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Abstract

We demonstrate the physical implementation of Shor’s algorithm after building its theoretical background.

The fully functional quantum computer to implement Shor’s algorithm is predicted to compute the prime

factors in polynomial time. Quantum Phase Estimation forms the crux of this algorithm, breaking down

the task of computing prime factors to finding the period of the periodic function f (x) = ax mod N.

Computing prime factors in polynomial time allows us to surpass public key encryption schemes such as

the RSA cryptography, which are widely used to protect the data being shared between many two parties.

After describing the RSA cryptosystem and how Shor’s algorithm can be used it break this encryption

mechanism, we compare the results achieved from different implementations of ’a’ for N = 21.

Introduction

The advent of communication channels and transmission lines in the last century revolutionised the way

information was transferred over larger distances. Different encryption systems and mechanisms were

developed to secure the data that was being transferred. Before 1976, symmetric cryptosystems were

largely used which relied on a single encryption key. This key must had to be exchanged securely over

communication channels which was a major drawback.

Whitfield Diffie and Martin E. Hellman later introduced public key cryptography in 1976 [1], where

they found a way of secure communication by using two keys, called the public key and the private key.

This mechanism worked in the following manner. Suppose a person A has to send a message to a person

B. B will have a set of predetermined public and private keys, where the public key will be shared with A.

A will use it to encrypt the message and send it to B, where B will now use the private key to decrypt it.

This system is currently in place today because even though the public and private keys are connected,

no one can easily guess the private key. Furthermore, public key cryptography needs a mathematical

procedure that is straightforward to encrypt using the public key, but decrypting without the private key

becomes computationally challenging and mathematically intractable on a classical computer. This math-

ematical term is called the trapdoor function. One example of commonly used public key cryptography

which we would encounter next is the RSA mechanism and we would shortly see how the development

of Shor’s algorithm resulted in a possibility to break this encryption mechanism.

1 RSA Cryptosystem

R. L. Rivest, A. Shamir, and L. Adleman publicly implemented a technique for public key cryptography in

1977 [6], which came to be known as RSA cryptosystem. The technique has the following implementation

composing of key generation and information transfer protocol. Any message we want to send first has

to be cut down into pieces and converted into integers. The purpose of converting it into integers is to

change strings into numbers for encryption.

1.1 Key Generation

RSA technique is fundamentally established on the hardship of factoring large integers into prime numbers.

The steps for generating the keys are these:



1. Choose two integers, a and b, such that a and b are prime numbers. If you randomly choose a very

large number, you can do a primality test to check whether it is prime or not because the primality

test is less costly than going all the way from 1 and checking all the prime numbers and then picking

a large prime number from there. Typically, the 2048 bit key is used in RSA, containing 617 decimal

digits.

2. Construct a composite number n such that:

n = a × b (1)

3. Compute the Euler function φ(a, b) which is defined in the following way:

φ(a, b) = (a − 1)(b − 1) (2)

4. Select a number e which is co-prime with φ.

5. Compute the multiplicative inverse of e defined in the following way:

d × e ≡ 1 mod φ (3)

1.2 Transmission Protocol

Suppose there are two people Alice and Bob. Alice makes a set of two keys with (e, n) as her public key

and (d, n) as her private key. Bob wants to send a message M to Alice. He acquires Alice’s public key

(e, n) and the following procedure is followed for transmission:

1. Bob encrypts his message M using the public key (e, n):

C ≡ Me mod n (4)

2. He transmits the encrypted message C to Alice via a secure communication channel.

3. Alice decrypts the message C via the following manner:

Cd mod n ≡ M (5)

The success of the RSA encryption relies on the fact that prime factorization has a high time com-

plexity and if the number is very large, the problem becomes intractable classically. Now we would see

how Shor’s algorithm can help us acheive this task.

2 Shor’s Algorithm

Peter Shor, an American mathematician, developed this algorithm in 1994 which could be used to compute

the prime factors of a large number N in polynomial time [7]. Shor’s algortihm is essentially composed of

a period finding algorithm as we would see. Suppose that we have a composite number N, whose prime

factors are to be computed. The algorithm works in the following manner:

1. Choose a number a, which is co-prime with N.

2. Find the period of the function f (x) = ax mod N. This reduces to finding f (r) = 1( mod N),

where r is the period of f (x).

3. if r is even or ar/2 has an integer value, then proceed further. Otherwise, choose a different a.
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The crux of this algorithm relies in finding the period r , which if found correctly results in instant

factorisation of N. The method is as follows: [
ar/2

]2
= 1( mod N)[

ar/2
]2
− 1 = 0( mod N)(

ar/2 + 1
)(
ar/2 − 1

)
= 0( mod N)

(6)

This means, either
(
ar/2 − 1

)
or

(
ar/2 + 1

)
or both share factors with N. Therefore, factors of N

can either of:

gcd
(
ar/2 ± 1, N

)
(7)

All computations can be performed classically in polynomial time, however, the period finding algorithm

has an exponential time complexity and the problem becomes intractable for very large N. Here the

usefulness of quantum computers kicks in, in terms of quantum phase estimation carried out by inverse

Quantum Fourier Transform (QFT). This allows for the period r to be found in polynomial time.

Let’s further discuss how a quantum computer could physically implement this algorithm. The basic

idea is to construct a quantum circuit which allows us to compute the values for f (x) = ax , and then

find its period. We can develop an oracle V whose action is defined as follows:

V |x⟩ |y⟩ = |x⟩ |ay⟩ (8)

We develop our circuit such that |x⟩ is contained on the first register (control register) which is
composed of m qubits and |ay⟩ is contained on the second register (work register) which composes of n
qubits. We restrict n such that n = ⌈log2N⌉, which in turn restricts the maximum value of |ay⟩ and the
physical stored value is |ay mod N⟩. Repeated actions of V , x number of times would yield our desired
output on the second register provided |y⟩ = |1⟩. This is encapsulated by our intended oracle U:

U |x⟩ |1⟩ = V x |x⟩ |1⟩ = |x⟩ |ax mod N⟩ (9)

The periodicity of the function f (x) = ax mod N implies that the repeated action of V eventually

results in same set of |ax mod N⟩ after x > r . If we take a sum of this cyclic set, it must be an eigenvalue
of U since all the outputs would be present in that set. We define this as:

|V ⟩ =
1√
r

r−1∑
k=0

∣∣ak mod N
〉

(10)

This is an eigenvector of U with eigenvalue 1. We can assign phases proportional to k to each basis

vector, and can also further associate these phases up to a factor s depending upon the eigenvector |us⟩.

|us⟩ =
1√
r

r−1∑
k=0

e−
2πisk
r

∣∣ak mod N
〉

(11)

This arbitrary eigenvector yields an eigenvalue of:

U |us⟩ = e
2πis
r |us⟩ (12)

In all |us⟩, the basis state |1⟩ has no phase attached to it as k = 0, however this is not true for the
rest of the basis states. If we sum up the eigenvectors |us⟩ of U, |1⟩ would survive, however, the sum
of the phases of all other basis states would add up to zero. This follows from the fact that sum of the

roots of unity equal zero.

1√
r

r−1∑
s=0

|us⟩ = |1⟩ (13)
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Hence our initial step of taking |y⟩ = |1⟩ was justified in order to achieve the desired outcome from
the oracle U, as |1⟩ additionally turns out to be the sum of eigenvectors of U, allowing us to transmit the
phase sr of |us⟩ to the control registers as part of the Quantum Phase Estimation protocol. This phase
encoding the period r of the function f (x) = ax mod N could then be extracted via IQFT.

2.1 Scheme of working

2.1.1 Initialization

Prepare |0⟩⊗m |0⟩⊗n with m = 2n. Apply H⊗m on the control register and the NOT gate on the nth
qubit on the work register, thus creating a superposition of 2n states on the control register and |1⟩ on
the work register.

|0⟩⊗m |0⟩⊗n →
1

2n/2

2n−1∑
x=0

|x⟩ |1⟩ (14)

2.1.2 Modular exponentiation function (MEF)

Apply the unitary operation U that implements the modular exponentiation function ax mod N on the

work register whenever the control register is in state |x⟩:

1

2n/2

2n−1∑
x=0

|x⟩ |1⟩ →
1

2n/2

2n−1∑
x=0

|x⟩ |ax mod N⟩

=
1√
r2n

r−1∑
s=0

2n−1∑
x=0

e i2πsx/r |x⟩ |us⟩

(15)

2.1.3 Inverse Quantum Fourier Transform (QFT)

Apply the inverse quantum Fourier transform on the control register:

1√
r2n

r−1∑
s=0

2n−1∑
x=0

e i2πsx/r |x⟩ |us⟩ →
1√
r

r−1∑
s=0

|φs⟩ |us⟩ (16)

2.1.4 Measurements

Measure the qubits of the control register in computational basis. The inverse QFT yields peaks in

probability of the states |φs⟩ where φs ≈ 2ns/r . There is a high probability of obtaining the location of
the these peaks after only a few runs. The number of qubits m determine the accuracy of φs .

2.1.5 Continued fractions

Compute φ = φs/2
n and then apply continued fractions to φ with maximum denominator value of N in

order to extract r from the convergents.
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2.2 Quantum Circuit

Figure 1: Circuit for period finding of the function f (x) = ax mod N

2.3 Implementation

We constructed several different physical implementations for N = 21 with different values of a. As

N = 21 is a 5-bit number, we selected n = 5 number of bits on the work register, and m = 10 number

of bits on the control register with each bit providing further precision. The rest of the structure of

the quantum circuit for Shor’s algorithm Fig. 1 is standard except for different implementations of the

oracle U each specific to a unique value of a. The construction of the oracle U further splits up into

implementations of V 2
l
with l = 0, 1, ..., n − 1.

x = 20 · x0 + 21 · x1 + ...+ 2n−1 · xn−1 (binary conversion)

U = (V x0)2
0

+ (V x1)2
1

+ ...+ (V xn−1)2
n−1 (17)

Each implementation of V is described for different values of a as follows:

2.3.1 N = 21, a = 4

:

V |1⟩ = |4 mod 21⟩ = |00100⟩
V 2 |1⟩ = |16 mod 21⟩ = |10000⟩
V 3 |1⟩ = |64 mod 21⟩ = |00001⟩
V 4 |1⟩ = |256 mod 21⟩ = |00100⟩

As we can notice a sequence where the qubit having a binary value 1 is switching between the first,

third and the fifth qubit. We can use this to construct an implementation of V which swaps first qubit

and the third, then third one and the fourth. Any sequence could be spotted and used to construct

implementations of V . However, a sequence my not exist, or be difficult to realise and construct. In that

case, a general strategy for V 2
l
with l = 0, 1, ..., n− 1 can be constructed. For the action of each V 2l in

the series, apply a NOT gate to each qubit whose value is different than |1⟩ = |00001⟩.
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Sequence Strategy:

Each successive implementation of V follows the following protocol:

q0 ×

q1

q2 ×

q3

q4 × ×

where the swap gate is implemented by:

•

• •

General Strategy:

Construct each implementation of V 2
l
. First few are shown below:

For V 1 such that V |00001⟩ = |00100⟩:

|1⟩ X |0⟩

|0⟩ |0⟩

|0⟩ X |1⟩

|0⟩ |0⟩

|0⟩ |0⟩

For V 2 such that V 2 |00001⟩ = |10000⟩:

|1⟩ X |0⟩

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ X |1⟩

For V 4 such that V 4 |00001⟩ = |00100⟩:
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|1⟩ X |0⟩

|0⟩ |0⟩

|0⟩ X |1⟩

|0⟩ |0⟩

|0⟩ |0⟩

This method can be carried out for all V 2
l
with l = 0, 1, ..., n − 1. We shall detail the sequence

strategies we determined from now on-wards.

Figure 2: Circuit for implementing Shor’s algorithm with N = 21, a = 4, n = 5, m = 10

2.3.2 N = 21, a = 5

: Each successive implementation of V follows the following protocol:

q0 X ×

q1

q2 X ×

q3

q4 X × ×
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2.3.3 N = 21, a = 6

Each successive implementation follows the following protocol even powers of V :

q0

q1 X

q2 X

q3 X

q4

Each successive implementation follows the following protocol odd powers of V :

q0 X

q1 X

q2 X

q3

q4

2.3.4 N = 21, a = 8

: Each successive implementation of V follows the following protocol:

q0 ×

q1

q2

q3 ×

q4

2.3.5 N = 21, a = 13

Each successive implementation follows the following protocol odd powers of V :

q0

q1

q2 X

q3 X

q4
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Each successive implementation follows the following protocol even powers of V :

q0

q1

q2

q3

q4

Yes, that is correct. It does nothing for even powers.

2.3.6 N = 21, a = 16

Each successive implementation of V follows the following protocol:

q0 ×

q1

q2 ×

q3

q4 × ×

3 Results

The output data was collected after simulating the quantum circuit Fig. 2 onQiskit for all implementations

of ’a’ constructed in the previous section. As the number of qubits used in our quantum circuit are

n + m = 15, it imposes a restriction for this circuit to implemented on a real quantum computer.

However, to further simulate the realistic output results we incorporated a noise bit flip model. This

model is described as follows:

• When applying a single qubit gate, flip the state of the qubit with probability 0.05.

• When applying a 2-qubit gate apply single-qubit errors to each qubit.

• When resetting a qubit reset to 1 instead of 0 with probability 0.03.

• When measuring a qubit, flip the state of the qubit with probability 0.10.

The output data in terms of counts generated verses each state in the control register was converted

to probability of measuring each state in decimal form. This data is illustrated for both the ideal case,

and with the noise bit flip model.
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3.1 Probability of successfully finding correct factors

We further compute the success probability for each implementation of ’a’. The data is illustrated as

follows:

Discussion

The key result of our project is Fig. 3.1, which shows that the probability of successfully finding the

correct prime factors is dependent upon the vale of ’a’ chosen and its implementation constructed. We

see that a = 4 and a = 16 yielded the highest success probability beyond 60% even after incorporating

noise. This was followed by a = 13, a = 8, a = 5 with a = 6 yielding the least success probability.

We could further link this success probability with the circuit implementations to draw possible factors

affecting the success probability. The two major dependent factors which seem to play a crucial role in

determining success probability are as follows:

1. The number of total gates used

2. The number of NOT gates used

The implementations of a = 4 and a = 5 which yielded the smallest success probability both utilised

larger number of total gates and larger number of NOT gates as compared to rest of the implementations.

Whereas, the implementations of a = 4 and a = 13 which yielded highest success probability utilised

lesser number of total gates and zero number of NOT gates.

Conclusion

Starting off with the mathematical formulation of RSA cryptosystem and Shor’s algorithm, we explained

how Shor’s algorithm can be used to break this encryption mechanism by computing prime factors in

polynomial time - the key factor on which public key encryption relies. We further exemplified the general

quantum circuit implementation of Shor’s algorithm and constructed specific implementations for N = 21

and different values of ’a’. The results generated allowed us to analyse that success probability for Shor’s

algorithm implementation relies on the number of total gates used and the number of NOT gates used.
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Qiskit Implementation

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from qiskit import QuantumCircuit , Aer , transpile

4 from qiskit.visualization import plot˙histogram

5 from math import gcd

6 from numpy.random import randint

7 import pandas as pd

8 from fractions import Fraction

9 from qiskit.quantum˙info import Kraus , SuperOp

10 from qiskit˙aer import AerSimulator

11 from qiskit˙aer.noise import (NoiseModel , QuantumError , ReadoutError ,

12 pauli˙error , depolarizing˙error , thermal˙relaxation˙error)

Listing 1: Imports

1 def c˙amod21(a, power):

2 ””” Controlled multiplication by a mod 15”””

3 if a not in [4,5,6,8,13,16,17]:

4 raise ValueError(”’a’ must be 4,5,6,8,13,16 or 17”)

5 U = QuantumCircuit (5)

6 if a == 4:

7 for ˙iteration in range(power):

8 U.swap (0,4)

9 U.swap (4,2)

10 if a == 5:

11 for ˙iteration in range(power):

12 U.x(0)

13 U.x(2)

14 U.x(4)

15 U.swap (4,2)

16 U.swap (0,4)

17 if a == 8:
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18 for ˙iteration in range(power):

19 U.swap (0,3)

20 if a == 17:

21 for ˙iteration in range(power):

22 U.swap (4,2)

23 U.swap (0,4)

24 if a == 13:

25 if power%2 == 1:

26 U.x(2)

27 U.x(3)

28 if a == 16:

29 for ˙iteration in range(power):

30 U.swap (4,2)

31 U.swap (0,4)

32 if a == 6:

33 if power%2 == 1:

34 U.x(0)

35 U.x(1)

36 U.x(2)

37 else:

38 U.x(1)

39 U.x(2)

40 U.x(3)

41 U = U.to˙gate ()

42 U.name = f”–a˝ˆ– power˝ mod 21”

43 c˙U = U.control ()

44 return c˙U

Listing 2: Implementations for different values of ’a’

1 def qft˙dagger(n):

2 ”””n-qubit QFTdagger the first n qubits in circ ”””

3 qc = QuantumCircuit(n) #create circuit

4 # Don’t forget the Swaps!

5 for qubit in range(n//2):

6 qc.swap(qubit , n-qubit -1)

7 for j in range(n):

8 for m in range(j):

9 qc.cp(-np.pi/float (2**(j-m)), m, j) # Applying controled phase

gate with the specified phase

10 qc.h(j) # hadamard application

11 qc.name = ”QFT“dagger” # what shows on the

circuit

12 return qc

Listing 3: Quantum Fourier Transform

1 # Specify variables

2 N˙COUNT = 10 # number of counting qubits / control qubits

3 #Enter Value of a from 4,5,6,8,13,16 or 17

4 a = 4

5 qc = QuantumCircuit(N˙COUNT + 5, N˙COUNT)

6 # Initialize counting qubits

7 # in state —+¿ by application of hadamard gate

8 for q in range(N˙COUNT):

9 qc.h(q)

10 # And auxiliary register in state —1¿ by Not gate

11 qc.x(N˙COUNT)

12 # Do controlled -U operations

13 for q in range(N˙COUNT):

14 qc.append(c˙amod21(a, 2**q),

15 [q] + [i+N˙COUNT for i in range (5)])

16 # Do inverse -QFT

17 qc.append(qft˙dagger(N˙COUNT), range(N˙COUNT))

18 # Measure circuit
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19 qc.measure(range(N˙COUNT), range(N˙COUNT))

20 qc.draw(fold=-1) # -1 means ’do not fold’

Listing 4: Assembling the quantum circuit

1 aer˙sim = Aer.get˙backend(’aer˙simulator ’)

2 t˙qc = transpile(qc, aer˙sim)

3 counts = aer˙sim.run(t˙qc).result ().get˙counts ()

4 plot˙histogram(counts)

5 # Just to unpack the data in ’counts ’

6 mylist = list(counts.items ())

7 ctt = pd.DataFrame(mylist)

8 avg = np.mean(ctt [1])

9 c = [] # stores counts

10 v = [] # stores values in decimals

11 period = []

12 for i in range(len(mylist)):

13 if mylist[i][1] ¿= avg:

14 c.append(mylist[i][1])

15 v.append(int(mylist[i][0], 2))

16 # Finding period by the method of continued fractions

17 for i in range(len(v)):

18 frac = Fraction(v[i]/1024).limit˙denominator (21)

19 s, r = frac.numerator , frac.denominator

20 period.append(r)

21 for i in range(len(v)):

22 if v[i]!=0:

23 print(’Peak on the value of ’, v[i] ,’ with counts ’,c[i], ’ corresponds to

period of ’, period[i])

24 # Finding the probability of correct period i.e correct prime factors found

25 if a == 4:

26 correct˙period = 3

27 if a == 5:

28 correct˙period = 6

29 if a == 8:

30 correct˙period = 2

31 if a == 13:

32 correct˙period = 2

33 if a == 17:

34 correct˙period = 2

35 if a == 16:

36 correct˙period = 3

37 if a == 6:

38 correct˙period = 2

39 mylist = list(counts.items ())

40 ctt = pd.DataFrame(mylist)

41 avg = np.mean(ctt [1])

42 c = []

43 v = []

44 period = []

45 for i in range(len(mylist)):

46 c.append(mylist[i][1])

47 v.append(int(mylist[i][0], 2))

48 for i in range(len(v)):

49 frac = Fraction(v[i]/1024).limit˙denominator (21)

50 s, r = frac.numerator , frac.denominator

51 period.append(r)

52 s=0

53 for i in range(len(period)):

54 if period[i] == correct˙period:

55 s += c[i]

56 # for i in range(len(v)):

57 # if v[i] == 0:

58 # zero˙counts = c[i]

59 # if len(v) == 2:
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60 # print(’Probability of finding the correct period: 100 %’)

61 print(’Probability of finding the correct period: ’, (s*100) /1024 , ’%’)

62 for i in counts:

63 measured˙value = int(i[::-1], 2)

64 if measured˙value % 2 != 0:

65 #print (” Measured value not even”)

66 continue #measured value should be even as we are doing aˆ(r/2) mod N and r/2

should be int

67 x = int(np.power(4, measured˙value /2) % N)

68 if (x + 1) % N == 0:

69 continue

70 factor˙one = gcd(x + 1, N)

71 factor˙two = gcd(x - 1, N)

72 if factor˙one == N:

73 continue

74 if factor˙two == N:

75 continue

76 if factor˙one == 1 and factor˙two == 1:

77 continue

78 if factor˙one != 1:

79 factor˙two = N// factor˙one

80 if factor˙two != 1:

81 factor˙one = N// factor˙two

82 print(”Measured value = ”, measured˙value , ” leads to the factors =”, factor˙one ,

factor˙two)

Listing 5: Generating Results

1 import numpy as np

2 from qiskit import QuantumCircuit , transpile

3 from qiskit.quantum˙info import Kraus , SuperOp

4 from qiskit˙aer import AerSimulator

5 from qiskit.tools.visualization import plot˙histogram

6 # Import from Qiskit Aer noise module

7 from qiskit˙aer.noise import (NoiseModel , QuantumError , ReadoutError ,

8 pauli˙error , depolarizing˙error , thermal˙relaxation˙error)

9 # Example error probabilities

10 p˙reset = 0.5

11 p˙meas = 0.5

12 p˙gate1 = 0.5

13 # QuantumError objects

14 error˙reset = pauli˙error ([(’X’, p˙reset), (’I’, 1 - p˙reset)])

15 error˙meas = pauli˙error ([(’X’,p˙meas), (’I’, 1 - p˙meas)])

16 error˙gate1 = pauli˙error ([(’X’,p˙gate1), (’I’, 1 - p˙gate1)])

17 error˙gate2 = error˙gate1.tensor(error˙gate1)

18 # Add errors to noise model

19 noise˙bit˙flip = NoiseModel ()

20 noise˙bit˙flip.add˙all˙qubit˙quantum˙error(error˙reset , ”reset”)

21 noise˙bit˙flip.add˙all˙qubit˙quantum˙error(error˙meas , ”measure”)

22 noise˙bit˙flip.add˙all˙qubit˙quantum˙error(error˙gate1 , [”u1”, ”u2”, ”u3”])

23 noise˙bit˙flip.add˙all˙qubit˙quantum˙error(error˙gate2 , [”cx”])

24 print(noise˙bit˙flip)

25 # Create noisy simulator backend

26 sim˙noise = AerSimulator(noise˙model=noise˙bit˙flip)

27 qc˙noise = transpile(qc, sim˙noise)

28 noise˙counts = aer˙sim.run(qc˙noise).result ().get˙counts ()

29 plot˙histogram(noise˙counts)

Listing 6: Noise Incorporation

1 data = pd.DataFrame(counts.items (), columns =[’Value ’, ’Counts ’])

2 data˙srt = data.sort˙values(by = ’Value ’)

3 data˙srt = data˙srt.reset˙index(drop=True)

4 # mylist = list(data˙srt)

5 # print(data˙srt)
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6 state = []

7 prob = []

8 for i in range(len(data˙srt)):

9 if data˙srt.loc[i][1] ¿ 1:

10 state.append(str (int(data˙srt.loc[i][0], 2) ))

11 prob.append(data˙srt.loc[i][1]/1024)

12 fig = plt.figure(figsize = (10, 5))

13 # creating the bar plot

14 plt.bar(state , prob , color =’darkblue ’)

15 plt.xlabel(”States in decimal form”)

16 plt.ylabel(”Probability”)

17 plt.title(”N=21 , a = 17”)

18 plt.show()

19 fig.savefig(’a˙17’, bbox˙inches=’tight’)

20 noise˙data = pd.DataFrame(noise˙counts.items(), columns =[’Value’, ’Counts ’])

21 noise˙data˙srt = noise˙data.sort˙values(by = ’Value ’)

22 noise˙data˙srt = noise˙data˙srt.reset˙index(drop=True)

23 n˙state = []

24 n˙prob = []

25 for i in range(len(noise˙data˙srt)):

26 if noise˙data˙srt.loc[i][1] ¿ 1:

27 n˙state.append(str (int(noise˙data˙srt.loc[i][0], 2) ))

28 n˙prob.append(noise˙data˙srt.loc[i][1]/1024)

29 fig = plt.figure(figsize = (10, 5))

30 # creating the bar plot

31 plt.bar(n˙state , n˙prob , color =’maroon ’)

32 plt.xlabel(”States in decimal form”)

33 plt.ylabel(”Probability”)

34 plt.title(”Noise Model with N=21 , a = 17”)

35 plt.show()

36 fig.savefig(’noise˙a˙17 ’, bbox˙inches=’tight’)

37 mylist = list(noise˙counts.items ())

38 ctt = pd.DataFrame(mylist)

39 avg = np.mean(ctt [1])

40 c = []

41 v = []

42 period = []

43 for i in range(len(mylist)):

44 c.append(mylist[i][1])

45 v.append(int(mylist[i][0], 2))

46 # print(c)

47 # print(v)

48 for i in range(len(v)):

49 frac = Fraction(v[i]/1024).limit˙denominator (21)

50 s, r = frac.numerator , frac.denominator

51 period.append(r)

52 s=0

53 for i in range(len(period)):

54 if period[i] == correct˙period:

55 s += c[i]

56 # for i in range(len(v)):

57 # if v[i] == 0:

58 # zero˙counts = c[i]

59 # if len(v) == 2:

60 # print(’Probability of finding the correct period: 100 %’)

61 print(’Probability of finding the correct period: ’, (s*100) /1024 , ’%’)

62 #print(zero˙counts)

63 p˙n˙17 = s/1024

64 prob˙a = [p˙a˙4 , p˙a˙5 , p˙a˙6 , p˙a˙8 , p˙a˙13 , p˙a˙16]

65 prob˙a˙n = [p˙n˙4 , p˙n˙5 , p˙n˙6 , p˙n˙8 , p˙n˙13 , p˙n˙16]

66 a˙value = [4, 5, 6, 8, 13, 16]

67 # print(p˙a˙4 , p˙n˙4)

68 # print(p˙a˙5 , p˙n˙5)

69 # print(p˙a˙6 , p˙n˙6)

70 # print(p˙a˙8 , p˙n˙8)
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71 # print(p˙a˙13 , p˙n˙13)

72 # print(p˙a˙16 , p˙n˙16)

73 X˙axis = np.arange(len(a˙value))

74 fig = plt.figure(figsize = (10, 5))

75 plt.bar(X˙axis - 0.2, prob˙a , 0.4, label = ’Ideal Setup’)

76 plt.bar(X˙axis + 0.2, prob˙a˙n , 0.4, label = ’Noisy Model’)

77 plt.xticks(X˙axis , a˙value)

78 plt.xlabel(”Values of a”)

79 plt.ylabel(”Probability”)

80 plt.title(”Probabilites of Success for N=21 and different values of a”)

81 plt.legend ()

82 plt.show()

83 fig.savefig(’ideal˙vs˙noise ’, bbox˙inches=’tight’)

Listing 7: Generating Noise Results
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