
QIST Project

Hafiz Muhammad Aleem Ullah
Roll no: 22120014

LUMS School of Science and Engineering

Friday, April, 07, 2023

1 Abstract

Simon’s algorithm is one of the first quantum algorithms to demonstrate an ex-
ponential speedup over classical algorithms for a specific problem. In this report,
we provide a comprehensive analysis of Simon’s algorithm, including its theoret-
ical background, implementation, and applications. We present the algorithm’s
complexity analysis and compare it to classical algorithms for solving the same
problem. Our findings demonstrate the significant potential of Simon’s algorithm
in solving complex problems that are difficult to tackle with classical algorithms.
We also discuss the quantum circuit implementation for Simon’s algorithm. In ad-
dition, we present a detailed computational code for implementing this algorithm
and analyze its time and space complexity.

2 Introduction

Quantum computing has emerged as a promising paradigm for solving computa-
tionally difficult problems in a wide range of fields, including computer science and
cryptography. Among the many quantum algorithms that have been proposed, Si-
mon’s algorithm stands out for its ability to efficiently solve the hidden subgroup
problem, which has important implications for a variety of applications.

The hidden subgroup problem (HSP) is a topic of research in mathematics and
theoretical computer science. It is a problem of finding a subgroup of a given
group that is hidden by a function. The HSP captures problems such as factoring,
discrete logarithm, graph isomorphism, and the shortest vector problem.

In this report, we provide a comprehensive analysis of Simon’s algorithm, includ-
ing its theoretical foundations, computational implementation, and experimental
results. We present here a detailed explanation of Simon’s algorithm, including its
input, output, and the steps involved in its computation. We then compare its per-
formance to classical algorithms for solving the same problem. Finally, we present

1

our findings on the experimental implementation of Simon’s algorithm, including
its limitations and potential future developments. Overall, this report aims to pro-
vide a comprehensive understanding of Simon’s algorithm and its significance in
the field of quantum computing.

3 Mathematical Formulation

3.1 Simon’s Problem

We are given an unknown blackbox function f , which is guaranteed to be either
one-to-one (1 : 1) or two-to-one (2 : 1), where one-to-one and two-to-one
functions have the following properties:

One-to-One: Maps exactly one unique output for every input. An example with
a function that takes 4 inputs is:

f(1) −→ 1 , f(2) −→ 2 , f(3) −→ 3 , f(4) −→ 4

Two-to-One: Maps exactly two inputs to every unique output. An example with
a function that takes 4 inputs is:

f(1) −→ 1 , f(2) −→ 2 , f(3) −→ 1 , f(4) −→ 2

This two-to-one mapping is according to a hidden bitstring, b, where:

given
x1 , x2 : f(x1) = f(x2)

in this case:
x2 = x1 ⊕ b

it is guaranteed:
x1 ⊕ x2 = b

Suppose we have a blackbox f , how quickly can we tell if f is one-to-one or two-
to-one? Then, if f turns out to be two-to-one, how quickly can we find out b? As
it is clear, both cases boil down to the same query of finding b.

3.2 Classical Solution

Classically, if we want to measure b with 100% certainty for a given f , we have
to check our inputs up to (2n−1 + 1) times, where n is the number of bits in our
input. This means checking over half of all the possible inputs until we find two
cases with the same output.

We could solve the problem with our first two tries only. But if we get an f that
is one-to-one, or get really unlucky with an f that’s two-to-one, then we have to

2

Figure 1: Quantum Circuit

go with the full (2n−1 +1) check. There are known algorithms that can do the job
in O(2n/2) checks (Randomized algorithm), but generally speaking the complexity
grows exponentially with n.

3.3 Quantum Solution

The quantum circuit that implements Simon’s algorithm is shown in Figure (1).
Where the query function, Qf acts on two quantum registers as:

|x⟩|a⟩ −→ |x⟩|a ⊕ f(x)⟩

In the specific case that the second register is in the state |0⟩ = |0⟩|0⟩....|0⟩ the
above equation becomes

|x⟩|0⟩ −→ |x⟩|f(x)⟩

The Simon’s algorithm acts in the following steps [2]:

3.3.1 1st step

Two input registers, each of n-qubits length, are initialized to the zero state:

|ψ1⟩ = |0⟩⊗n|0⟩⊗n

3

3.3.2 2nd step

Hadamard gate applies to the first register:

|ψ2⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩|0⟩⊗n

3.3.3 3rd step

Now we apply query function Qf :

|ψ3⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩|f(x)⟩

3.3.4 4th step

We get a certain value of f(x) after measuring the second register. Because of the
value obtained on the second register, our first register must have some specific
related values. If our second register gets f(x) value, first register must possess
two values

x and y

where
y = x⊕ b

Both of these values will be in equal superposition

|ψ4⟩ =
1√
2
(|x⟩+ |y⟩)

|ψ4⟩ =
1√
2
(|x⟩+ |x⊕ b⟩)

Notice that we have not written here the second register as it is already measured
[1].

3.3.5 5th step

Now Hadamard gate is applied on the first register:

|ψ5⟩ =
1√
2n+1

∑
z∈{0,1}n

[(−1)x.z + (−1)y.z]|z⟩

4

Figure 2: Quantum Circuit

3.3.6 6th step

Now comes the measurement of first register and it will give us result only if:

x.z = y.z

x.z = (x⊕ b).z

x.z = x.z ⊕ b.z

b.z = 0(mod 2)

We will get certain value of z whose dot product with the hidden variable b is zero.
By repeating this algorithm n times, we will get n different values of z.

To measure b, we only need (n − 1) linearly independent values of z (n is the
number of qubits here). By doing simple linear algebra of these (n − 1) linearly
independent equations, we can find b (our hidden string).

3.4 Example

Let’s now see an example of simon’s algorithm for 4 qubits. Our secret bitstring b
in this case is 1001. Quantum circuit for this example is shown in Figure (2).

3.4.1 1st step

Two 4-qubit registers are initialized by an input state ket zero.

|ψ1⟩ = |0000⟩|0000⟩

5

Figure 3: Corresponding outputs for all possible inputs

3.4.2 2nd step

Hadamard gates are applied to the first register only.

|ψ2⟩ =
1√
24

∑
x∈{0,1}4

|x⟩|0000⟩

|ψ2⟩ =
1

4
(|0000⟩+ |0001⟩+ |0010⟩+ |0100⟩++ |1111⟩)⊗ |0000⟩

3.4.3 3rd step

Now this state |ψ2⟩ will pass through the oracle and we will have the following
state as a result:

|ψ3⟩ =
1

4

∑
x∈{0,1}4

|x⟩|f(x)⟩

Oracle outputs for all the possible inputs is shown in Table (3). Following is the
corresponding output for all possible inputs:

|ψ3⟩ =
1

4
[|0000⟩|1111⟩+|0001⟩|0001⟩+|0010⟩|1110⟩+....+|0111⟩|1001⟩+|1111⟩|1010⟩]

3.4.4 4th step

Now we measure our second register. For each measured state on the second
register, there will be only two corresponding states (in equal superposition) on
the first register. It is because of the fact that for Two-to-One function, two input
states can produce the same output state.

|ψ4⟩ =
1√
2
(|x⟩+ |x⊕ b⟩)⊗ |f(x)⟩

6

If our second register is measured to be 1010 then ψ4 will be

|ψ4⟩ =
1√
2
(|0110⟩+ |0110⊕ 1001⟩)⊗ |1010⟩

|ψ4⟩ =
1√
2
(|0110⟩+ |1111⟩)⊗ |1010⟩

We can ignore second register from now onward as it has been measured.

|ψ4⟩ =
1√
2
(|0110⟩+ |1111⟩)

3.4.5 5th step

|ψ5⟩ =
1√
2n+1

∑
z∈{0,1}n

[(−1)x.z + (−1)y.z]|z⟩

|ψ5⟩ =
1√
2n+1

∑
z∈{0,1}n

[(−1)x.z + (−1)(x ⊕ b).z]|z⟩

Hadamard gate is applied on the first register in this step

|ψ5⟩ = H⊗n(
1√
2
(|0110⟩+ |1111⟩))

After applying Hadamard gate and doing further simplifications, we get

|ψ5⟩ =
1√
23
(|0000⟩ − |0010⟩ − |0100⟩+ |0110⟩+ |1001⟩ − |1011⟩ − |1101⟩+ |1111⟩)

These are the values of z that satisfy the condition

b.z = 0(mod 2)

For all values of z, we can write that

b.z1 = 0

b.z2 = 0

b.z3 = 0

.

.

.

b.z8 = 0

Here z1, z2,...,z8 are first, second, ..., eigth values of z respectively.

We need here atleast three linearly independent values of z to find b. In this case
three linearly independent values of z are (0010, 0100, 1001). We can also write

7

them in equation form as follows (subscript shows integer number from left to
right in the bit-string):

z11 .b1 + z12 .b2 + z13 .b3 + z14 .b4 = 0

z21 .b1 + z22 .b2 + z23 .b3 + z24 .b4 = 0

z31 .b1 + z32 .b2 + z33 .b3 + z34 .b4 = 0

We now write them in matrix form to solve for b:
0 0 1 0
0 1 0 0
1 0 0 1
0 0 0 0



b1
b2
b3
b4

 =


0
0
0
0


Swapping R1 and R3: 

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0



b1
b2
b3
b4

 =


0
0
0
0


b4 is free variable here. Suppose b4 = 1

b2 = 0

b3 = 0

b1 + b4 = 0

b1 = −b4
b1 = −1

As we are doing mod2 calculation, so;

b1 = 1

Hence, our secret bit-string b is (1001).

We have solved our problem in just (n− 1) iterations here. In worst case, it would
take maximum of n iteration to find b. It clearly shows that Simon’s algorithm
provides exponential speed up over classical solution.

4 Implementation Methodology

We now implement simon’s algorithm on python for the example used above.
Each step of implementong the algorithm is shown in the Figures below. Final
calculation for the secret bit-string b is after getting z values is the same as done
in the example.

8

Figure 4: Defining quantum circuit and implementing the oracle

Figure 5: Oracle Diagram

9

Figure 6: Implementing complete Quantum Circuit

Figure 7: Quantum Circuit

10

Figure 8: Simulating the results

5 Applications

Simon’s algorithm has several applications in various fields, particularly in com-
puter science and cryptography. Here are some key applications:

5.1 Cryptography

Simon’s algorithm has significant implications for cryptography. It can be used
to break certain types of cryptographic protocols that rely on the difficulty of
finding the period of a function. By efficiently determining the period, Simon’s
algorithm can undermine the security of these protocols, highlighting the need for
more robust cryptographic schemes.

5.2 Group Theory

Simon’s algorithm has applications in group theory, a branch of mathematics that
studies symmetries and abstract algebraic structures. It can help identify hidden
subgroups within groups, enabling the analysis of group properties and aiding in
solving computational problems related to group theory.

11

5.3 Quantum Algorithm Design

Simon’s algorithm serves as a foundation for the development of more advanced
quantum algorithms. It provides valuable insights into the use of quantum tech-
niques, such as quantum parallelism and interference, in designing efficient algo-
rithms for solving problems that involve hidden subgroups.

6 Conclusion

In conclusion, Simon’s algorithm has proven to be a powerful tool for solving the
hidden subgroup problem in quantum computing. We have seen that how can it
provide us exponential benefit over the classical algorithm. Simon’s algorithm also
paved the way for the development of the most famous Shor’s algorithm.As the
field of quantum computing progresses, further research and exploration of Simon’s
algorithm and its applications will undoubtedly contribute to the advancement of
computational capabilities and information theory.

References

[1] Qiskit.

[2] Daniel R. Simon. On the power of quantum computation. SIAM Journal on
Computing, 26(5):1474–1483, 1997.

12

