-known quantum algorithms, such as the ones given in Fig 1,
are just specific instances of the HSP. To simulate these specific problems on a quantum
computer using the general algorithm we have developed above, all one has to do is to
find a way to implement the function f efficiently, so that step 3 in the general algorithm
can be concretely realised (all the steps are detailed in the Jupyter notebook). In this
section, we will do precisely this. We will specialise the general algorithm to Simon’s
problem and order finding, and show the results of simulating them on an IBM computer
and Qiskit aeres module, respectively. We will also compare our results with those of
the traditional quantum algorithms for Simon’s problem and period-finding available on
the Qiskit website. We will find that we get the same results in either case. This would
furnish concrete examples of the fact that the HSP is evidently a more general version of
specific problems that involve periodic functions.

To implement the function specific to each problem, we follow the Qiskit textbook
[4]. Further details regarding the Python codes for our algorithms can be found in the
Jupyter notebook accompanying this report.

Fig 2 shows the results of simulations1 for all algorithms. The algorithms for Simon’s
1The results for both problems are those of simulations on classical computer, such as the ibm-qasm-

simulator. For order finding, this was inevitable, since the IBM quantum computers that are available
for free use allow at most 7 qubits, whereas order finding for even two-digit numbers requires at least 8.
For Simon’s problem, as we also mention in the accompanying Jupyter notebook, the codes we ran on
a real quantum computer involved a wrong implementation of the function f , and when we realised our
mistake, it was too late to run another simulation on a real quantum computer before the deadline of
this project. Nevertheless, we have fixed our codes.

10



problem implemented the function f corresponding to a hidden bit string b = 11, while
those for order finding were tailored to finding the order of 7 mod 15, which is 4 or
equivalently 0100 in binary notation.

The HSP and Qiskit results for order finding agree, confirming our prediction. The
discrepancy in the HSP and Qiskit results for Simon’s problem can be traced back to the
fact that for some reason, the implementation of the function f for the hidden bit string
b = 11 actually yielded the bit string 01 when used in our HSP algorithm; we did the
calculation by hand as well, to remove any doubts as to the correctness of the simulators
used to run our codes. Whichever string one regards to be the correct string for which the
HSP algorithm is supposed to work, the occurrence of the other string in the results can
probably be attributed to noise, which in turn may be an artefact of the HSP algorithm
using the quantum Fourier transform, as opposed to the Hadamard gates; the simulators
used perhaps model the circuits differently, leading to the appearance of noise in one but
not the other.

In any case, the agreement between the HSP and qiskit results for order finding does
lend credence to our HSP algorithm. Indeed, looking at Figs. 5 and 6, we see that apart
from the implementation of the function f via a series of controlled unitary phase gates in
the middle, the HSP and Qiskit circuits are quite different. It is thus a nontrivial obser-
vation that both these circuits yield the same results upon simulations. Therefore, these
considerations concretely vindicate the validity of the general HSP algorithm in solving
all kinds of problems that hinge on the type of behaviour of a function on its domain that
we have made precise in the formulation of the HSP. Of course, we had established this
validity in a rigorous mathematical sense in Section 3.2, but it is instructive to see some
concrete examples, as we have done in this section.

11



(a) Simon’s problem: Qiskit (b) Simon’s problem: HSP

(c) Order finding: Qiskit (d) Order finding: HSP

Figure 2: Results of simulations.

12



Figure 3: Circuit for Simon’s algorithm: Qiskit version.

Figure 4: Circuit for Simon’s algorithm: HSP version.

Figure 5: Circuit for order finding: Qiskit version.

13



Figure 6: Circuit for order finding: HSP version.

4 Conclusion
In this report, we have explained the HSP, and clarified how it is a general framework
for analysing problems that involve functions which are periodic in an appropriate sense,
which can most easily described in terms of group theory. Based on our characterisation of
HSP, we developed an algorithm to implement it, and subsequently applied it to Simnon’s
problem and order finding, comparing our results with the algorithms for the same problem
found in the Qiskit textbook, and finding our results to be in close agreement, modulo
the difficulty associated with the implementation of the function f in the case of Simon’s
problem. In view of this, one future avenue to explore is to precisely find out why the given
implementation of this function seems to fail in the HSP case. Nevertheless, the theorems
in Section 2 and the statement of the problem in Section 3.1 suffice to mathematically
establish the validity of the claim that the HSP is indeed the most general framework for
the kinds of problems under consideration.

References
[1] Nielsen, Michael A., and Isaac L. Chuang. Quantum Computation and Quantum

Information. Cambridge: Cambridge University Press, 2022.

[2] Dummit, David Steven, and Richard M. Foote. Abstract Algebra. Danvers: John
Wiley & Sons, 2004

[3] Vazirani, Umesh. Quantum Computation, Course Notes. Spring 2007.
http://people.eecs.berkeley.edu/ vazirani/quantum.html.

[4] Qiskit Textbook. https://learn.qiskit.org/.

14

http://people.eecs.berkeley.edu/~vazirani/quantum.html
https://learn.qiskit.org/

	Introduction
	Mathematical Preliminaries
	Groups, subgroups, cosets, and all that
	Fourier transforms over groups

	The Hidden Subgroup Problem
	Formulation
	Implementation
	Solving Simon's Problem using HSP algorithm

	Simulations

	Conclusion

