
Quantum Walk Algorithm
PHY 612: Introduction to Quantum Information Science and Quantum Technologies

Iqra Imran and Fatima Aklaq
2021-12-0011 and 2020-12-0006

April 28, 2023

Abstract

The Quantum Walk Algorithm is in principle a search algorithm primarily used to search for marked
vertices in a graph. Quantum Walks are motivated by the Classical Markov Chains (classical random
walks) but there is nothing random in Quantum Walks. The Quantum walks algorithm provides a
quadratic speedup in computations in comparison to its classical counterpart by employing the power of
superposition. In this project, we will provide a brief introduction to classical Markov chains to draw an
analogy for a quantum walk and then introduce the concept of coin space and coin operator which decides
each step of the walker. After that, we would look into the mathematical formulation of the algorithm
and implement it on a 4-dimensional hypercube. The circuitry of the algorithm varies from case to case,
in this project we would implement it for searching marked indices on a hypercube.

1

Contents

1 Introduction 3

2 Mathematical background 4
2.1 Coined quantum walk . 4

3 Quantum Walk Algorithm 5
3.1 Mathematical Formulation . 5

3.1.1 Reflection through |B⟩ . 5
3.1.2 Reflection through |U⟩ . 5

3.2 Implementation on 4D Hypercube . 6
3.2.1 Phase Oracle . 7
3.2.2 Phase estimation . 7

3.3 Results . 8

4 Conclusion 9

2

1 Introduction

Let us first understand what a random walk means. Random walk as evident from the name; is a stochastic
process. For example, a particle lives on an integer line and wants to move from one position to another on
the number line. In a random walk, he would take each step randomly either going forward or backward.
The probability that it would go forward or backward is 1

2 . It would continue moving in this fashion until it
reaches the desired location. This is a probabilistic process.
Markov chains are a type of random walk on a graph. In Markov Chains the next state of the chain depends
only on the current state—it is not influenced by the past states of the walker. The next state is determined
by some deterministic or random rule based only on the current state[3]. In discrete time Markov Chains, the
time steps are discrete. Let’s consider the example of a graph G with V vertices and N edges. The vertices
are often referred to as states and the edges are referred to as transitions between those states. With each
edge, there is an associated probability of transition between the two states.

Figure 1: A complete graph with 4 nodes[4]

If we have a complete graph(in which all nodes are connected to every other node), we can represent the
probability densities in terms of a transition matrix P, which has dimensions of N ×N if the graph contains
N vertices/nodes.

P =

0.1 0.3 0.3
0.1 0.1 0.2
0.8 0.6 0.5

 (1.1)

This transition matrix stores all the information about where the particle is most likely to go after a step.
If the walker takes t steps then simply the probability distribution can be achieved by applying P t on the
initial state of the graph.
Quantum walks are the quantum equivalent of the classical Markov chains. The key difference between both
is that in the quantum version, the phenomena of superposition take place and instead of going from one
state to the other state the walker assumes a simultaneous superposition over all states. This superposition
continues to evolve until we make the measurement. In classical random walks measurement is performed at
each and every step but in quantum walks Due to quantum interference, some states will cancel out. This
makes quantum walk algorithms faster than classical ones since we can design them in such a way that wrong
answers quickly cancel out.[4].
There are two types of quantum walks: discrete-time quantum walks and continuous-time quantum walks.
In this project, as we are dealing with graphs so we would explore discrete-time quantum walks which are
further divided into two categories: Coined quantum walks and Szegedy quantum walks. Coined quantum
walks take place on the vertices of the graph whereas Szegedy quantum walk takes place on the edges of the
graph.[4] In literature, it has been proven that both are equivalent in the case of a Grover coin. Here we
would describe the coined quantum walk and then we would see how it can be implemented on a hypercube.

3

2 Mathematical background

2.1 Coined quantum walk

We have seen that in a classical random walk, the update mechanism for each step is a random process for
example a coin toss. In the case of quantum walks the update decision must create a superposition position
over states. For this purpose many coins have been introduced, for example, Hadamart and Grover coins.
In the coin model, we have two quantum states and two operators. The first state is the position state,
which represents the walker’s position. The other state is the coin state. The coin state decides how the
walker should move in the next step[4]. Both states can be represented by vectors in the Hilbert space H.
The position state is a part of the space HP and the coin state is a part of the space HC . Thus the whole
quantum state for the walker is the tensor product of both spaces i.e H = HC ⊗HP .
Similarly, this model has two operators; the coin operator, Ĉ and the shift operator, Ŝ. Ĉ acts on HC and
put the walker in a superposition. The most common ones are the Hadamart operator and Grover’s operator.
The Hadamart operator puts the walker in an equal superposition whereas Grover’s operator works a bit
differently. It does create a superposition but the probabilities are not equal for all states. The probability
amplitude of the current state of the walker is higher than the probability for any other state. In Figure 2,
the current state of the walker is |000⟩.

Figure 2: Probability distribution of a superposition created by Grover’s coin[4]

The other operator is the shift operator Ŝ which acts on HP . It shifts the walker to the neighboring
nodes upon the decision made by the coin operator. Thus shift operator is a controlled operation. One step
of the random walk includes both the coin and shift operator. The next step of the walker is controlled by
a complex amplitude rather than a probability. This generalization, from positive numbers (probabilities on
classical Markov chains) to complex numbers, makes quantum walks more powerful than classical random
walks[2]. Therefore we can define a unitary operator for the coined walk as Ĥ as follows:

Û = ŜĈ (2.1)

If the walker takes t steps then the evolution of its initial state |ψ(0)⟩ can be written as:

|ψ(t)⟩ = Û t |ψ(0)⟩ (2.2)

Where |ψ(t)⟩ represents the state of the system after t steps[3].

4

3 Quantum Walk Algorithm

3.1 Mathematical Formulation

Quantum Walks are widely used to find marked vertices of a graph. This algorithm performs a quantum walk
to find the marked vertices on a graph and later we will see its implementation of finding marked vertices
on a hypercube. First, it must be noted that quantum mechanics restricts us to preserve the norm i.e. it
demands unitarity. Thus the transition matrix P transforms into a norm-preserving matrix W (P) in the
quantum walk algorithm. The basis state of a classical random walk is the current vertex we are at, while in
a quantum walk a basis state of has two registers, the first corresponding to the current vertex and the second
corresponding to the previous vertex[1]. We can define a superposition over all vertices of the neighbors of
the x-node as:

|px⟩ =
∑
y

√
Pxy |py⟩ (3.1)

Our basis state would be |x⟩ |y⟩, we would refer to it as a “good” state if x is marked otherwise it would be a
“bad state”. Say we have M marked vertices out total N vertices of the graph. Then we can define a “good”
and “bad” state as a superposition over basis states.

|G⟩ = 1√
|M |

∑
x∈M

|x⟩ |px⟩ , |B⟩ = 1√
N − |M |

∑
x/∈M

|x⟩ |px⟩ (3.2)

If ϵ = |M |
N and θ := arcsin(

√
ϵ) then the uniform state over all the edges of the graph can be written as:

|U⟩ = 1√
N

∑
x

|x⟩ |px⟩ = sin θ |G⟩+ cos θ |B⟩ (3.3)

Now the algorithm for searching a marked vertex if an ϵ-fraction of nodes are marked is as follows [1]:

1. Setup the starting state |U⟩

2. Repeat the following steps O(1√
ϵ
) times

(a) Reflection through |B⟩
(b) Reflection through |U⟩

3. Measurement to check whether the resulting vertex is marked or not.

Step 1 can be easily implemented by creating a superposition through Hadamart gates. Let us look at
how the reflections take place.

3.1.1 Reflection through |B⟩

Reflection through |B⟩ is simple: we just have to recognize that if the first register contains a marked index
x then change its sign. This can be achieved by using a phase oracle that shifts the phase if x is marked and
unaltered otherwise [4].

3.1.2 Reflection through |U⟩

This is where the quantum nature of the walk kicks in. The quantum analog of P is a unitary W (P). To see
how the reflection through |U⟩ is implemented let us explore the evolution operatorW (P). As it is unitary its
eigenvalues can be written as e±2ιθj . The state |U⟩ is the eigenvector of W (P) with eigenvalue-1 i.e. θj = 0.

5

The reflection through |U⟩ is equivalent of implementing a reflection R(P) through the subspace spanned by
the eigenvalue-1 eigenvectors of W (P) i.e. R(P) provides the following mapping[4]

|U⟩ 7→ |U⟩ (3.4)

and
|ψ⟩ 7→ − |ψ⟩ ∀ |ψ⟩ in the span of eigenvectors of W (P) that are orthogonal to |ψ⟩ (3.5)

We will implement R(P) by using phase estimation with the precision of O(1√
δ
) on W (P) to distinguish

the eigenvalue-1 eigenvectors from the other eigenvectors by adding a register with auxiliary qubits, where δ
is the spectral gap of P . This precision requires O(1√

δ
) applications of W(P), and O(log(1δ)) auxiliary qubits

that start in |0⟩ and where the estimate will be stored. Phase estimation always gives an estimate θ̃j of θj

that is within a precision
√
δ
2 . We then multiply the state with a −1 if the estimate is sufficiently far from 0,

and finally reverse the phase estimation to put the auxiliary qubits back to 0. Let |w⟩ be an eigen vector of
W (P) with eigen value e±2ιθj [1][4]. The map provided by R(P) is:

R(P) : |w⟩ |0⟩ PE7−−→ |w⟩
∣∣∣θ̃j〉 7→ (−1)[θj ̸=0] |w⟩

∣∣∣θ̃j〉 PE−1

7−−−−→ (−1)[θj ̸=0] |w⟩ |0⟩ (3.6)

This has the desired effect: ignoring the auxiliary qubits (which start and end in 0), R(P) maps eigenvectors
with eigenvalue-1 of W (P) to themselves, and puts a -1 in front of the other eigenvectors[1]. This is how we
implement the quantum walk algorithm.

3.2 Implementation on 4D Hypercube

A hypercube is an N-dimensional generalization of a 3D cube. There is 2N number of nodes in a hypercube.
The nodes are represented by binary numbers to ease commuting. In this algorithm, we would search for
a marked node/vertex on a 4D hypercube. Every node is connected to every other node whose binary
representation only differs by one digit. For example, 1111 is connected to 1110, 1101, 1011, and 0111. As
mentioned in the previous section, the Hilbert space for a quantum walker is H = HN ⊗ H2N , where HN

represents the coin space and H2N represents the walker’s position. The unitary operator which drives the
algorithm constitutes of two operators:

Û = ŜĈ (3.7)

Let us first devise the circuitry for these two operators. We would use Grover’s coin in this algorithm
which uses 2 additional qubits along with the 4 qubits representing the walker’s position and nodes on the
hypercube.

q0 :

q1 :

q2 :

q3 :

q4 : H Z • H

q5 : H Z • H

After the coin operator, the walker will shift its position by implementing the shift operator. The shift
operator is constructed by using NOT and CCNOT gates on one of the qubits of the walker’s current position.
If the coin’s qubits have the state |11⟩, we move the walker to the state in which the first node qubit differs.
If the coin is |10⟩ or|01⟩, the walker moves to the state where the second and third qubits, respectively, differ.
Finally, if the Grover coin is |00⟩, we flip the fourth qubit[4].

6

q0 :

q1 :

q2 :

q3 :

q4 : H Z • H X • X • X • X •
q5 : H Z • H X • • X • •

For implementing we require the inverse of the above operation Û as well which is as follows:

q0 :

q1 :

q2 :

q3 :

q4 : • X • X • X • X H • Z H

q5 : • • X • • X H • Z H

3.2.1 Phase Oracle

After creating superposition through Hadamart gates, We need to mark the indices we are searching for on
the hypercube. Let us say we want to search for |1100⟩ and |0011⟩. We would use the following circuitry for
step 2(a). As mentioned in the previous section in order to implement step 2(a) we require a phase oracle
that marks the desired nodes.

q0 : X • X •
q1 : X • X •
q2 : • X • X

q3 : H H X H H X

q4 :

q5 :

3.2.2 Phase estimation

After marking the desired nodes the actual fun part comes in which is using phase estimation to carry out
a reflection through state |U⟩ in step 2(b). As we know we require Inverse Quantum Fourier Transform
circuitry and Quantum Fourier Transform to carry the phase estimation and its inverse respectively.

q0 : × H •
P (−π

2)
• •

q1 : × • H
P (−π

4)
•
P (−π

2)
•

q2 : × • •
P (−π

8)
H

P (−π
4)

•
P (−π

2)q3 : × • • • H

In phase estimation, we will rotate the auxiliary qubit if θ ̸= 0 which implies that we rotate an auxiliary
qubit if the other qubits are non-zero. The gate required for marking this qubit with a negative sign is

7

referred to as ”mark-auxi-gate” and is as follows:

q0 : X • • X

q1 : X • • X

q2 : X • • X

q3 : X • • X

q4 : X Z X

Now, we have all the necessary gates to implement step 2(b). This step consists of a phase estimation
one step of the quantum walk followed by an auxiliary qubit that we rotate if θ ̸= 0. For this purpose, we
employ the mark-auxi-gate that we just created. Afterward, we reverse the phase estimation.

This completes all the parts of step 2 of the algorithm. Now let us summarize the whole algorithm as

theta0 :

phase estimation

0

phase estimation

0

theta1 :
1 1

theta2 :
2 2

theta3 :
3 3

node0 : H

phase oracle

0 4

phase oracle

0 4

node1 : H
1 5 1 5

node2 : H
2 6 2 6

node3 : H
3 7 3 7

coin0 : H
4 8 4 8

coin1 : H
5 9 5 9

auxiliary :
10 10

c : /
4

0

��
1

��
2

��
3

��

3.3 Results

Finally, we run the implementation on the qasm simulator. We can see that the majority of the time the
circuit collapses to the marked state |0011⟩ and |1100⟩ of the hypercube.

Figure 3: Results from qasm simulator

8

4 Conclusion

In this report, we learned how quantum walks are different from Classical Markov walks and how the power of
superposition can provide a quadratic speed up to the walk search problem in the Quantum Walk Algorithm.
It must be noted that there is nothing random in this algorithm thus the name of the algorithm is quite
misleading whereas on the other hand, it helps us in drawing an analogy with the classical random walk.
Here the walker is not moving at one node only but it can be thought of as taking steps in all directions
simultaneously or put in other words the walker is in a superposition over all neighboring nodes. The true
beauty of the algorithm lies in the heart of the Quantum Fourier transform and Phase Estimation. Through
this process, we can find the distribution which does not change any further if the walker takes further steps
i.e. state |U⟩. Applying this to an example of a 4D hypercube, we efficiently found marked vertices.

9

References

[1] Ronald de Wolf. Quantum computing: Lecture notes, 2023.

[2] Abhijith J., Adetokunbo Adedoyin, John Ambrosiano, Petr Anisimov, William Casper, Gopinath Chen-
nupati, Carleton Coffrin, Hristo Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin,
Alexander Malyzhenkov, David Mascarenas, Susan Mniszewski, Balu Nadiga, Daniel O’malley, Diane
Oyen, Scott Pakin, Lakshman Prasad, Randy Roberts, Phillip Romero, Nandakishore Santhi, Nikolai
Sinitsyn, Pieter J. Swart, James G. Wendelberger, Boram Yoon, Richard Zamora, Wei Zhu, Stephan
Eidenbenz, Andreas Bärtschi, Patrick J. Coles, Marc Vuffray, and Andrey Y. Lokhov. Quantum algo-
rithm implementations for beginners. ACM Transactions on Quantum Computing, 3(4):1–92, jul 2022.

[3] R. Portugal. Quantum Walks and Search Algorithms. Quantum Science and Technology. Springer New
York, 2013.

[4] Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.

10

	Introduction
	Mathematical background
	Coined quantum walk

	Quantum Walk Algorithm
	Mathematical Formulation
	Reflection through B
	Reflection through U

	Implementation on 4D Hypercube
	Phase Oracle
	Phase estimation

	Results

	Conclusion

