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The world of quantum imaging was explored in this work starting with image representation in
the quantum realm. FRQI (flexible representation of quantum images) allow encoding of classical
square images into a normalized quantum state via color and pixel values. The quantum circuit
for FRQI was run on IBM interface and measurement yields a probability distribution. Afterwards
efforts were made in order to reconstruct the quantum state FRQI using a brute force approach
using the probabilities of detected states in zeeman basis. An attempt was also made to recover
the classical image through reverse engineering the encoding process. Finally evaluation metrics
including fidelity and meas square error were calculated and they turned out to be 0.99 and 200
respectively.

I. INTRODUCTION

Although a relatively new concept in the field of science
and technology, quantum computing is being researched
on and used extensively for finding solutions to problems
that seem too complicated for the existing classical com-
puters. Though the quantum computers are quite differ-
ent and rather complex to use but the promise of expo-
nentially increasing the speed and efficiency of problem
solving has created an interest among researchers world-
wide to dig more into the applications of this field. Quan-
tum computers are basically even more advanced than
the supercomputers. Even those problems that seem ex-
tremely complex for supercomputers, like the modelling
of atoms in a compound, quantum computers can per-
form such tasks rather easily. Currently, quantum com-
puters and quantum technology in general is being used
in various applications like electric vehicles, solving of
complex energy challenges, quest of solving space and
cosmic mysteries, image processing and a variety of a lot
of other applications [1].

One of the most interesting area where Quantum sci-
ence and technology is being utilized is Quantum Image
Processing. With a multitude of advances in technology,
image processing has become an extensively researched
upon area of technology. It is being employed in var-
ious different disciplines and areas of research. Facial
recognition, automated vehicles, image Photoshop and
numerous other techniques use image processing as their
basis. Utilizing Quantum technology in image processing
is what Quantum image processing is all about. As is ev-
ident until now, quantum image processing will be a lot
more efficient in terms of speed and time than its classi-
cal counterpart. It will also prove to be extremely useful
for simple day to day applications like simple face recog-
nition on a mobile phone or criminal detection at a police
station, but all of this might be possible in a fraction of
time and with much less error than is now using classi-
cal techniques. Image compression, edge detection, im-
age storage, image retrieval, binary image line detection
are just some of the tasks achievable by quantum image
processing [2, 3]. In order to carry out Quantum Image

Processing, the image must first be transformed into its
quantum counterpart known as the quantum image. This
state can be achieved by a number of different processes.
Here we discusses the FRQI technique in detail. The
FRQI state represents the classical images, after a trans-
formation, as quantum images on a quantum computer
in a normalized state. This state carries the information
about the colours in an image and their respective posi-
tions. It is quite an efficient method for the preparation
of an image on which various different quantum image
processing algorithms can be applied to achieve desired
results. Not only does FRQI provide a representation
to images but can also prove to be extremely useful for
the exploration of other tasks performed by the quantum
computers regarding image processing [2, 4]. Preparing
this state requires a polynomial number of simple oper-
ations and gates [3, 4]. We work with a 2x2 image i.e. 4
pixels image, where the color and its position is encoded
in the FRQI state as shown below,

|I(θ)⟩ = 1

2n

22n−1∑
i=0

(cos(θi)|0⟩+ sin(θi)|1⟩)⊗ |i⟩, (1)

θi ∈ [0,
π

2
], i = 0, 1, 2, ..., 22n − 1. (2)

II. MATHEMATICAL FORMULATIONS

The FRQI state contains coded information in the form
of colour and its related pixel position as shown below.
FRQI state is prepared through a unitary transformation
which has two steps. First applying the hadamard trans-
form H = I⊗H⊗2, where I is the 2D identity matrix and
H is the hadamard gate, on |0⟩⊗3, producing the state
|H⟩,

(I ⊗H⊗2)|0⊗3⟩ = 1

2
|0⟩ ⊗

3∑
i=0

|i⟩ = |H⟩. (3)

State |0⟩ is initialised on all three qubits and hadamard
gate is applied on the first two, creating superposition.
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The third qubit is our ancillary qubit. In the second
step, controlled rotations are applied on the |H⟩ state as
defined by,

Ri = (I ⊗
3∑

j=0,j ̸=i

|j⟩⟨j|) +Ry(2θi)⊗ |i⟩⟨i|. (4)

where

Ry(2θi) =

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
The controlled rotations are applied in succession cor-

responding to the number of pixels, which in our case is
4. This corresponds to a unitary operation R defined as,

R|H⟩ =
3∏

i=0

Ri|H⟩. (5)

Equation. I is our state obtained after applying the
hadamard transform. Now, the controlled rotation
operators are applied in succession as follows.

R0|H⟩ =

I ⊗ 3∑
i=0,i̸=0

|i⟩⟨i|) +Ry(2θ0)⊗ |0⟩⟨0|


(
1

2
|0⟩ ⊗

3∑
i=0

|i⟩)

=
1

2

(
[|0⟩ ⊗

3∑
i=0,i̸=0

|i⟩⟨i|+

(cos(θ0)|0⟩+ sin(θ0)|1⟩)⊗ |0⟩

)
. (6)

R1(R0|H⟩) =

I ⊗ 3∑
i=0,i̸=1

|i⟩⟨i|) +Ry(2θ1)⊗ |1⟩⟨1|


1

2

(
|0⟩ ⊗

3∑
i=0,i̸=0

|i⟩⟨i|

+ (cos(θ0)|0⟩+ sin(θ0)|1⟩)⊗ |0⟩]

)

=
1

2

(
[|0⟩ ⊗

3∑
i=0,i̸=0,1

|i⟩⟨i|+

(cos(θ0)|0⟩ sin(θ0)|1⟩)⊗|0⟩+(cos(θ1)|0⟩+sin(θ1)|1⟩)⊗|1⟩].

)
(7)

R2(R1R0|H⟩) =

I ⊗ 3∑
i=0,i̸=2

|i⟩⟨i|) +Ry(2θ2)⊗ |2⟩⟨2|


1

2

(
|0⟩ ⊗

3∑
i=0,i̸=0,1

|i⟩⟨i|

+(cos(θ0)|0⟩+sin(θ0)|1⟩)⊗|0⟩+(cos(θ1)|0⟩+sin(θ1)|1⟩)⊗|1⟩

)

=
1

2

(
|0⟩⊗

3∑
i=0,i̸=0,1,2

|i⟩⟨i|+(cos(θ0)|0⟩+sin(θ0)|1⟩)⊗|0⟩+

(cos(θ1)|0⟩+ sin(θ1)|1⟩)⊗ |1⟩

+ (cos(θ2)|0⟩+ sin(θ2)|1⟩)⊗ |2⟩

)
. (8)

R3(R2R1R0|0⟩) =

I ⊗ 3∑
i=0,i̸=3

|i⟩⟨i|) +Ry(2θ3)⊗ |3⟩⟨3|

 1

2(
|0⟩ ⊗

3∑
i=0,i̸=0,1,2

|i⟩⟨i(cos(θ0)|0⟩+ sin(θ0)|1⟩)⊗ |0⟩+

(cos(θ1)|0⟩+sin(θ1)|1⟩)⊗|1⟩ +(cos(θ2)|0⟩+sin(θ2)|1⟩)⊗|2⟩

)

=
1

2
|0⟩

(
⊗

3∑
i=0,i̸=0,1,2,3

|i⟩⟨i|+(cos(θ0)|0⟩+sin(θ0)|1⟩⊗|0⟩+

(cos(θ1)|0⟩+ sin(θ1)|1⟩ ⊗ |1⟩

+(cos(θ2)|0⟩+sin(θ2)|1⟩)⊗|2⟩+(cos(θ3)|0⟩+sin(θ3)|1⟩)⊗|3⟩

)
.

(9)

In above equation (9), the first term enclosed in paren-

theses vanishes and
∑3

i=0 |i⟩ are just numeric represen-
tation of two qubit states in Zeeman basis,

1. |0⟩ = |00⟩

2. |1⟩ = |01⟩

3. |2⟩ = |10⟩

4. |3⟩ = |11⟩.

Hence, the FRQI state achieved is,

1

2

(
(cos(θ0)|0⟩+ sin(θ0)|1⟩)⊗|00⟩+(cos(θ1)|0⟩+ sin(θ1)|1⟩)⊗|01⟩

+(cos(θ2)|0⟩+ sin(θ2)|1⟩)⊗|10⟩+(cos(θ3)|0⟩+ sin(θ3)|1⟩)⊗|11⟩

)
.

(10)
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Pixel value Angle
0 0
85 π/6
170 π/3
255 π/2

TABLE I. Angles for corresponding pixels of FIG.1.

III. IMPLEMENTATION METHODOLOGY
AND RESULTS

In order to begin with the implementation of FRQI,
we need to have some knowledge about pixels. To put it
in the simplest way possible, a pixel is the smallest unit
of an image. An image can be composed of up to mil-
lions of pixels. Each pixel of a gray scale classical image
is represented by a number between 0 and 255, where 0
corresponds to black and 255 corresponds to white. All
the numbers in between are various shades of gray of de-
creasing intensities. In order to implement the FRQI cir-
cuit, lets take the example of a 2x2 classical image shown
in Fig. 1. It is a gray scale classical image composed of
4 pixels. The numbers that correspond to these colors

FIG. 1. A 2x2 grey scale image.

are 0, 85, 170 and 255, starting from top left, top right,
bottom left and bottom right respectively. Now, the first
step for the implementation of the circuit for FRQI is to
convert these values into angles that will be processed by
the quantum circuit. The following formula will be used
to carry out this conversion:

θ =
numericalvalue

255
.
π

2
. (11)

Using this Equation. 12, pixel values are shown in Ta-
ble. I. Substituting these values into Equation. 10 gives
us the quantum state (FRQI) for the classical image dis-
played in Fig. 1,

|ψ⟩ = 1

2
|000⟩+

√
3

4
|001⟩+1

4
|101⟩+1

4
|010⟩+

√
3

4
|110⟩+1

2
|111⟩.

(12)

State |000⟩ |001⟩ |010⟩ |101⟩ |110⟩ |111⟩
Probability 0.2497 0.1919 0.06255 0.06225 0.1899 0.2437

TABLE II. Probabilities for each 3 qubit states detected.

Equation. 12 represents the quantum state in which
our classical grey scale image has been encoded. This
process of encoding involves passing the image through a
quantum circuit shown in Figure. 2. The hadamard gates
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FIG. 2. Quantum circuit for a 2x2 FRQI.

creates superposition. This is followed by a combination
of gates shown in right hand side of barrier in Figure. 3.
In this Figure. 3 the combination of gates on the right
hand side of barrier are applied in our quantum circuit
and are equivalent to a single quantum gate on left hand
side of barrier. This single gate is a doubled controlled
Y rotation quantum gate and works for any angle.

FIG. 3. A double controlled Y rotation gate can be broken
down into 4 simpler gates.

A. Measurement and recovering the image

Now that classical image has been encoded, it is time to
recover it back. Since we can only see what our naked eye
allows us to and a quantum state is really not useful when
it comes to visualizing images. Now a measurement has
been made at the end of our quantum circuit in Figure. 2.
This was done by running it on IBM quantum computer.
The maximum number of counts allowed were used i.e.
20000. The results are shown in Figure. 4. It shows the
number of times each of the 3 qubit states were detected.
This is basically a probability distribution. In order to
get explicit values for probabilities, each value is divided
by total number of shots fired. This is shown in Table 2.
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FIG. 4. States detected after measurement has been done.



0.25 0.2165 0.125 0 0 0.125 0.2165 0.25
0.2165 0.1875 0.1083 0 0 0.1083 0.1875 0.2165
0.125 0.10825 0.0625 0 0 0.0625 0.1083 0.125
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.125 0.10825 0.0625 0 0 0.0625 0.10825 0.125
0.2165 0.1875 0.1083 0 0 0.1083 0.1875 0.2165
0.25 0.2165 0.125 0 0 0.125 0.2165 0.25


FIG. 5. Density operator corresponding to state |ψ⟩.

B. Brute force approach

Now we would like to do something we call a brute force
approach. This involves recovering the classical 2x2 im-
age. We start by writing down the density operator cor-
responding to the quantum state in Equation. 12. This is
shown in Figure. 5. Next we will reconstruct the quantum
state using the Table. II. In basic principle, the modulus
square of the coefficients of a quantum state gives prob-
ability and the sum is equal to 1 for normalization. We
use the same principle and reconstruct the quantum state
after measurement based in the probabilities and states
detected.

|ψ
′
⟩ = 0.4997|000⟩+ 0.4381|001⟩+ 0.2501|010⟩
+ 0.2495|101⟩+ 0.4358|110⟩+ 0.4937|111⟩. (13)

Now the corresponding density operator for this state |ψ⟩
after measurement is shown in Figure. 6



0.2497 0.2189 0.1249 0 0 0.1247 0.21788 0.2467
0.2189 0.1919 0.1096 0 0 0.1093 0.1909 0.2163
0.1249 0.1096 0.0625 0 0 0.0624 0.1089 0.1235

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.1247 0.1093 0.0624 0 0 0.0623 0.1087 0.1232
0.2178 0.1909 0.1089 0 0 0.1088 0.1899 0.2151
0.2467 0.2163 0.1235 0 0 0.1232 0.2151 0.2437


FIG. 6. Density operator corresponding to state|ψ

′
⟩.

State P(j—|0⟩) P(j—|1⟩) pixel value(ϑ)
00 0.4997 0 0
01 0.4381 0.2495 105
10 0.2501 0.4358 150
11 0 0.4937 255

TABLE III. Pixel values calculated from the reconstructed
state using Equation. ]reftab:3

C. Recovering the image

Now we intend to recover the classical image back from
the quantum state. For this purpose we need the pixel
values to reconstruct the grey scale image. We will use
the following formula,

ϑ = arccos

(√
P (j||0⟩)

P (j||0⟩) + P (j||1⟩)

)
.255.

2

π
. (14)

The values for the pixels are calculated using Equa-
tion. 14, where P (j||0⟩) is conditional probability of ob-
serving state j given that gray value of qubit is in state
0⟩. Analogously, P (j||1⟩) is the conditional probability
of observing j with gray value qubit in |1⟩. The results
of our calculations of pixel values from the reconstructed
state |ψ′⟩ are displayed in Table. III.

D. Evaluation Metrics

Now we will use an evaluation metric to quantify how
efficient this encoding process was. For this purpose we
will be using fidelity. Fidelity is a measure of how close
two quantum states are using their density operators. [5]
Mathematically it is defined as:

F (ρ, σ) = (tr
√
ρσ)2. (15)

Our calculated value of fidelity turns out to be 0.99,
which is very high. But again this was a very direct or
how we would like to call it ’brute force’ approach to
recover the quantum state.
Using these pixel values classical gray scale value can

be recovered. But we will now quantify the error in re-
covering this image using mean square error [6],

LMSE =
1

n

n∑
i=1

(xi − yi)
2. (16)

In Equation. 16, xi and yi correspond to the pixel values
for original and reconstructed image respectively. When
calculated, mean square error comes out to be 200. With
increase in error in pixel values, this squared loss in-
creases quadratically.

IV. CONCLUSION

We started with a classical grey scale 2x2 image and
encoded it into a quantum state called flexible represen-
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tation of quantum image. This is based on the fact that
a single qubit is used to encode grey scale color and 2
qubits were used to encode the position of all 4 pixels in
this specific quantum image representation. A square im-
age with 2nx2n size can be encoded in just 2n+1 qubits.
The preparation complexity is O(24n). Pixel values for
the grey scale image were converted into angles to encode
into the quantum state. The quantum circuit was run on
IBM quantum computer and probability distribution was
obtained after measurement. From this measurement we

attempted to reconstruct the quantum state FRQI. The
efficiency of such straight forward approach was quanti-
fied using fidelity which turned out to be 0.99. This was
followed by recalculation of pixels from the reconstructed
state to recover the classical image. This was quantifies
through mean square error which was 200.
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