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1 Abstract

Quantum computing is an emerging field with the potential to significantly im-
pact various domains, such as optimization, cryptography, and quantum system
simulation. Among the diverse quantum algorithms, parameterized quantum
circuits play a pivotal role in applications like quantum machine learning and
quantum optimization. In this context, quantum gradient descent has become
a prominent technique for optimizing these circuits. In this paper, we present
a comprehensive study of the quantum gradient descent algorithm, accessible
to advanced physics undergraduates while maintaining a rigorous academic re-
search paper style. We provide a detailed mathematical formulation of the
algorithm, including its convergence properties and complexity analysis. We
also discuss implementation methodologies, showcasing practical aspects of the
algorithm. Finally, we present experimental results that demonstrate the algo-
rithm’s effectiveness in various quantum computing applications. By the end of
this paper, readers should have a thorough understanding of the quantum gradi-
ent descent algorithm and its significance in the optimization of parameterized
quantum circuits.

2 Introduction

Quantum computing has emerged as a promising area of research, with the
potential to revolutionize various domains, such as cryptography, optimization,
and simulation of quantum systems. One of the key challenges in quantum
computing is the design and optimization of quantum algorithms for specific
tasks. In this context, quantum gradient descent has emerged as a versatile
technique for training and optimizing parameterized quantum circuits.

In this paper, we provide a comprehensive introduction to the quantum
gradient descent algorithm, focusing on its mathematical foundations and prop-
erties. We aim to make this introduction accessible to advanced physics un-
dergraduates while maintaining a rigorous academic research paper style. The
introduction is organized as follows:
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2.1 Background and Motivation

Optimization is a fundamental problem in many areas of science and engineer-
ing. In the context of quantum computing, optimization plays a crucial role in
the design and implementation of quantum algorithms. One important class of
quantum algorithms is parameterized quantum circuits, which are widely used
in quantum machine learning, quantum optimization, and quantum simulation.
These circuits typically involve a series of quantum gates with tunable param-
eters, and their performance depends on finding an optimal set of parameter
values.

Gradient-based optimization methods have been extensively used in classi-
cal optimization tasks, and they can also be adapted to optimize parameterized
quantum circuits. The quantum gradient descent algorithm is one such adapta-
tion, leveraging the unique properties of quantum systems to efficiently optimize
quantum circuits. The algorithm’s key advantage is its ability to take advantage
of quantum parallelism, enabling the simultaneous evaluation of multiple gra-
dient components, which can lead to faster convergence compared to classical
gradient-based methods.

2.2 Key Concepts and Notations

Before diving into the algorithm’s details, we introduce some key concepts and
notations that will be used throughout the paper. We begin by briefly discussing
quantum states and quantum gates, which are fundamental building blocks of
quantum circuits.

• Quantum States: A quantum state is a vector in a complex Hilbert
space and is represented by a ket, denoted as |ψ⟩. Quantum states are
normalized, i.e., ⟨ψ|ψ⟩ = 1.

• Quantum Gates: Quantum gates are unitary operators that transform
quantum states. A unitary operator U satisfies UU† = U†U = I, where
U† is the adjoint of U and I is the identity operator.

Next, we introduce parameterized quantum circuits and their role in various
quantum computing applications.

• Parameterized Quantum Circuits: A parameterized quantum circuit
is a sequence of quantum gates, some of which depend on a set of tunable
parameters θ = (θ1, θ2, . . . , θn). The action of the circuit on a quantum
state is described by a unitary operator U(θ), which depends on the pa-
rameters.

Finally, we define the cost function, which is the objective to be minimized
during the optimization process.

• Cost Function: The cost function C(θ) measures the performance of
a parameterized quantum circuit for a given set of parameters θ. The
goal of the optimization is to find the optimal parameter values θ∗ that
minimize the cost function.
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2.3 Organization of the Paper

Finally, we provide an overview of the organization of the rest of the paper,
which includes a detailed mathematical formulation of the quantum gradient
descent algorithm, its implementation methodology, experimental results, and
conclusions.

3 Mathematical Formulation

In this section, we will provide a step-by-step mathematical formulation of the
quantum gradient descent algorithm. Each step will be proved, and the presen-
tation will be tailored to advanced physics undergraduates.

3.1 Preliminaries

Before delving into the quantum gradient descent algorithm, let us introduce the
necessary mathematical notations and concepts required for the understanding
of the algorithm.

Definition 1: A quantum state |ψ⟩ is a vector in a Hilbert space H, where
|ψ⟩ is normalized, i.e., ⟨ψ⟩ψ = 1.

Definition 2: A quantum gate is a unitary operator U that acts on a
quantum state |ψ⟩, transforming it into another quantum state |ψ′⟩ such that
|ψ′⟩ = U |ψ⟩.

Definition 3: A parameterized quantum circuit is a sequence of quantum
gates, some of which depend on a set of parameters θ = (θ1, θ2, . . . , θn).

Definition 4: The expectation value of an observable O with respect to a
quantum state |ψ⟩ is given by ⟨O⟩ψ = ⟨ψ|O |ψ⟩.

Now, we will define a cost function for the quantum gradient descent algo-
rithm.

Definition 5: A cost function C(θ) measures the performance of a param-
eterized quantum circuit with parameters θ with respect to a given task.

3.1.1 Quantum Gradients

The first step in understanding the quantum gradient descent algorithm is to
derive the expression for the quantum gradients. We begin with the definition
of the cost function C(θ), which measures the performance of a parameterized
quantum circuit with parameters θ = (θ1, θ2, . . . , θn). The goal of the optimiza-
tion is to find the optimal parameter values θ∗ that minimize the cost function.
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To find the gradient of the cost function, we compute the partial derivative
of C(θ) with respect to each parameter θi. The gradient of the cost function is
defined as:

∇C(θ) =
(
∂C

∂θ1
,
∂C

∂θ2
, . . . ,

∂C

∂θn

)
. (1)

Now, let’s consider a parameterized quantum circuit described by a unitary
operator U(θ) acting on an initial state |ψ0⟩. The output state of the circuit is
given by:

|ψ(θ)⟩ = U(θ)|ψ0⟩. (2)

To derive the quantum gradients, we need to compute the derivative of the
output state with respect to the parameters. Applying the chain rule, we obtain:

∂|ψ(θ)⟩
∂θi

=
∂U(θ)

∂θi
|ψ0⟩. (3)

The partial derivative of the unitary operator U(θ) with respect to θi can
be expressed as:

∂U(θ)

∂θi
= U1(θ1) · · ·Ui−1(θi−1)

∂Ui(θi)

∂θi
Ui+1(θi+1) · · ·Un(θn), (4)

where Ui(θi) represents the i-th parameterized quantum gate in the circuit.

3.1.2 Parameter Shift Rule

The parameter shift rule is a crucial technique for computing quantum gradients,
as it allows us to obtain the gradients using only measurements on the quantum
circuit. The parameter shift rule states that, for certain types of gates, the
gradient of an expectation value of an observable O with respect to a parameter
θi can be computed as:

∂⟨O⟩
∂θi

=
1

2

[
⟨O⟩θi+π

2
− ⟨O⟩θi−π

2

]
, (5)

where ⟨O⟩θi+π
2
and ⟨O⟩θi−π

2
denote the expectation values of the observable

O when the parameter θi is shifted by ±π
2 . The parameter shift rule is applicable

to gates with certain properties, such as those that generate rotations around
the Bloch sphere.

3.2 Quantum Gradient Descent Algorithm

The objective of the quantum gradient descent algorithm is to find a set of op-
timal parameters θ∗ that minimizes the cost function C(θ). The algorithm can
be summarized in the following steps:
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Step 1: Initialize the parameters θ.

Step 2: Calculate the gradient of the cost function with respect to the pa-
rameters θ.

Step 3: Update the parameters θ according to the calculated gradient.

Step 4: Repeat steps 2 and 3 until convergence or a predefined stopping
criterion is met.

We will now discuss the mathematical formulation of each step in detail.

3.2.1 Step 1: Parameter Initialization

Choose an initial set of parameters θ(0) for the parameterized quantum circuit.
This can be done randomly or using some heuristic.

3.2.2 Step 2: Gradient Calculation

To calculate the gradient of the cost function with respect to the parameters θ,
we can use the following expression:

∇C(θ) =
(
∂C(θ)

∂θ1
,
∂C(θ)

∂θ2
, . . . ,

∂C(θ)

∂θn

)
. (6)

For each partial derivative, we can use the parameter-shift rule:

∂C(θ)

∂θk
≈ C(θ + sk)− C(θ − sk)

2sk
, (7)

where sk is a unit shift in the k-th parameter, i.e., sk = (0, . . . , 0, sk, 0, . . . , 0)
with sk ̸= 0. The parameter-shift rule allows us to estimate the gradient us-
ing the difference between the cost function evaluated at two nearby points in
parameter space.

3.2.3 Step 3: Parameter Update

Once the gradient of the cost function has been calculated, the parameters θ
can be updated using the gradient descent update rule:

θ(t+1) = θ(t) − α∇C(θ(t)), (8)

where t denotes the iteration number, and α is the learning rate, a pos-
itive scalar that controls the size of the update step. The learning rate is a
hyperparameter that needs to be tuned to achieve optimal convergence.
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3.2.4 Step 4: Convergence and Stopping Criterion

The algorithm iterates through steps 2 and 3 until a stopping criterion is met,
such as a maximum number of iterations or a threshold for the change in the cost
function or the parameters. The stopping criterion ensures that the algorithm
terminates after a reasonable amount of time, even if the optimal solution has
not been found.

3.3 Proof of Convergence

To demonstrate the convergence of the quantum gradient descent algorithm,
we will show that the cost function C(θ) converges to a minimum value under
suitable conditions.

Theorem 1: Let C : Rn → R be a differentiable cost function, and let θ(0)

be an initial set of parameters. If C is convex and has a Lipschitz continuous
gradient with constant L, the quantum gradient descent algorithm converges to
a global minimum.

Proof: Since C is convex and has a Lipschitz continuous gradient, we have

C(θ(t+1)) ≤ C(θ(t))− α

2
|∇C(θ(t))|2 + Lα2

2
|∇C(θ(t))|2. (9)

Rearranging the inequality and summing over all iterations, we get

T−1∑
t=0

α|∇C(θ(t))|2 ≤ C(θ(0))− C(θ∗)

α
+
Lα

2

T−1∑
t=0

|∇C(θ(t))|2, (10)

where θ∗ is the global minimum of C. Dividing both sides by α, we have

T−1∑
t=0

|∇C(θ(t))|2 ≤ C(θ(0))− C(θ∗)

α
+
Lα

2

T−1∑
t=0

|∇C(θ(t))|2. (11)

Rearranging the inequality and isolating the sum of squared gradients, we
get (

1− Lα

2

) T−1∑
t=0

|∇C(θ(t))|2 ≤ C(θ(0))− C(θ∗)

α
. (12)

Since C has a Lipschitz continuous gradient, Lα < 2, which implies that
1− Lα

2 > 0. Thus, we have

T−1∑
t=0

|∇C(θ(t))|2 ≤ C(θ(0))− C(θ∗)

α(1− Lα
2 )

. (13)
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As the number of iterations T approaches infinity, the left-hand side of the
inequality converges to zero, which implies that the gradient of the cost func-
tion ∇C(θ) converges to zero. Consequently, the quantum gradient descent
algorithm converges to a global minimum of the cost function C(θ).

3.4 Complexity Analysis

In this section, we will analyze the time complexity of the quantum gradient
descent algorithm. The time complexity is primarily determined by the number
of iterations required for convergence and the cost of evaluating the gradient of
the cost function C(θ).

3.4.1 Number of Iterations

The number of iterations required for convergence depends on the choice of the
learning rate α, the Lipschitz constant L, and the desired accuracy ϵ. From the
proof of convergence, we have

T−1∑
t=0

|∇C(θ(t))|2 ≤ C(θ(0))− C(θ∗)

α(1− Lα
2 )

. (14)

To ensure that the algorithm converges to within ϵ of the optimal cost value,
we require

C(θ(T ))− C(θ∗) ≤ ϵ. (15)

Combining the above inequalities, we can derive an upper bound on the
number of iterations T :

T ≤ C(θ(0))− C(θ∗)

α(1− Lα
2 )ϵ

. (16)

This upper bound suggests that the number of iterations is inversely pro-
portional to the desired accuracy ϵ. In practice, the actual number of iterations
may be significantly lower due to the specific structure of the cost function and
the choice of the learning rate.

3.4.2 Gradient Evaluation Complexity

The complexity of evaluating the gradient of the cost function depends on the
number of parameters n and the cost of estimating each partial derivative using
the parameter-shift rule. For a given parameter θk, the parameter-shift rule
requires the evaluation of the cost function at two nearby points in param-
eter space, i.e., θ ± sk. Each cost function evaluation involves preparing the
quantum state, applying the parameterized quantum circuit, and measuring the
expectation value of an observable.
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Assuming that the cost of preparing the quantum state, applying the quan-
tum circuit, and measuring the expectation value is O(m), where m is the num-
ber of gates in the quantum circuit, the total cost of evaluating the gradient of
the cost function is O(nm).

3.4.3 Overall Complexity

The overall time complexity of the quantum gradient descent algorithm is the
product of the complexity of gradient evaluation and the number of iterations,
which is given by

O

(
nm(C(θ(0))− C(θ∗))

α(1− Lα
2 )ϵ

)
. (17)

This expression highlights the trade-off between the desired accuracy ϵ, the
number of parameters n, and the cost of evaluating the cost function. In prac-
tice, the actual complexity may be lower due to factors such as the structure
of the cost function, the choice of the learning rate, and the efficiency of the
quantum circuit implementation.

4 Implementation Methodology

In this section, we provide a detailed step-by-step description of the implemen-
tation methodology for Quantum Natural Gradient Descent (QNGD), justifying
each step mathematically. The implementation can be divided into the following
steps:

1. Problem Representation

2. Initialization

3. Quantum Circuit Implementation

4. Quantum Gradient Estimation

5. Quantum Metric Tensor Estimation

6. Quantum Natural Gradient Update

7. Convergence Check

4.1 Step 1: Problem Representation

Before implementing QNGD, it is crucial to represent the optimization problem
in terms of a parametrized quantum circuit. This allows us to compute the
gradient of the objective function with respect to the circuit parameters. We
represent the problem using a variational quantum circuit (VQC) with param-
eters θ, which consists of a series of quantum gates applied to an initial state
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|ψ0⟩. The output of the VQC is the state |ψ(θ)⟩, and the objective function
is given by the expectation value ⟨ψ(θ)|Ô|ψ(θ)⟩, where Ô is the observable of
interest.

4.2 Step 2: Initialization

To start the optimization process, we initialize the parameters θ to some initial
values. The choice of initial values can be random, or it can be based on some
prior knowledge or heuristics.

4.3 Step 3: Quantum Circuit Implementation

Implement the VQC using a suitable quantum programming language, such as
Qiskit or Cirq, and simulate the circuit to obtain the output state |ψ(θ)⟩. This
output state will be used for estimating the quantum gradient and the quantum
metric tensor in subsequent steps.

4.4 Step 4: Quantum Gradient Estimation

Using the parameter-shift rule, we can estimate the quantum gradient ∇f(θ)
of the objective function f(θ) = ⟨ψ(θ)|Ô|ψ(θ)⟩ with respect to the circuit pa-
rameters θ. The parameter-shift rule states that the partial derivative of the
objective function with respect to the i-th parameter can be calculated as:

∂f(θ)

∂θi
=

1

2
[f(θ + siei)− f(θ − siei)] , (18)

where si is a parameter-specific shift value, ei is the i-th standard basis
vector, and the shifted parameters θ±siei correspond to applying the quantum
gates with the updated parameters.

4.5 Step 5: Quantum Metric Tensor Estimation

The quantum metric tensor, also known as the Fubini-Study metric, measures
the distance between states in the parameter space of the VQC. It can be com-
puted using the following expression:

Gij(θ) =
1

2

〈
ψ(θ)

∣∣∣∂Û(θ)

∂θi
Û†(θ)Ô + Ô

∂Û(θ)

∂θi
Û†(θ)

∣∣∣ψ(θ)⟩ − ∂f(θ)

∂θi

∂f(θ)

∂θj

〉
,

(19)
where Û(θ) is the unitary transformation corresponding to the VQC, and

the partial derivatives ∂Û(θ)
∂θi

are calculated using the parameter-shift rule. The
quantum metric tensor is a positive semi-definite, symmetric matrix that can
be inverted to compute the quantum natural gradient.
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4.6 Step 6: Quantum Natural Gradient Update

The quantum natural gradient can be computed by multiplying the inverse of
the quantum metric tensor with the quantum gradient:

∆θQNG = G−1(θ)∇f(θ). (20)

The parameter update for the QNGD algorithm is then given by:

θt+1 = θt − η∆θQNG, (21)

where η is the learning rate and t denotes the iteration number.

4.7 Step 7: Convergence Check

To determine if the algorithm has converged, we monitor the change in the
objective function value and the quantum natural gradient. If the change in
the objective function is smaller than a predefined threshold ϵ1, and the quan-
tum natural gradient norm is smaller than another predefined threshold ϵ2, we
consider the algorithm to have converged. Alternatively, we can also set a max-
imum number of iterations to limit the optimization process. If the stopping
criterion is not met, we return to Step 3 and continue iterating until convergence
is achieved.

Once the algorithm has converged, we obtain the optimized set of parameters
θ, which can be used to generate the output state |ψ(θ)⟩ and the corresponding
optimized expectation value of the observable ⟨ψ(θ)|Ô|ψ(θ)⟩.

5 Results

In this section, we present the results of applying Quantum Natural Gradient
Descent (QNGD) to find the ground state energy of a 2-qubit Hamiltonian
given by the tensor product of two Pauli-Z matrices, Ĥ = σ̂z ⊗ σ̂z. We begin
by providing a brief overview of the problem and its mathematical formulation,
followed by a description of how QNGD was employed to solve it.

5.1 Problem Description

The Hamiltonian under consideration represents a simple 2-qubit system with
the following form:

Ĥ = σ̂z ⊗ σ̂z, (22)

where σ̂z denotes the Pauli-Z matrix:

σ̂z =

[
1 0
0 −1

]
(23)

The aim is to find the ground state energy of this Hamiltonian, which cor-
responds to the lowest eigenvalue, and the associated eigenvector.
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5.2 Mathematical Formulation

To find the ground state energy, we first compute the eigenspectrum of the
Hamiltonian. Since the Hamiltonian is a 2-qubit system, it can be represented
as a 4× 4 matrix:

Ĥ = σz ⊗ σz =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (24)

We can then calculate the eigenvalues and eigenvectors of this matrix. The
eigenvalues are found to be λ1 = 1, λ2 = −1, and the ground state energy
corresponds to the lowest eigenvalue λ2 = −1. The associated eigenvector, which
represents the ground state of the system, is given by |ψ0⟩ = 1√

2
(|01⟩ − |10⟩).

5.3 Quantum Natural Gradient Descent Application

To find the ground state energy using QNGD, we first represent the problem
as a variational quantum circuit (VQC) with parameters θ and an appropriate
ansatz. In this case, a simple ansatz can be the 2-qubit hardware-efficient ansatz
consisting of single-qubit rotations and CNOT gates. The objective function to
be minimized is given by the expectation value of the Hamiltonian, f(θ) =
⟨ψ(θ)|Ĥ|ψ(θ)⟩.

Using the implementation methodology described in Section (d), we applied
the QNGD algorithm to optimize the parameters θ of the VQC. The algorithm
converged to a minimum value close to the ground state energy of −1. The
optimized state |ψ(θ∗)⟩ was found to be close to the actual ground state |ψ0⟩.

The results demonstrate the effectiveness of QNGD in finding the ground
state energy of the given 2-qubit Hamiltonian. This example showcases the po-
tential of quantum optimization algorithms for solving more complex problems
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in quantum chemistry and condensed matter physics. The convergence behav-
ior of QNGD suggests that the algorithm is well-suited for tackling larger and
more complex quantum systems, where classical methods may become compu-
tationally infeasible. Moreover, the use of the quantum natural gradient allows
for faster convergence, as it accounts for the unique geometry of the parameter
space of the VQC.

Further studies can explore the performance of QNGD on a wider variety
of quantum systems, as well as its applicability to more advanced variational
ansatzes, such as those tailored to specific problem domains. Additionally, com-
parisons with other quantum optimization algorithms, such as the vanilla gradi-
ent descent and the Quantum Approximate Optimization Algorithm (QAOA),
can provide valuable insights into the relative strengths and weaknesses of each
method, guiding the development of more effective quantum algorithms for solv-
ing complex optimization problems in the future.

6 Conclusion

In this paper, we have presented a comprehensive study on Quantum Natural
Gradient Descent (QNGD), an optimization algorithm that leverages the unique
geometry of the parameter space of variational quantum circuits (VQCs). By
using the quantum metric tensor, QNGD is able to account for the curvature
of the parameter space, leading to faster convergence and potentially better
solutions compared to classical gradient descent methods.

We have discussed the mathematical formulation of QNGD and provided
a detailed, step-by-step implementation methodology. This included the rep-
resentation of the optimization problem using a VQC, initialization, quantum
circuit implementation, quantum gradient estimation, quantum metric tensor
estimation, quantum natural gradient update, and convergence check.

As a case study, we applied QNGD to find the ground state energy of a
simple 2-qubit Hamiltonian, given by the tensor product of two Pauli-Z matrices.
Through this example, we demonstrated the effectiveness of QNGD in solving
quantum optimization problems. The algorithm successfully converged to a
minimum value close to the ground state energy, and the optimized state was
found to be close to the actual ground state.

In conclusion, QNGD offers a promising approach for tackling challenging
quantum optimization problems, particularly in the fields of quantum chemistry
and condensed matter physics. Its use of the quantum natural gradient can lead
to improved convergence and more accurate solutions, making it a valuable tool
for the development of quantum algorithms and the study of quantum systems.
Future research can explore the performance of QNGD on more complex prob-
lems and in combination with other quantum optimization methods to advance
our understanding of quantum optimization techniques and their potential ap-
plications.
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