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Abstract
This document serves to report on the findings of several quantum optical experiments

carried out as part of a summer internship at Physlab, Pakistan. We first prove the utility of
Spontaneous Parametric Down Conversion (SPDC) as a genuine source of single photons. Then,
using SPDC as the source for single photons, several quantum entanglement tests are carried out
to probe the non-local nature of entangled photon pairs. In the last section, 2-Qubit Quantum
State Tomography is carried out to estimate several quantum states using the Density matrix
formalism.
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1Components & software used
‘Every tool carries with it the spirit by which it has been created.’

Werner Heisenberg

• Pump laser: A 405 nm violet laser was used as the pump laser. It is collimated & puts out
light in the vertically polarized state |V ⟩.
Symbol:

PUMP LASER

• BBO stack: Two BBO crystals stacked in the middle of a disk mounted on a kinematic mount.
This stack was used to carry out SPDC (refer section 2.1 for further details).
Symbol:

BBO

• Photon collectors: These collect the incident light and carry the collected light to the single
photon counting module using an optical fiber.

• SPCM - Single photon counting module: Avalanche photo-diodes. These generate an electric
pulse each team a photon is received. A photon collector & the SPCM connected to it will
collectively be referred as a ‘detector’.
Symbol of a detector:

• HWP - Half wave plate: An optical component which rotates linearly polarized light.
Symbol:

HWP
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• QWP - Quarter wave plate: An optical component which converts linearly polarized light to
circularly polarized light.
Symbol:

QWP

• Back propagation/alignment laser: 633 nm laser(s) for back-propagation alignment.
Symbol:

• Polarizing beam splitter: An optical component which splits incident light based on polar-
ization. The PBS used in our experiments transmits vertically polarized photons |V ⟩ and
reflects horizontally polarized photons |H⟩.
Symbol:

PBS

• Motorized rotation stage and controller: Motorized stage for rotation of optical components.
The controller can be tweaked using the software package provided.

• FPGA: In the FPGA, a coincidence counting unit (CCU) has been implemented. Each time
a pulse is produced by an SPCM, it is carried to the FPGA via BNC cables.
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• Counting software:

Figure 1.1: A screenshot of the counting GUI. Both single detector counts
A, A’, B, B’ & coincidence counts (detecting two or more photons simulta-
neously at different detectors) AB, A’B, A’B’, ABB’ are displayed in real
time.

Receives data from the FPGA and projects it in real-time onto an interactive GUI developed
by B. Hyder [3].

• Quartz plate: A birefringent quartz plate used to control the phase ϕ between two polariza-
tions of the incident light beam.
Symbol:

Quartz

 Plate

• Polarizer: An optical component that only lets light of a specific polarization pass through.
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2Spontaneous parametric down-conversion
‘Allow me to express now, once and for all, my deep respect for the work of the experimenter and for his fight to wring
significant facts from an inflexible Nature . . . [which] says so distinctly No and so indistinctly Yes to our theories’

Hermann Weyl

To experimentally study the quantum nature of light, we need a quantum source of light, a
source which can produce single photons. One physical phenomenon with which single photons can
be produced is Spontaneous Parametric Down-Conversion (SPDC). SPDC, albeit a very inefficient
process [1], forms the bedrock of many experiments probing quantum mechanics.

Firstly, I shed some light on the theory of this crucial phenomenon and then cover the exper-
imental method followed to study this phenomenon in the laboratory. It is essential to highlight
that this experiment was a rerun aiming to reproduce the results obtained in the book ‘Quantum
Mechanics in the Single Photon Laboratory’ [2].

2.1 Theoretical background
In SPDC, an incident pump photon is converted into two daughter photons, namely ‘signal’ and
‘idler’ photons. Each daughter photon has frequency and energy half that of the pump photon.
For this reason, the daughter photons are dubbed the ‘down-converted’ photons. The process is
illustrated in figure 2.1.

BBO Crystal

Down-conversion

Pump photon (frequency = f
p
)                          

   S
ignal photon (fr

equency =  f s 
= 0.5 f p)

   Idler photon (frequency = f
i = 0.5 f

p )

Figure 2.1: An incident pump photon is down-converted into two daughter
photons. Each down-converted photon has a frequency half that of the pump
photon. The medium used to carry out down-conversion is a BBO crystal.

The occurrence of SPDC is contingent upon a particular polarization of the pump photon i.e.
only pump photons having a particular polarization are down-converted. This suggests a phase
relationship exists between the pump beam and the down-converted beams. Furthermore, the

6



down-converted photons are always produced in pairs; this quirk of SPDC comes in handy as de-
tecting one daughter photon would imply the presence of the other daughter photon.

In our experiment, a stack of two BBO crystals was used to carry out SPDC. Each crystal was
cut out to carry out Type-I SPDC, meaning that both the down-converted photons would have
a polarization orthogonal to that of the pump photon. Both crystals were stacked at 90◦ to each
other. This stacking arrangement would allow one of the BBO crystals to down-convert vertically
polarized photons |V ⟩ and the other crystal to down-convert horizontally polarized photons |H⟩.
The action of the BBO on the polarization of the pump photon is shown below,

|V ⟩ −−−→
BBO

|HH⟩ ,

|H⟩ −−−→
BBO

|V V ⟩ .

Here it down-converts one vertically polarized pump photon |V ⟩ into a pair of horizontally polarized
down-converted photons |HH⟩ & vice versa.

Theoretically, if one of the BBO crystals is misaligned, i.e. the relative angle between the crys-
tals is no more 90◦, then depending on which crystal is misaligned, either the vertically polarized
pump photon |V ⟩ or the horizontally polarized pump photon |H⟩ would no longer be catered. This
would imply a decrease in the number of down-converted photons detected.

In practice, a half-wave plate (HWP) can rotate the linear polarization of an incident beam. At
certain θ (angle between the polarization of the incident beam and the optical axis of the HWP)
the HWP can change the incident photon in the vertically polarized state |V ⟩ to a photon in the
horizontally polarized state |H⟩ and vice versa. This means if a vertically polarized beam |V ⟩
is incident onto a HWP & the HWP is made to rotate over a range of θ, for certain θ it would
change the polarization from |V ⟩ −→ |H⟩. If this resultant beam is perpetually made incident onto
a hypothetically misaligned BBO crystal which does not cater |H⟩ while the HWP is rotating,
then the horizontally polarized photons |H⟩ would not be down-converted. This implies for some
orientations of the HWP one would expect to see a dip in the number of down-converted photons
detected for a misaligned crystal as mentioned earlier. Following similar arguments, it can be
deduced that a hypothetically perfectly aligned BBO stack would be able to down-convert both the
|H⟩ and |V ⟩ polarizations of the pump photons. Hence no dips would be expected in the single-
photon counts for an aligned BBO stack. The theoretical predictions put forth by these arguments
are depicted in figure 2.2.

7



���	�������������
���( ∘ ∘

�
��
��
��
��
��
�

��

�������
��
����
��

Figure 2.2: Expected relation between the number of down-converted photons detected
(detector counts) & the orientation of the HWP. Both the aligned & misaligned cases
for the BBO stack are shown.

2.2 Experiment & results
The first part of the setup was to ensure that the pump beam was aligned correctly and had a
constant height at every point above the optical table. To accomplish this, the pump beam was
reflected off two adjustable mirrors, this ensured there was no tilt present in the beam. The beam’s
constant height above the optical table was confirmed by placing an alignment ruler at different
points in the beam’s path and ensuring that at each point the beam coincided with the same mark-
ing on the ruler. Once the pump beam had been aligned, it was used as a reference to align the
other components which were to be placed.

The BBO crystals used in the experiment were chosen such that both the down-converted
daughter beams made an angle of 3◦ relative to the pump beam. These down-converted photons
had a wavelength of 810 nm (twice the wavelength of the pump beam). Since this λ lies outside
the visible part of the electromagnetic spectrum, it’s quite challenging to align detectors A & B
because the down-converted beams are invisible to the naked eye and cannot be used as a reference.
To overcome this hindrance, the method of back propagation was utilized. Before back propagation
could be implemented, the single photon detectors A & B had to be placed at roughly 3◦ relative to
the pump beam. The distance between the midpoint of the detectors & the BBO crystals was chosen
to be 48” in our setup (note that the choice of this distance lies completely with the experimenter).
Exploiting the geometrical arrangement of the setup shown in figure 2.3, the expected distance
between both the detectors A & B was estimated using simple trigonometry,

Estimated distance = 2 · (48” tan 3◦),
≈ 5.03” ≈ 12.8 cm.

Both detectors A & B were then placed with separation between them equal to the estimated
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distance.

BBO

Beam blocker

Signal beam

Idler beam

A

B

48”

3°

3°

Pump beam

Figure 2.3: Geometrical arrangement before the back propagation method
was utilized.

The pump laser was turned off before initiating the back propagation alignment procedure. Now
a back propagation laser of wavelength 633 nm was connected to the photon collector which formed
one half of detector A. The back propagation laser was shone backwards toward the BBO crystals &
the knobs of the kinematic mount holding the collector were tweaked until the alignment laser was
directly incident onto the centre of the BBO crystals. Using the alignment ruler it was ensured that
the back propagation laser, on its path back to the BBO crystals, had a constant height above the
optical table. At this point, detector A had been roughly aligned. Similar procedure was followed
for coarsely aligning detector B. Once both the detectors had been coarsely aligned separately, one
alignment laser was connected to each detector and shone backwards. The knobs of the holders
were tweaked further until both the alignment lasers coincided at the center of the BBO crystal
stack. This last step shown in figure 2.4 improved the alignment of the detectors.

BBO

A

B

BBO mount

Alignment laser dot(s)

Back propagation laser(s)

Front-on view 

of the BBO mount:

Figure 2.4: Two back propagation lasers shone backwards towards
the BBO stack to fine-tune the coarse alignment of detectors A
& B.
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The alignment lasers were disconnected and the SPCMs were connected back to the photon collec-
tors. At this point, rough alignment of the detectors was complete.

The pump laser was turned on and made incident on the not yet aligned BBO crystals. With
both the detectors roughly aligned and their outputs connected to the PC, the individual counts
A, B, & the coincidence counts AB were being displayed on the counting software in real-time. It
was observed that several counts were being registered on the counting software for both detectors
A & B. This was because both the detectors had been coarsely aligned previously. To carry out
fine alignment of the detectors the tilt of the detectors was tweaked using the rotating knobs of
the mounts until both the individual & coincidence counts were maximized. The experimental
arrangement hitherto is shown in figure 2.5.

PUMP LASER

HWP BBO

Mirror

Mirror

Beam blocker

Signal beam

Idler beam

A

B

Figure 2.5: Experimental arrangement with both the detectors aligned. This
setup was used to study SPDC and align the BBO crystal stack.

Up until now the polarization of the pump beam had not been altered by the HWP and the
state input to the BBO was |V ⟩; the same state output by the pump laser. This implies that the
down-conversion undertaken by the misaligned BBO stack until now had been of the |V ⟩ state
only. This was brought to light once the HWP was oriented at angles ranging from 0◦ − 180◦ in
steps of 5◦ and the corresponding counts at each HWP orientation collected. At each angle in
the aforementioned mentioned range, a 10s data acquisition was carried out utilizing the counting
software. Results obtained are shown in figure 2.6a. On inspecting figure 2.6a, it can be deduced
that the dips arise when the HWP is at 45◦ & 135◦ affirming that the BBO crystal responsible for
carrying out down-conversion of |H⟩ photons is misaligned.
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(a) BBO crystal responsible for down-converting |H⟩ pho-
tons misaligned.
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(b) Both BBO crystals aligned.

Figure 2.6: Variation of the single detector counts for misaligned (figure 2.6a) & aligned (figure 2.6b) BBO
crystals. The background counts for both the detectors have been subtracted from the raw counts to obtain
the true counts which are displayed in the plot(s) above. The data cleaning model used for the single detector
counts was suggested in [4].

To align the misaligned BBO crystal responsible for down-converting the |H⟩ input state, we
input the |H⟩ state to the BBO by setting the pump beam HWP at 45◦ and then tune the BBO
tilt using the knobs on the kinematic mount until the coincidence counts are maximized. Only
one knob of the rotating mount was tuned since the crystal responsible for down-converting |V ⟩
input state was already aligned. After the alignment was complete, the HWP was rotated again
over the aforementioned angular range to ensure both the BBO crystals were optimally aligned. As
predicted in figure 2.2, one would expect minimal change in the counts if both the BBO crystals
are properly aligned & indeed this is what we observe in figure 2.6b.

Raw data collected for the coincidence counts AB had to be cleaned as well before the true
coincidence counts could be plotted. To determine the true coincidence counts, equation 2.1 devised
in [4] was used.

N true
AB = N raw

AB −Nacc
AB,

∴ Nacc
AB = NANBδt,

(2.1)

where N true
AB are the true coincidence counts, N raw

AB are the raw coincidence counts, Nacc
AB are the

accidental coincidence counts, NA & NB are the single detector counts, and δt is the time window
for the pulses to get registered in our FPGA, in our case δt = 20 ns. Figure 2.7 shows the raw and
true coincidence counts for both the aligned and misaligned BBO stack.

We are particularly interested in the coincidence counts since these counts show the presence of
‘genuine’ single photons. This is due to the fact that down-converted photons are always produced
in pairs, hence detecting two photons simultaneously (within 20 ns) at two different detectors
implies that both the detected photons were produced due to down-conversion of the same pump
photon. Now that the BBO stack is optimally aligned, SPDC can be utilized as a true single photon
source for further experiments to be carried out.
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Figure 2.7: Plot comparing the raw & true coincidence counts for the misaligned &
aligned BBO stack. By inspecting the plot, it can be deduced that the accidental
coincidence counts Nacc

AB are of the order ∼ 102.
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3Experiments exploring entanglement & nonlocality
‘spooky action at a distance’

Albert Einstein

While studying SPDC we studied single photon systems i.e. we looked at both the down-
converted beams separately and were not interested in finding out any correlation between the
polarizations of the two beams. In the upcoming experiments we consider two-photons systems
i.e. we study the down-converted beams jointly, exploring the seemingly bizarre phenomenons of
quantum entanglement and nonlocality. Quantum entanglement has no parallel in classical physics
and is accredited for the disparity between classical & quantum physics. Local realism, obeyed by
all classical systems, implies that any measurement that can be performed on one photon of an
entangled photon pair cannot affect the state of the other member of the pair. Through the ex-
periments performed in this chapter we reaffirm that quantum entanglement violates local realism
and is indeed non-local in its nature.

PUMP LASER

HWP BBO

Mirror

Mirror

Beam blocker

B

B’

Quartz

 Plate

A

A’

PBS

PBS

HWP

HW
P

Figure 3.1: A four-detector arrangement for the entanglement experi-
ments/tests. This arrangement was used to generate the states required
in the local realism tests conducted. Channel A comprises of the signal
beam, detectors A & A’ and a set of HWP & PBS, whereas channel B
comprises of the idler beam, detectors B & B’ and a set of HWP & PBS.
The combination of HWP + PBS in both channels enacts the working of a
polarizer.

A general two-photon state in the {|H⟩ , |V ⟩} basis is written as follows,

|ψ⟩ = A |H⟩A |H⟩B +Beiϕ |V ⟩A |V ⟩B , (3.1)
|ψ⟩ = A |HH⟩ +Beiϕ |V V ⟩ , (3.2)
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here the subscripts A & B essentially label the two different channels the down-converted photons
could traverse through. These subscripts can be used to represent the signal and idler channels in
the SPDC arrangement. The transition from equation 3.1 to equation 3.2 is based on the postulate
that the first letter inside each ket in equation 3.2 is the polarization of the channel A photon and
the second letter is the polarization of the channel B photon, respectively. Two or more particles
are said to be entangled if their individual states cannot be written independently from the shared
state of the particles. Utilizing equation 3.2 we can generate states that are linear combinations of
of the states |HH⟩ & |V V ⟩ since the magnitudes of coefficients A & B and phase ϕ between the
two states are controlled by the orientation of the pump beam HWP and quartz plate (shown in
figure 3.1), respectively [2].

Three tests of local realism, namely Freedman’s test, CHSH test and Hardy’s test, were con-
ducted. Each of the tests employed a different mathematical framework upon which local realism
was tested.

For Freedman’s & CHSH test, the entangled state
∣∣Φ+〉

represented by equation 3.3 was gener-
ated using the method outlined in section 3.1.2.

∣∣Φ+〉
is one of the four famous maximally entangled

Bell states.

∣∣∣Φ+
〉

= 1√
2

|HH⟩ + 1√
2

|V V ⟩ . (3.3)

For Hardy’s test, the entangled state |Ψ⟩ represented by equation 3.4 was generated using the
method outlined in section 3.3.1.

|Ψ⟩ =
√

0.2 |HH⟩ +
√

0.8 |V V ⟩ . (3.4)

The underlying logic for generation of these particular states is expressed in the relevant section
for each test.
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3.1 Freedman’s test of local realism

PUMP LASER

HWP BBO

Mirror

Mirror

Beam blocker

B

B’

Quartz

 Plate

A

A’

PBS

PBS

HWP

HW
P

Figure 3.2: Instead of the two-detector arrangement suggested in [2] a four-
detector arrangement was employed for Freedman’s test. This setup was
used to generate the state |Φ+⟩. The combination of HWP + PBS in both
channels enacts the working of a polarizer. Since the effective polarizer
combination consists of a HWP and a polarizing beam splitter instead of a
polarizer, the channel HWP needs to be rotated at half the analysis angles
with respect to the horizontal [2].

The first experiment probing quantum entanglement & nonlocality performed was Freedman’s test.
The testing parameter employed in this test was the quantity δ defined by equation 3.5 [2],

δ =
∣∣∣∣N(22.5◦) −N(67.5◦)

N0

∣∣∣∣ − 1
4
, (3.5)

where N(ϕ) are the coincidence counts when the relative angle between the two effective polarizer
combinations is ϕ and N0 represents the coincidence counts recorded with no effective polarizer
components present in both the channels/beams. δ was labelled the testing parameter since it
would allow us to deduce whether local realism has been obeyed or violated. On inspecting equa-
tion 3.5 it can be inferred that δ can directly be determined from the coincidence counts data.
Hence equation 3.5 will be utilized to determine the experimental value of δ, δexp.

Quantum mechanical prediction for the quantity δ defines it as [2],

δ = ϵAϵB

2
√

2
− 1

4
, (3.6)

where ϵA & ϵB represent the transmittance of the polarizer present in channel A(signal) and channel
B(idler), respectively. Since the combination of a HWP & a polarizing beam splitter was utilized
to enact the function of a polarizer in both channels, in this case ϵA represents the transmittance
of the effective polarizer combination in channel A(signal) and ϵB represents the transmittance of

15



the effective polarizer combination in channel B(idler) .

Assuming locality, reality and hidden variable arguments are obeyed, δ attains a value ≤ 0 [2].
This inequality is referred to as Freedman’s inequality, and puts a constraint on the values of δ
if local realism is to be obeyed. An entangled state, which in theory defies the aforementioned
assumptions of locality, reality and hidden variable arguments, should violate the aforementioned
Freedman’s inequality,

δ ≤ 0, (3.7)

and obtain a value > 0. This is the premise underpinning our experiment. Equation 3.6 can be
used to calculate the theoretical value of δ if the transmittances ϵA & ϵB are known. Hence to
determine the range in which our expermental value of δ should lie to successfully violate local
realism we first need to determine ϵA & ϵB.

To determine the transmittances, the setup shown in figure 3.3 was used. In the SPDC setup
shown in figure 2.5, a two-detector arrangement was utilized whereas the entanglement experiments
and the determination of transmittances require a four-detector setup. Hence, the setup shown in
figure 2.5 was updated to the setup shown in figure 3.3. Since two more detectors, detectors A’ &
B’ were added these needed to be aligned before we could determine the respective transmittances
of the effective polarizers. The alignment procedure carried out for these detectors is laid out in
section 3.1.1. With all the detectors aligned, the transmittances for both our effective polarizers
were determined and had the following magnitudes,

ϵA = 0.975 ± 0.006,
ϵB = 0.995 ± 0.008.

PUMP LASER

BBO

Mirror

Mirror

Beam blocker

B

B’

A

A’

PBS

PBS

HW
P

HWP

HWP

Figure 3.3: Experimental arrangement used to determine ϵA & ϵB .
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Using the values of ϵA, ϵB and equation 3.6, the theoretical value of δ comes out to be,

δtheo = 0.0932 ± 0.0003.

This suggests that a successful violation of local realism (equivalent to violating Freedman’s in-
equality) demands our experimental value of δ, δexp lie in the range specified by equation 3.8,

0 <δexp ≤ δtheo,

0 < δexp ≤ 0.0932 ± 0.0003.
(3.8)

3.1.1 Aligning the four detector arrangement

For all the entanglement experiments, the four-detector arrangement shown in 3.1 was required.
This demands an increase from the number of detectors last used in studying SPDC. Provided
detectors A & B utilized in the SPDC experimental arrangement (shown in figure 2.5) are still
alligned, the added detectors A’ & B’ had to be aligned before the four-detector arrangements’
prowess could be utilized. The detector B’ was aligned first and then following the same routine
the detector A’ was aligned.

BBO

A

B

B’

Back propagation laser

(a) Back propagation laser shone back through photon col-
lector B before the PBS was placed. The other half of
detector B, the SPCM, has been disconnected.

HWP

PBS

BBO

A

B

B’Back propagation laser

(b) Back propagation laser shone back through
photon collector B’ with the PBS placed. The
other half of detector B’, the SPCM, has been
disconnected.

Figure 3.4: Back propagation setups utilized to coarsely align detectors B, B’ and the PBS for the four-
detector arrangement.

The pump laser is turned off and the optical fiber connecting the photon collector B and its
respective SPCM is disconnected and the back-propagation laser is shone back towards the center
of the BBO stack as shown in figure 3.4a. A PBS is then placed in the path of the back propagation
laser and tweaked until the back propagation laser emerges exactly from the center of the other
face of the PBS. It is ensured that this face of the PBS facing the BBO stack is perpendicular to
the emerging laser. Now the detector B’ is placed perpendicularly from the reflection end of the
PBS and it is ensured that the detectors B and B’ are both equidistant from the PBS. The optical
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fiber connecting the photon collector B’ and its respective SPCM is disconnected and the back-
propagation laser is shone back towards the reflection end of the PBS from the photon collector
B’. It is ensured that the back propagation laser is reflected and emerges from the center of the
face of the PBS facing the BBO stack. As shown in 3.4b, a HWP is now inserted close to the PBS
such that the back propagation laser passes through its center aswell and is still incident on the
center of the BBO stack. Two back propagation lasers are simultaneously shone back from photon
collectors B and B’ towards the BBO stack as shown in figure 3.5.

HWP

PBS

BBO

A

B

B’

Back propagation laser #1

Back propagation laser #2

Figure 3.5: Two back propagation lasers shone backwards towards the BBO
stack to fine-tune the coarse alignment of detector B’.

Minor tweaks are made so that both the lasers coincide exactly at the center of the BBO stack.
This completes the coarse alignment of detector B’. The back propagation lasers are disconnected
and the optical fibers between the photon collectors & their respective SPCMs are connected back.

To fine-tune and complete the alignment of detector B’, we turn the pump laser on and set the
pump beam HWP at 45◦ so that the down-converted photons produced are in the state |V V ⟩. Since
|V ⟩ photons are transmitted through the PBS, maximal single counts are observed on detector B.
At the same time maximum coincidence counts AB are observed on the counting software. The
pump beam HWP is now set at 0◦ so that down-converted |HH⟩ photons are being produced.
Since |H⟩ photons are reflected by the PBS, maximal single counts are observed on detector B’.
At the same time maximum coincidence counts AB’ are observed on the counting software. Since
detector B was already aligned, the maximum AB coincidence counts were used as a reference to
compare the maximum AB’ coincidence counts. No significant difference was observed in these as
ideally should be the case. This completes fine alignment of detectors B and B’, following similar
routine the detector A’ was aligned, since detector A was already aligned. It is suggested in [2]
that the maximum of coincidence counts AB and the maximum of coincidence counts AB’ should
not be significantly different. If a significant difference is observed, then alignment may need to be
improved or re-done. The optic fibres for one of the B and B’ detectors may also need cleaning, or it
might be the case that the fibre coupling lens for one of the detectors may have a better alignment
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than that of the other.

With all the detectors in the four-detector arrangement aligned, we can proceed, taking no
prisoners, with the entanglement experiments.

3.1.2 Generating the state |Φ+⟩

For Freedman’s and CHSH test we would like to generate the state
∣∣Φ+〉

, since it is one of the four
maximally entangled Bell states represented by equations 3.9 - 3.12,∣∣∣Φ+

〉
= 1√

2
|HH⟩ + 1√

2
|V V ⟩ , (3.9)

∣∣Φ−〉
= 1√

2
|HH⟩ − 1√

2
|V V ⟩ , (3.10)

∣∣∣ψ+
〉

= 1√
2

|HV ⟩ + 1√
2

|V H⟩ , (3.11)

∣∣ψ−〉
= 1√

2
|HV ⟩ − 1√

2
|V H⟩ . (3.12)

To generate
∣∣Φ+〉

, the four-detector arrangement shown in figure 3.1 was used. Considering
the general two-photon state represented by equation 3.2, it can be seen to get the state

∣∣Φ+〉
we

need the coefficients A & B in equation 3.2 to be = 1√
2 and the phase ϕ to be = 0. To accomplish

the first condition, effective polarizers A and B are set at 0◦ to observe the |HH⟩ counts (A’B’
counts) and the pump beam HWP is adjusted such that the coincidence counts (AB counts), on
setting the effective polarizers at 90◦ (in our case this is equivalent to setting the channel HWPs
to half the magnitude of the required angle i.e. 90◦), are approximately equal. It is ensured that
for cross-orientations of the effective polarizers i.e. one effective polarizer set at 0◦ and the other
at 90◦ and vice versa, we get minimum AB coincidence counts. With these steps undertaken, the
|HH⟩ and |V V ⟩ counts in the {|H⟩ , |V ⟩} basis had been approximately equalized (≈ 1 : 1 ratio)
and the counts |HV ⟩ and |V H⟩ had been minimized. With these requisites met, the coefficient
A = B = 1√

2 and the general state |ψ⟩ had been transformed to the state |ψ⟩trans, equation 3.13
displays this transformation,

|ψ⟩ = A |HH⟩ +Beiϕ |V V ⟩ =⇒ |ψ⟩trans = 1√
2

|HH⟩ + 1√
2
eiϕ |V V ⟩ . (3.13)

To get the state
∣∣Φ+〉

from the |ψ⟩trans state, phase ϕ needs to be = 0. The first step is to
change the measurement basis to the {|D⟩ , |A⟩} basis. The state |D⟩ is the diagonally polarized
state represented in the {|H⟩ , |V ⟩} basis as,

|D⟩ = 1√
2

(|H⟩ + |V ⟩) . (3.14)

Whereas the state |A⟩ is the anti-diagonal polarization state represented in the {|H⟩ , |V ⟩} basis as,

|A⟩ = 1√
2

(|H⟩ − |V ⟩) . (3.15)

Now to change our basis to the {|D⟩ , |A⟩} basis we need to upgrade our four-detector arrangement
by further incorporating a QWP shown in basis changing combination of components displayed in
figure 3.6.
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HWPQWP

PBS

Figure 3.6: This arrangement of components can be
utilized to change our measurement basis to the re-
quired basis.

With the QWP added to our four-detector arrangement shown in figure 3.1, we could change the
measurement basis to the {|D⟩ , |A⟩} by orienting the QWP and HWP at 45◦ and 22.5◦, respectively.
The state |D⟩ has been rotated to the state |H⟩. This implies that counts corresponding to |D⟩
photons would be detected at the same detector at which the |H⟩ counts were being detected. A
conceptual illustration extending this concept is shown in figure 3.7.

PBS

V

H

(a) A |H⟩ , |V ⟩ PBS which transmits the ver-
tically polarized photons |V ⟩ and reflects the
horizontally polarized photons |V ⟩.

PBS

A

D

(b) An imaginative |D⟩ , |A⟩ PBS which trans-
mits the diagonally polarized photons |D⟩ and
reflects the anti-diagonally polarized photons
|A⟩.

Figure 3.7: Working of the |H⟩ , |V ⟩ (figure 3.7a) and imaginative |D⟩ , |A⟩ (figure 3.7b) beam splitters.
Changing the measurement basis to the {|D⟩ , |A⟩} basis and immediately putting a |H⟩ , |V ⟩ PBS after the
HWP as shown in figure 3.6 enacts the working of a |D⟩ , |A⟩ PBS shown in figure 3.7b.

Once the measurement basis had been changed to the {|D⟩ , |A⟩} basis, the effective polarizers
A and B were oriented at 45◦ and −45◦, respectively (in our case this corresponds to setting
the channel HWPs A and B to half the magnitudes of the required angles i.e. 22.5◦ and −22.5◦,
respectively). Now the tilt of the quartz plate about the vertical axis was adjusted such that the AB
coincidence counts were minimized. After this minimization of AB counts is achieved, orientations
of the effective polarizers A and B were interchanged to −45◦ and 45◦, respectively. It was ensured
that AB coincidences were still at a minimum. Once these steps had been carried out, the phase
ϕ was at a minimum, implying that the state |ψ⟩trans had been transformed to the maximally
entangled state

∣∣Φ+〉
as shown below,

|ψ⟩trans = 1√
2

|HH⟩ + 1√
2
eiϕ |V V ⟩ =⇒

∣∣∣Φ+
〉

= 1√
2

|HH⟩ + 1√
2

|V V ⟩ .

The QWP incorporated for changing the measurement basis was removed from the four-detector
arrangement after ϕ had been minimized.
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3.1.3 Experiment & results

The state
∣∣Φ+〉

was generated following the routine outline in section 3.1.2. Employing the four-
detector arrangement shown in figure 3.2, the coincidence counts in equation 3.5, N(22.5◦), N(67.5◦)
and N0 were recorded. A 30 s data acquisition was carried out for each iteration of recording the
aforementioned counts. Once these counts had been determined, their values were plugged in
equation 3.5 and δexp was calculated. The statistics and results obtained are summarized in table
3.1.

Time N(22.5◦) N(67.5◦) N0 δexp Confidence

30 s 2987 ± 8 522 ± 4 7281 ± 16 0.08864 ± 0.0004 219 σ

Table 3.1: Data and results obtained for Freedman’s test.

The experimental value of δ is greater than 0,

δexp > 0,
0.08864 ± 0.0004 > 0.

This affirms that the photon pairs under consideration were entangled and violated local realism
since Freedman’s inequality(equation 3.7) has been violated.

3.2 CHSH test of local realism
The second experiment performed was the CHSH test. The testing parameter employed in this
test was the quantity S defined by equation 3.16 [2],

S = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′), (3.16)

where E(x, y), a quantity which represents the expected outcome of a local realistic measurement
for the analysis angle of x in channel A(signal) and y in channel B(idler), is defined as [2],

E(x, y) = PHH + PV V − PHV − PV H = cos (2(x− y)). (3.17)

S would allow us to deduce whether local realism has been obeyed or violated. Assuming locality,
reality and hidden variable arguments are obeyed, |S| attains a value ≤ 2 [2]. This is referred to as
The CHSH inequality. An entangled state, which in theory defies the aforementioned assumptions,
should violate the classical prediction put forth by the the aforementioned CHSH inequality,

|S| ≤ 2. (3.18)

Since
∣∣Φ+〉

is maximally entangled, we should expect maximum violation of the CHSH inequal-
ity. Using equations 3.17 & 3.16 and the following values of analysis angles (a = −45◦, a′ = 0◦, b =
22.5◦, b′ = −22.5◦), we compute the theoretical value of S for

∣∣Φ+〉
to be,

Stheo = 2
√

2.
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Owing to experimental constraints, it is non-trivial to exactly generate
∣∣Φ+〉

. This implies that
a successful violation of the CHSH inequality (equivalent to a proof of non-locality) demands our
experimentally determined value of S lie in the range given by equation 3.19,

2 < Sexp < Stheo,

2 < Sexp < 2
√

2.
(3.19)

3.2.1 Experiment & results

PUMP LASER

HWP BBO
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Mirror
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B
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Figure 3.8: A four-detector experimental arrangement for the CHSH test.
This setup was used to generate the state |Φ+⟩. The combination of HWP +
PBS in both channels enacts the working of a polarizer. Since the effective
polarizer combination consists of a HWP and a polarizing beam splitter
instead of a polarizer, the channel HWP needs to be rotated at half the
analysis angles with respect to the horizontal [2].

To perform the test, the state
∣∣Φ+〉

(one of the four Bell states) was experimentally generated
following the same routine outlined in section 3.1.2. The state

∣∣Φ+〉
was generated because theo-

retically it is predicted to violate the CHSH inequality the most.

As required by equation 3.16, to calculate S we need to determine E(x, y) for four sets of
analysis angle pairs: (a, b), (a, b′), (a′, b), (a′, b′). This was achieved by setting the channel HWPs
to half the values of the analysis angles (a = −45◦, a′ = 0◦, b = 22.5◦, b′ = −22.5◦) for each
analysis angle pair and collecting the corresponding coincidence counts data. The data collected
was used to determine the probabilities mentioned in equation 3.17, which consequently allowed us
to determine E(a, b), E(a, b′), E(a′, b), E(a′, b′). Once E(x, y) had been determined for each set
of analysis angle pairs, equation 3.16 allowed us to determine the experimental value of S, Sexp.
Three runs for this test were performed, with increasing data acquisition time in each run. This
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was done to improve the confidence interval of the results. The results obtained are presented in
table 3.2.

Time Sexp Confidence

30 s 2.608 ± 0.005 118 σ

60 s 2.610 ± 0.004 158 σ

120 s 2.604 ± 0.003 219 σ

Table 3.2: Results for the CHSH test.

All three experimental values of S lie in the range specified by equation 3.19,

2 < Sexp < Stheo,

2 < 2.608 ± 0.005 < 2
√

2,
2 < 2.610 ± 0.004 < 2

√
2,

2 < 2.604 ± 0.003 < 2
√

2.

This affirms that the photon pairs under consideration were entangled and violated local realism
since the CHSH inequality(equation 3.18) has been violated by each value of Sexp.
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3.3 Hardy’s test of local realism
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Figure 3.9: A four-detector arrangement was employed for Hardy’s test.
This setup was used to generate the state |Ψ⟩. The combination of HWP +
PBS in both channels enacts the working of a polarizer. Since the effective
polarizer combination consists of a HWP and a polarizing beam splitter
instead of a polarizer, the channel HWP needs to be rotated at half the
analysis angles with respect to the horizontal [2].

The last experiment performed was Hardy’s test. The testing parameter employed in this test was
the quantity H defined by equation 3.20 [2],

H = P (β,−β) − P (β, α⊥) − P (−α⊥,−β) − P (−α, α), (3.20)

where P (XA, YB), a quantity which represents the joint probability of detecting photons which
reach detectors A & B and are polarized along angles X and Y , is defined as [2],

P (XA, YB) = NAB

NAB +NAB′ +NA′B +NA′B′
. (3.21)

Similarly, other relevant probabilities have been defined below,

P (XA, YB′) = NAB′

NAB +NAB′ +NA′B +NA′B′
, (3.22)

P (XA′ , YB) = NA′B

NAB +NAB′ +NA′B +NA′B′
, (3.23)

P (XA′ , YB′) = NA′B′

NAB +NAB′ +NA′B +NA′B′
. (3.24)

H was labelled the testing parameter since it would allow us to deduce whether local realism has
been obeyed or violated. On inspecting equation 3.20 it can be inferred that H can be determined
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if the probabilities, P (β,−β), P (β, α⊥), P (−α⊥,−β), P (−α, α) are known. By setting the ef-
fective polarizers to the following analysis angle pairs: (β,−β), (β, α⊥), (−α⊥,−β), (−α, α) and
recording the coincidence counts data, the aforementioned probabilities can be determined using
equations 3.21 - 3.24. Equation 3.20 can then be utilized to determine the experimental value of
H, Hexp. Note that since the combination of a HWP and a PBS is being used to enact the function
of a polarizer in both channels A and B (figure 3.9), the channel HWPs need to be rotated at half
the analysis angles with respect to the horizontal [2].

Quantum mechanical considerations [2] allow us to define the joint probability P (XA, YB) as,

P (XA, YB) = (A cosXA cosYB +B sinXA sinYB)2. (3.25)

Assuming locality, reality and hidden variable arguments are obeyed, H attains a value ≤ 0 [2].
This inequality is referred to as Hardy’s inequality, and puts a constraint on the values H can attain
if local realism is to be satisfied. Using equation 3.25, it can be verified that maximal violation of
Hardys inequality can be achieved with state |Ψ⟩ (defined by equation 3.4). The analysis angles
for this state are α = 35◦ & β = 19◦ [2]. Using A = B = 1√

2 & ϕ = 0 in the general two-photon
state described by equation 3.2 and choosing α = 35◦ & β = 19◦, equations 3.20 and 3.25 gave us
the following prediction for H,

Htheo = 0.093.

Hence, the state |Ψ⟩ should violate local realism since Htheo > 0.

3.3.1 Generating the state |Ψ⟩

For Hardy’s test we would like to generate the state |Ψ⟩, since theoretically it violates Hardy’s
inequality the most. To generate

∣∣Φ+〉
, the four-detector arrangement shown in figure 3.9 was

used. Considering the general two-photon state represented by equation 3.2, it can be seen to get
the state |Ψ⟩ we need the coefficients A & B in equation 3.2 to be =

√
0.2 &

√
0.8 respectively and

furthermore we need the phase ϕ to be = 0. To accomplish the first condition, effective polarizers
A and B are set at 0◦ to observe the |HH⟩ counts (A’B’ counts) and the pump beam HWP is
adjusted such that the coincidence counts on setting the effective polarizers at 90◦ (AB counts,
corresponding to detecting |V V ⟩ photons), are approximately in a 4 : 1 ratio. In our case, the
channel HWPs need to be oriented at half the magnitude of the required angle(s) since we’re not
using a polarizer. By undertaking the steps outlined our coefficients A & B take on the desired
values. Now to arrive at |Ψ⟩, we need to minimize phase ϕ. This was done by following the same Ψ
minimization routine outlined in section 3.1.2. By this point, the general two-photon state had been
successfully transformed into the required |Ψ⟩ state. This transformation is depicted by equation
3.26,

|ψ⟩ = A |HH⟩ +Beiϕ |V V ⟩ =⇒ |Ψ⟩ =
√

0.2 |HH⟩ +
√

0.8 |V V ⟩ . (3.26)

3.3.2 Experiment & results

The state |Ψ⟩ was generated following the routine outline in section 3.3.1. Employing the four-
detector arrangement shown in 3.9, the coincidence counts data relevant for each probability present
in equation 3.20 was acquired over an interval of 120 s. The coincidence counts data recorded was
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used to calculate the aforementioned probabilities using equations 3.21 - 3.24. The calculated
probabilities are shown in table 3.3.

P (β,−β) P (β, α⊥) P (−α⊥,−β) P (−α, α)

0.1122 ± 0.0004 0.0217 ± 0.0002 0.0187 ± 0.0002 0.0329 ± 0.0002

Table 3.3: Probabilities calculated to determine Hexp for Hardys test.

Once the probabilities had been calculated, equation 3.20 was utilized to calculate the experimental
value of H, Hexp. The result(s) obtained are displayed in table 3.4.

Time Hexp Confidence

120 s 0.0389 ± 0.0005 71 σ

Table 3.4: Results for Hardys test.

The experimental value of H is greater than 0,

Hexp > 0,
0.0389 ± 0.0005 > 0.

This affirms that the photon pairs under consideration were entangled and violated local realism
since Hardys inequality has been violated.
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4Quantum state tomography
‘What we observe is not nature in itself but nature exposed to our method of questioning’

Werner Heisenberg

Quantum state tomography is a technique concerned with estimating a quantum state. It
accomplishes this by undertaking carefully orchestrated measurements [2]. Based on these mea-
surements, It aims to construct a special matrix called the density matrix. This special matrix can
be used to represent both pure & mixed quantum states.

This chapter deals with the experimental procedure utilized to perform two-qubit quantum state
tomography. However, before exploring QST experimentally, I reckon it is essential to briefly de-
scribe the theoretical underpinnings which form the basis of this technique. This provides essential
context needed to understand the experiment.

4.1 Theoretical background

4.1.1 The density matrix formalism

A pure quantum state is the state in which exact information of the system is known. Pure states
can be represented as state vectors |ψ⟩ in the elegant bra-ket notation. All the states described
(including the entangled & superposition states) until now are pure states. However, sometimes
the system under consideration can be prepared as the statistical ensemble of two or more pure
states. In this case, the system is said to be in a mixed state. For e.g. the states |H⟩ and |V ⟩, each
with probability 50% can be mixed together to form a mixed state. This mixed state is not to be
confused with the pure superposition state |D⟩ represented by equation 3.14.

When the pure state |D⟩ is considered, the system is simultaneously in both |H⟩ and |V ⟩ states
before a measurement is made. Assuming the states |H⟩ and |V ⟩ form an orthonormal basis, there
is a 50% chance of getting |H⟩ and a 50% chance of getting |V ⟩ when a measurement on |D⟩ is
made in the {|H⟩ , |V ⟩} basis. Now a mixed state consisting of 50% |H⟩ states and 50% |V ⟩ states
is considered. If a system is randomly drawn from the mixture then the system is either in the
|H⟩ or the |V ⟩ state. If it’s found to be in the |H⟩ state, then on performing a measurement in
the {|H⟩ , |V ⟩} basis there is a 100% chance of getting |H⟩ and vice versa. At no point in this
example the system existed simultaneously in both |H⟩ and |V ⟩ states. This, hopefully, illustrates
the difference between a mixed state and a pure superposition state.

Unlike pure states, mixed states cannot be represented by kets [2]. To describe mixed states
the density matrix formalism is used. In this formalism, the density matrix ρ̂ defined in equation
4.1 is used to represent a quantum state.

ρ̂ =
∑

i

pi |ψi⟩ ⟨ψi| , (4.1)

here pi represents the probability of getting the respective state |ψi⟩ from the mixed state (pi =
P (|ψi⟩). These probabilities must lie in the range 0 ≤ pi ≤ 1 and be normalized

∑
i pi = 1. For

pure states, the density matrix ρ̂ can trivially be devised as |ψ⟩ ⟨ψ|. This implies that the density
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matrix of a mixed state is a probability-weighted superposition of density matrices of pure states
[2]. A legitimate density matrix must have the following properties:

• Trace Tr(ρ̂) = 1.

• Be positive definitive.

• ρ̂† = ρ̂.

• ρ̂2 ≤ 1.

4.1.2 Two-qubit states & theory governing two-qubit QST

A qubit is described as a two-level quantum system since it can exist simply either as the |0⟩ sate
or the |1⟩ state or as superposition of these states [2]. A single-qubit quantum state is described
by equation 4.2,

|ψ⟩ = α |0⟩ + β |1⟩ , (4.2)

where the probability coefficients |α|2 + |β|2 = 1. Similarly, a two-qubit quantum state can be
written as,

|ψ⟩ = γ0 |00⟩ + γ1 |01⟩ + γ2 |10⟩ + γ3 |11⟩ , (4.3)

where the probability coefficients
∑3

i=0 |γi|2 = 1. This two-qubit state lives in a four-dimensional
space and can be represented by a column vector as follows [2],

γ0
γ1
γ2
γ3

 .

Employing the column vector approach to represent polarization states of photons and the general
two-qubit state described in equation 4.3, an arbitrary two-photon pure state in the {|H⟩ , |V ⟩}
basis can be written as [2],

|ψ⟩ = η0 |HH⟩ + η1 |HV ⟩ + η2 |V H⟩ + η3 |V V ⟩ =


η0
η1
η2
η3

 . (4.4)

Using the density matrix formalism, the generalized mixed state can be described by the fol-
lowing density matrix [2],

ρ̂gen =


A1 B1e

iϕ1 B2e
iϕ2 B3e

iϕ3

B1e
−iϕ1 A2 B4e

iϕ4 B5e
iϕ5

B2e
−iϕ2 B4e

−iϕ4 A3 B6e
iϕ6

B3e
−iϕ3 B5e

−iϕ5 B6e
−iϕ6 A4

 . (4.5)

The definition of ρ̂gen implies that determining ρ̂ for an arbitrary two-photon state requires deter-
mining the perimeters (A1, ..., A4), (B1, ..., B6), (ϕ1, ..., ϕ6). Using the Pauli spin operators σ̂0, σ̂1,
σ̂2, σ̂3 and the two-qubit S-coefficients defined in [2], the density matrix ρ̂ can also be defined as,
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ρ̂ = 1
4

3∑
i,j=0

Sij(σ̂i ⊗ σ̂j). (4.6)

The S-coefficients Sij , can directly be determined from joint probabilities, which in turn can be cal-
culated from the photocounts measurements performed in the {|H⟩ , |V ⟩}, {|D⟩ , |A⟩} and {|R⟩ , |L⟩}
bases. The state |R⟩ is the right-circular polarization state represented in the {|H⟩ , |V ⟩} basis as,

|R⟩ = 1√
2

(|H⟩ − i |V ⟩) . (4.7)

Whereas the state |L⟩ is the left-circular polarization state represented in the {|H⟩ , |V ⟩} basis as,

|L⟩ = 1√
2

(|H⟩ + i |V ⟩) . (4.8)

In a nutshell, to estimate the density matrix for an arbitrary two-qubit input state, we need
to determine all 16 two-qubit S-coefficients [2]. For each qubit, we can use three settings corre-
sponding to the three bases: {|H⟩ , |V ⟩}, {|D⟩ , |A⟩} and {|R⟩ , |L⟩}. This means in total 3 × 3 = 9
settings(shown in table 4.1) are required. In each setting, four probabilities corresponding to the
four output channels: |HH⟩, |HV ⟩, |V H⟩, |V V ⟩ need to be calculated. These measurements all
together can then be used to construct ρ̂ for the input state. Since three different measurement
bases need to be setup, and in each basis joint probabilities corresponding to four output chan-
nels have to be determined, a four-detector arrangement similar to the one used in generating the
|Ψ⟩ &

∣∣Φ+〉
states needs to be employed.

As mentioned in [2], numerous sources of error are present in the setup. Even after these errors
have been accounted for, it is highly likely that an illegitimate density matrix is obtained after
carrying out the state estimation procedure. At this point, the Maximum likelihood estimation
technique comes in handy. In essence, maximum likelihood estimation works by finding the state
that is most likely to have resulted in the recorded photocounts. In our experiment, the online to-
mography interface developed by the Kwiat quantum information group was utilized for maximum
likelihood estimation [5]. Figure 4.1 shows a screen-snap of the interface.

When counts in all the 9 aforementioned settings will be recorded, these recorded counts will
then be plugged into the interface. The interface, very conveniently, would carry out maximum
likelihood estimation for us and return the legitimate density matrix ρ̂ for the state which is most
likely to have resulted in the recorded counts. Quantities of interest mentioned in section 4.1.3 can
also be calculated using the same interface.

29



Figure 4.1: A screen-snap of the Kwiat information group’s online tomog-
raphy interface. This interface was used to carry out maximum likelihood
estimation. For our experiment, the two-qubit & 36 measurement settings
were ticked and then the recorded photocounts data was fed to the interface.
http: // tomography. web. engr. illinois. edu/ TomographyDemo. php

4.1.3 Density matrix characterization quantities

Once ρ̂ has been constructed for a state, different quantities of interest associated with ρ̂ can be
calculated. These quantities are defined as follows [2]:

• Fidelity: Measures the state overlap between two states ρ̂1 and ρ̂2. Fidelity F (ρ̂1, ρ̂2) =(
Tr

[√√
ρ̂1ρ̂2

√
ρ̂1

])2
. If we want to check how well a particular entangled state is generated,

we can do quantum state tomography, obtain ρ̂ of the generated state, and check its fidelity
against the theoretical prediction [2].

• Concurrence & Tangle: Quantifies the entanglement of a system. For a two-qubit system,
concurrence C is defined as,

C = Max
{√

λ1 −
√
λ2 −

√
λ3 −

√
λ4

}
,

where λ1, λ2, λ3, λ4 are the eigenvalues of the matrix given by ρ̂Ẑρ̂T Ẑ. Here Ẑ is the spin

flip matrix defined as


0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

. The tangle T can trivially be calculated using the

following relation,

T = C2.

Both concurrence and tangle range from 0 for non-entangled or mixed states to 1 for maximally
mixed states [2].
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4.2 Experiment & results

PUMP LASER

HWP BBO

Mirror

Mirror

Beam blocker

B

B’

Quartz

 Plate

A

A’

PBS

PBS

HWP

QWP

HW
P

QW
P

Figure 4.2: The four-detector arrangement shown above was employed for
QST. The combination of pump HWP + quartz plate was used to generate
the states for which ρ̂ was to be constructed. The combination of HWP +
QWP + PBS in each channel was used to setup the required measurement
basis in each channel.

Using the combination of pump HWP & quartz plate(only utilized in generating
∣∣Φ+〉

and
∣∣Φ+〉

ϕ
states), the following states were generated by essentially transforming the general two-photon
state(equation 3.2) into the required states,

|ψ⟩ = A |HH⟩ +Beiϕ |V V ⟩ =⇒ |HH⟩ ,
|ψ⟩ = A |HH⟩ +Beiϕ |V V ⟩ =⇒ |V V ⟩ ,

|ψ⟩ = A |HH⟩ +Beiϕ |V V ⟩ =⇒
∣∣∣Φ+

〉
= 1√

2
|HH⟩ + 1√

2
|V V ⟩ ,

|ψ⟩ = A |HH⟩ +Beiϕ |V V ⟩ =⇒
∣∣∣Φ+

〉
ϕ

= 1√
2

|HH⟩ − 1√
2
i |V V ⟩ .

The coefficients A & B in equation 3.2 are constrained by orientation of the pump HWP, whereas
phase ϕ in equation 3.2 is controlled by orientation of the quartz plate.

States |HH⟩ & |V V ⟩ were simply generated by orienting the pump HWP(refer figure 4.2) at 0◦

& 45◦, respectively. To generate states
∣∣Φ+〉

&
∣∣Φ+〉

ϕ, the routine used in section 3.1.2 was utilized,
except, in generating

∣∣Φ+〉
ϕ the quartz plate was adjusted such that the phase ϕ was maximized.

For each of the generated state, coincidence counts in each of the 9 measurement bases(shown
in table 4.1) were recorded. The coincidence counts data recorded for each generated state was
then fed into the tomography interface and the corresponding ρ̂ determined. Table 4.3 displays
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both the theoretical and measured density matrices for each generated state. The density matrix
characterization quantities calculated for each state are tabulated in table 4.2.

Measurement basis Channel A HWP Channel A QWP Channel B HWP Channel B QWP
|HH⟩ 0◦ 0◦ 0◦ 0◦

|HD⟩ 0◦ 0◦ 22.5◦ 45◦

|HR⟩ 0◦ 0◦ 0◦ −45◦

|DH⟩ 22.5◦ 45◦ 0◦ 0◦

|DD⟩ 22.5◦ 45◦ 22.5◦ 45◦

|DR⟩ 22.5◦ 45◦ 0◦ −45◦

|RH⟩ 0◦ −45◦ 0◦ 0◦

|RD⟩ 0◦ −45◦ 22.5◦ 45◦

|RR⟩ 0◦ −45◦ 0◦ −45◦

Table 4.1: For each generated state, the coincidence photocounts were recorded in each of the above mea-
surement bases. These recorded counts were then fed into the tomography interface shown in figure 4.1.

State Fidelity Concurrence Tangle

|HH⟩ 0.99 0.00 0.00

|V V ⟩ 0.96 0.00 0.00

∣∣Φ+〉
0.75 0.66 0.43

∣∣Φ+〉
ϕ 0.77 0.67 0.45

Table 4.2: Calculated characterization quantities for measured density matrix of each state.

32



State Re[Theoretical Density Matrix] Re[Measured Density Matrix]

|HH⟩


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0.99 0.01 -0.03 0.00
0.01 0.00 0.00 0.00
-0.03 0.00 0.00 0.00
0.00 0.00 0.00 0.01



|V V ⟩


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




0.02 0.00 0.00 0.01
0.00 0.02 -0.01 0.01
0.00 -0.01 0.01 0.01
0.01 0.01 0.01 0.95



∣∣Φ+〉


0.5 0 0 0.5
0 0 0 0
0 0 0 0

0.5 0 0 0.5




0.37 0.07 -0.07 0.33
0.07 0.07 -0.04 0.09
-0.07 -0.04 0.09 -0.09
0.33 0.09 -0.09 0.47



∣∣Φ+〉
ϕ


0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.5




0.41 0.07 0.08 0.12
0.07 0.06 0.01 -0.07
0.08 0.01 0.07 -0.07
0.12 -0.07 -0.07 0.46


State Im[Theoretical Density Matrix] Im[Measured Density Matrix]

∣∣Φ+〉
ϕ


0 0 0 0.5i
0 0 0 0
0 0 0 0

−0.5i 0 0 0




0.00 -0.02i -0.09i 0.33i
0.02i 0.00 -0.05i 0.10i
0.09i 0.05i 0.00 0.02i
-0.33i -0.10i -0.02i 0.00



Table 4.3: Theoretically predicted and experimentally measured density matrices for each generated state.
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