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Abstract

The comparison between two QKD protocols, BB84 and B92 has been
investigated. Both techniques use quantum physics to protect the com-
munication channel and identify any possible eavesdropping attempts. An
in-depth analysis of the two protocols, taking into account their advan-
tages, disadvantages, and potential security risks has been given. Finally,
a conclusion has been drawn between the two protocols that both are
successful in creating safe communication channels, but the selection of
protocol is determined by the particular demands of the communication
scenario.
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1 Introduction

Cryptography is the art of exchanging information between two parties securely.
Different techniques are used to encrypt and transmit data in such a way that
only the intended recipient can read and comprehend it. Cryptography can be
of classical as well as quantum nature.

1.1 Classical cryptography

Our current communication system is based on classical cryptography which
depends on a set of mathematical rules called algorithms. It can be of two
types namely secret or symmetric key cryptography and public key cryptogra-
phy. The security of classical cryptography relies on how difficult it is to factor
huge numbers computationally. Hence its security is at high risk if computa-
tional power improves or some efficient algorithms to solve factorization in a
polynomial amount of time are discovered [1].

1.2 Quantum cryptography

Quantum cryptography methods are based on the principles of Quantum Me-
chanics such as the uncertainty principle [5], no-cloning theorem/[5], and quan-
tum entanglement[5]. These concepts guarantee the security of key distribution
and provide an additional advantage of exposing any eavesdropper trying to
intercept. Quantum cryptography includes various cryptography techniques
such as quantum teleportation, quantum encryption quantum key distribution
(QKD), etc. Let’s delve into the world of quantum key distribution (QKD) and
explore two of its popular protocols, BB84 and B92.

1.2.1 BB-84 protocol

The BB84 protocol was proposed by Charles H. Bennett and Gilles Brassard
in 1984 at an IEEE conference in India. The technique employs the quantum
characteristics of subatomic particles to produce a confidential key. The key’s
bits are embedded in the polarization states of a sole photon. BB84 uses four
polarisation states of the photon namely horizontal (0°, or H-polarisation), ver-
tical (90° or V-polarisation), diagonal (4+45°), and anti-diagonal (-45°). This
approach relies on two crucial tenets of quantum mechanics, namely the un-
certainty principle and the no-cloning theorem, which heighten its security and
dependability. This is because the information encoded in the state of a photon
cannot be accessed without detecting the state of the photon, which results in
its destruction. Also according to the "no-cloning theorem”, it is impossible
to create identical copies of an unknown quantum state without detecting it,
so any eavesdropper (called Eve) attempting to obtain access to the key in an
unauthorized way will be exposed. This is due to the fact that she can not



create and she has to detect the photon and if she measured it on the wrong
basis, she is going to be revealed [2].

1.2.2 B-92 protocol

Charles Bennett introduced the B92 protocol in his publication ” Quantum Cryp-
tography using any two non-orthogonal States” in 1992 which is a modified ver-
sion of the BB84 protocol. He realized that only two non-orthogonal polarisation
states of a photon are sufficient to encode information. The B92 protocol uses
only two non-orthogonal states conventionally the H-polarization state from the
rectilinear basis and the +45°-polarization state from the diagonal basis [2].

2 Implementation Methodology

The rectilinear bases can be represented by the symbol Z, while the horizontal
and vertical states of a photon can be represented by |0) and |1), respectively.
Similarly, the diagonal bases can be represented by the symbol X, with the
diagonal and anti-diagonal states of a photon represented by |+) and |—), re-

spectively. Here, |[+)= %, and |—)= %

2.1 Implementation of the QKD BB-84 protocol

The implementation of the BB-84 protocol can be generalized in the following
steps:

1. Alice generates two random binary strings: A = (a1,...,a,) and S =
(81,..-,8n). The entries a; are zeros and ones, and a portion of these
entries will eventually be utilized to generate a shared secret key. The
entries s; are picked from the binary set ”Z and X.”

2. Alice sends a sequence of n photons to Bob, and the polarization of the
ith photon is determined as follows: If |) = Z, the photon’s polarization
will be selected from the rectilinear basis (|0),/1)). On the other hand, if
|tb) = X, the photon’s polarization will be chosen from the diagonal basis
(|4),]=)). Alice will use the first or second element of the basis depending
on whether a; equals 0 or 1. The bit Alice intends to send to Bob is
represented by a;, while s; determines how she will encode the bit[3].

3. Bob generates a random string R of length n before receiving any photons.
Each entry in R is chosen from the set Z, X. When he receives the ith pho-
ton, he measures its polarization in the basis labeled by r; and records the
outcome as either 0 or 1, depending on which of the two possible outcomes
he obtains. Thus, Bob obtains a sequence B of length n, consisting of zeros
and ones that represent the results of his measurements. It is important
to note that Alice and Bob may not have used the same basis for a given
photon i, and therefore s; may not be equal to r;. However, if they used



the same basis, and the photon was not disturbed during transmission,
then a; should be equal to b;. For instance, if Alice sent a photon in the
state |1) using the basis (|0),]1)) and Bob measured it in the same basis,
he should obtain the outcome |1) and record the bit 0. On the other hand,
if they used different bases, then there should be no correlation between
Alice’s bit a; and Bob’s bit b;.

4. Alice and Bob communicate by sending photons and then use a public
channel to exchange their sequences of bases S and R. They compare the
two sequences and identify the index values i where there are differences.
At this stage, they are not comparing any values from their bit strings
A and B, only the bases. Alice and Bob then remove the bits in their
respective bit strings that correspond to the identified index values. The
resulting shorter strings are labeled A and B'. Assuming that there was
no interference, A" and B’ should be identical and have an expected length
of n/2, as there is a 50% chance that Alice and Bob used the same basis
for each photon transmitted.

5. Even if there is no eavesdropper, there will still be transmission mistakes.
Now that there are errors or bits in B that are not equal to their coun-
terparts in A/, Alice and Bob want to estimate how many errors there
are. To accomplish this, Alice sends Bob a small random sample of her
actual bits from A’ over a public channel, which Bob then compares to
the corresponding bits in B'. After the comparison, Alice and Bob ignore
these details because Eve might be aware of them. They now want to fix
these remaining problems, presuming that the remaining bits have roughly
the same percentage of errors as the ones they checked. To see how they
will do this without giving everything away, refer to the example in the
Mathematical Formulation section (error correction and privacy amplifi-
cation). Upon completion of this stage, Alice and Bob are expected to
have acquired shorter strings A" and B", which are highly likely to be
identical.

6. Alice and Bob estimate the maximum information an eavesdropper may
have obtained about the remaining bits in step 5, based on the errors
they have identified. They use this estimate to create shorter strings A"
and B” to replace A" and B”7 respectively. These new strings are almost
entirely unknown to the eavesdropper and can be used to generate a secret
key, which in turn can be used to encode and send information securely|3].

Let us elaborate on how Alice and Bob can detect errors in their communi-
cation and how an eavesdropper’s interference can cause errors. In the commu-
nication process, each photon is associated with a basis, and if Eve knows the
basis of a given photon, she can learn Alice’s bit without disrupting the signal.
However, the protocol used in step 2 prevents Eve from knowing which basis
Alice uses to encode each bit. Therefore, Eve may guess the basis and mea-
sure the photon accordingly. If her guess is correct, she will obtain the bit as



intended. However, if she guesses incorrectly, errors may occur. To be specific,
let’s assume Alice is using the Z basis (|0),|1)) and is sending the bit 0, which is
represented by the state |1). However, Eve measures the photon using the wrong
X basis (|4+),]—)). There are two equally likely outcomes of her measurement,
but neither outcome reveals what state Alice actually sent. Therefore, Eve has
not gained any information about Alice’s bit a;. Moreover, Eve is unaware that
she used the wrong basis, so she prepares and sends a new photon to Bob with
the diagonal polarization corresponding to her measurement outcome[3].

What occurs on Bob’s end now? If Bob is using the diagonal basis X, then
it’s irrelevant because, according to step 4, the associated bits of this photon
will eventually be disregarded. Therefore, we can focus on the case where Bob
uses the same basis as Alice, which is the rectilinear basis Z in our example.
Bob measures a diagonally polarized photon in a rectilinear basis, and the two
outcomes have an equal likelihood. If Bob receives the vertical outcome, it’s
lucky for Eve because she records the bit b; = 0, which matches Alice’s bit a;.
Consequently, this photon doesn’t offer any evidence of Eve’s interference to
Alice and Bob. At this point, "lucky” for Eve refers only to minimizing the
damage. It’s already been established that she hasn’t learned anything about
Alice’s bit. However, she can hope that her attempt won’t be detected. If Bob
receives the horizontal outcome, he’ll record the bit b; = 1, which is not equal
to a;. This disparity will exist in the strings A’ and B’ and could be discovered
in step 5. If this occurs, Alice and Bob will have learned something about Eve’s
behavior through her attempt to learn the details of the key that she and Bob
exchanged|[3].

To calculate the relevant probabilities, let’s consider a scenario where Eve
decides whether to measure each photon probabilistically, and the probability
of measuring a photon is p. Now, let’s analyze the probability of Eve causing an
error in a photon whose bit will be part of the strings A and B. The probability
of error in such a bit is p/4. This means that there’s a p chance that Eve will
measure the photon, a 1/2 probability that she will select the wrong basis, and if
she does so, there’s a 1/2 chance of her causing an error. We can also determine
the probability of Eve learning the value of the bit, which is p/2 since she can
learn the value only when she chooses the correct basis. Thus, in the long term,
for every two bits that Eve learns, she is likely to cause one error[3].

Eve can employ a variety of strategies, but one that works well for her is to
extract as much information as she can from a photon with the least chance of
making an observable error. While the likelihood of an error can be calculated,
it is more difficult to estimate how much information Eve will learn. Since
Eve either learned the value of a bit or didn’t, the calculation in the previous
example was fairly simple. With other methods, though, the information she
gathers might be hazy or probabilistic. For instance, without being positive,
she might believe that the value 0 is more likely than 1. The Renyi entropy is
a valuable mathematical tool to quantify the amount of information Eve gains
in such circumstances.

Eve’s chances of getting either a bit value of 0 or 1 are initially equal, making
both outcomes equally likely for her. So, pg and p; are both equal to half.



However, Eve hopes that after measuring the photon and learning about Alice
and Bob’s open communication, her probabilities will be more biassed towards
one of the two bit values. She might anticipate that, for instance, py = 3/4 and
p1 = 1/4. The "Renyi entropy” of order 2, denoted by Hpg, is a measure of the
uncertainty that Alice has about the bit, whether before or after she takes a
measurement. It is defined as

Hp = ~logs(F5 + PP), (1)

Where py and p; are the probabilities of the bit being 0 or 1, respectively. This
entropy quantifies the information that Alice is missing about the bit. The
term ”entropy” can be used interchangeably with ”uncertainty.” This can be a
helpful way to understand what entropy means in this context. Although Renyi
entropy is dimensionless, it is commonly described in ”bits.” For instance, if
Eve’s probabilities were py = 1 and p; = 0, her Renyi entropy would be Hr =
- log2(12 + 02?) = 0 bits, which indicates that she has no missing information.
In contrast, when the two probabilities are equal, as they are before Eve makes
her measurement, her Renyi entropy equals Hg = - loga(1/22 + 1/22) = 1
bit, which is the highest possible value. Thus, if you have no prior knowledge
about the bit’s value, you are missing one bit of information. Suppose that after
measuring, Eve’s probabilities of obtaining outcomes 0 and 1 are py = 3/4 and
p1 = 1/4, respectively. In this case, her Renyi entropy is given by the formula

3 1
Hp = —logg(Z)Q + (1)2 = 0.678 bits, (2)
which is less than the maximum value it could be. We can refer to the difference
between Eve’s Renyi entropy and its maximum value as her " Renyi information”
for convenience. Thus,

Renyi information = 1 — (Renyi entropy) =1 — Hg[3]. (3)

2.2 Implementation of the QKD B-92 protocol

The implementation of the B-92 protocol is similar to that of the BB-84 protocol,
with the main difference being that the former utilizes only two non-orthogonal
polarization states of a photon. However, the implementation of the B-92 pro-
tocol can be generalized in the following steps:

1. Alice can choose to represent zeros using the H-polarization state (i.e, |0))
from the rectilinear basis and ones using the +45°-polarization state (i.e,
|+) from the diagonal basis, as only two polarization states can be used.

2. Bob also has the freedom to randomly choose either of the two bases
to measure the photon he receives. If Bob measures the photon in a
rectilinear basis, there are two possible outcomes. If the incident photon
was in |0), then Bob will measure it in |0) with a probability of 1. However,
if the incident photon was in the |4}, he will measure it with a probability
of 1/2, as he can either get an |0) state or a |1)



. Similarly if Alice sends a |4+) photon then Bob has two options: measure
in the |0) or the |+). If Bob measures in the|0), he can measure the |0)
or the |1) with equal probability 1/2. But if his measurement outcome
results in the |1) then he will realize that he has selected the wrong basis
and Alice must have used the |+) since neither Alice nor Bob uses the |1).

. The same is true if Bob measures in a diagonal basis. If he detects the
|+), he will infer that the polarization state of the photon was |0) and he
has used the wrong basis.

. After transmission of the photon sequence, Bob records each time where
the measurement result was either a ’|1)’ or a ’|—)’, and both discard the
remaining outcomes. And using these results, Alice and Bob can generate
a secret Key.

. Alice and Bob generate a random bit string and share a portion of it
publicly to prevent unauthorized access. If the number of incorrect bits
in the shared portion exceeds a certain limit, the protocol ends. They can
use the remaining bits to create a secure and mutually agreed-upon key,
as long as the number of errors is within an acceptable range[2].

The Mathematical Formulation of BB-84 Pro-
tocol

To create a secret, shared key, Bob, and Alice wish to use randomness. Eve, the
eavesdropper, wants to learn more about this key without being discovered. If
she succeeds in doing this, she will eventually be able to decrypt an actual secret
message using that key and read at least a portion of it. Considering that Alice
sends quantum signals to Bob as part of the Bennett-Brassard key distribution
protocol, Eve will often be unable to measure these signals without creating
some disruption. By doing this, Alice and Bob hope to spot Eve’s presence and
prevent her scheme. There are many generalized cases of the Brennet-Barrasard
protocol but here we are demonstrating a simple example of the BB-84 protocol
as shown in Figure (1) [4].

Table 1: Alice basis after the Pauli x and Hadamard gate |1)1)[4].

a | b | |¢¥1)
01]0]|0)
0|11+
Lol
111 |]-)

In this example, Alice is creating the classical random bits which are de-

noted by "a” and ”"b”. Alice is using Pauli x gate on a classical bit ”a” and
a controlled Hadamard gate is applied on a classical bit ”b” which creates the
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Figure 1: The systematic Diagram of QKD-BB84 protocol. [4]

X and Z bases. A single qubit is used in the state |0). If both random bits a
and b are zero, then no transformation occurs on |0) but when a=0,b=1, the
Hadamard gate applies on it and converts the state from |0) to |+) as shown in
table (1). For a=1,b=0, and a=1,b=1, we get |1) and |—) respectively. Alice
then sends this to Bob and Bob on the other hand creates a random classical
bit and applies the controlled Hadamard on the incoming qubits as shown in
Figure (1). This increases the number of possibilities as shown in Table (2). Bob
performed a measurement and compares the results of his and Alice’s classical
bit b. Bob can publically declare that the b=c or b#c. An interesting pattern
is observed here when b=c, the output of |1)2) is the same as the classical bit
7a” as shown in Table (2). Bob and Alice decide that they need to just save the
outputs of b=c and discard the other. They discard the other bits and perform
this experiment many times which gives them a Quantum key[4].

What if an eavesdropper called Eve decides to intercept their message? FEve
cannot read the message without collapsing the states which makes QKD se-
cure. When Eve decided to measure the state, Eve needs the X and Z bases,
which already reduces the chances up to 50-50 probability. If Eve can extract
a lot of information from a photon while reducing the likelihood that she will
make a mistake that can be detected, she has a successful technique. How can

Table 2: Final output |¢9)[4].

[¥2)
10)
+)
+)
10)
1)
=)
—)
1)

L Bl Bl Bl =) =] K en) Nl <)
[l R E=lE= H o B Rl Nl R
=l =l =l k=] ke]




we calculate the quantity of information she gains? We know how to calculate
the probability of an error. We can use error correction methods and privacy
application techniques but we also need to find a way to check how much infor-
mation Eve obtained. We use Renyi entropy for this, The Renyi entropy, which
we will define as a measure of the amount of information Eve lacks about the bit,
turns out to be a valuable mathematical tool for determining Eve’s information
in such a case.

Hp = ~logs(P2 + P?), (4)

Even though Renyi entropy is a pure integer that does not require units, it
is frequently mentioned as being measured in ”bits” [3].

4 Results and Disscusion

The experiment was conducted using the BB84 and B92 protocols for quantum
key distribution. In the BB84 protocol, Alice and Bob exchanged a total of
100 bits, of which 31 bits were successfully exchanged between them. The error
correction is applied to the obtained Alice’s key and Bob’s key using the parity
check[6][7][8] and hamming code[9][10]. The length of the keys was reduced to
26 bits. Privacy amplification code was implemented on the obtained Alice’s
key and Bob’s key by using a hash function which enhanced the security of the
secret key. The hash function first stored the bits in hexa bits and then con-
verted the bits into binary form. The length of hexa bits and binary bits are
shown in Figure (2a). The error rate from the samples was found to be 33.3%
while the total error was found to be 35% and 15 errors were found in the keys.
The accuracy before the error correction was 64.5 % while the accuracy after
the error correction was found to be 100%.

In the B92 protocol, Alice and Bob exchanged a total of 100 bits, of which 33
bits were successfully exchanged between them. The error correction is applied
to the obtained Alice’s key and Bob’s key using the parity check and hamming
code. The length of the keys was reduced to 27 bits. Privacy amplification
code was implemented on the obtained Alice’s key and Bob’s key by using a
hash function which enhanced the security of the secret key. The has function
first stored the bits in hexa bits and then converted the bits into binary form.
The length of hexa bits and binary bits are shown in Figure (2b). The error
rate from the sample was found to be 50.0% while the total error was found to
be 51.5% and 15 errors were found in the keys. The accuracy before the error
correction was 48.4 % while the accuracy after the error correction was found
to be 100%.

The results show that the BB84 protocol is more efficient and secure than the
B92 protocol. The higher percentage of bits that were successfully exchanged
without errors in the BB84 protocol indicates that it has a higher transmission
rate and is less vulnerable to errors. In contrast, the B92 protocol has a higher
error rate and is less efficient than the BB84 protocol. Overall, the results sug-
gest that the BB84 protocol is a more robust and reliable method for quantum
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(a) This figure shows Alice’s and Bob’s bits (b) This figure shows Alice’s and Bob’s bits
without and after correction and also rep- without and after correction and also rep-
resents the hexa bits and final secret key in resents the hexa bits and final secret key in
binary form for BB84 protocol binary form for B92 protocol

Figure 2: The Plots of the QKD BB84 and B92 protocols

key distribution but it costs a lot, and it requires four states while B92 does the
transmission into two states.

5 Conclusion

we can conclude that the BB84 and B92 protocols each have different advantages
and disadvantages. The best protocol to adopt will depend on the particulars
of the communication as well as the resources available. Although the B92
protocol is easier to use and uses fewer resources, it is less secure than the BB84
protocol and has a higher error rate. Therefore, choosing the right protocol for
a given application requires finding a balance between security, resource needs,
and error tolerance. It is likely that as quantum cryptography continues to
develop, new protocols that combine the positive aspects of both BB84 and B92
will emerge, further enhancing the security and effectiveness of quantum key
distribution.
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