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1 Abstract

Quantum Random Generators (QRNG) are a significant contribution to cryptog-
raphy and communications. In this report, we present the construction and results
for a rudimentary QRNG which uses a single photon detector and a truly random
classical beam generated by photonic down-conversion. The setup utilizes photon
counting, which is achieved using a field programmable gate array (FPGA) and
includes post-processing which removes dependence on the background conditions.

2 Introduction

A random number generator is a device that aims to produce a binary string that
cannot be replicated or predicted. The significance of such a device has increased
in the last few years with the construction of super and quantum computers which
make traditional methods of cryptography and communication breakable. One
method of producing such random numbers is using a random number genera-
tor algorithm which generates random bit string at a high speed and with high
accessibility. Unfortunately, these algorithms are seed-based, so the strings are
reproducible and the algorithms give predictable results rendering this method
as“pseudorandom” instead of truly random.

Alternative ways of constructing a random number generator utilize physical noise
and classically chaotic processes but these possess low rates of bit string generation.
A QRNG on the other hand, is a device that utilizes the intrinsic randomness of
quantum mechanical phenomena to produce a unique and truly random number
sequence.

Among popular methods described in literature is path entanglement which uses
superposition and projection measurements to generate the random bit string [1].
While this method shows good results with a real single-photon source, and its
mimic based on attenuated coherent light, there are certain drawbacks.
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For example, this method is overly dependent on laboratory equipment and the
environment. For path entanglement generation, we require a perfect 50 : 50 beam
splitter (BS) which sends the photons towards detector A or detector B which
translates to the generation of the bit ‘0’ or ‘1’ respectively. Unfortunately, this
approaches suffers from the assumption that the BS is perfect and the detectors
have equal efficiency, dark count probability, and afterpulsing probability [2]. Each
of these conditions leads to a bias, the quantity of ‘0’s and ‘1’s generated are not
equivalent which greatly reduces the randomness of the data. Another factor to
be considered is the placement of the detectors, if one of the detectors is placed
nearer an extraneous photon source, it is possible for there to be a bias in favor
of one of the outcomes. While this bias can be addressed in post-processing, the
finalized size of the bit string, n is less than 0.25 of the size of the generated string
and depends on the external photon source.

3 Methodology

An alternative method of QRNG uses only one single-photon detector. This is a
significant improvement since we no longer need to ensure the properties of the
detectors match, or that they are placed at a consistent distance from an external
photon source. Moreover, we do not fundamentally need to utilize a BS, hence we
can minimize the biases resulting from the equipment and the environment. At
least two such approaches can be envisaged.

The first approach involves measuring the time interval between consecutive pulses
∆t and comparing it with the mean interval ∆t. Based on whether ∆t ≤ ∆t or
∆t ≥ ∆t, a ‘0’ or ‘1’ is assigned to the outcome. However, this assumes that the
interval represents a stationary process and that the distribution is known before
hand. This method uses the detection events and time intervals for bit generation
but assumes that the photon source is quantum [3].

The other method uses a fixed time interval τ and counts the detection events
inside τ and based on the counts generates the bit string: ‘0’ for an odd number of
detections and ‘1’ for an even number of detections. This is the method we have
implemented with our setup as it is the least dependent on laboratory conditions,
has a high generation rate and a lower bound on the reduction of the outcome
during the post-processing.

4 Experimental Setup

The pump beam comprises a 405 nm wavelength beam of photons which is incident
on two perpendicularly stacked barium borate (BBO) crystals. This produces
entangled photons using spontaneous photon down-conversion (SPCM) type I.
The scheme of the SPCM event is shown in Fig. 1 and details can be extracted
from the book [4].
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Figure 1: Down-conversion of photons using a sandwich of two perpendicularly
placed BBO crystals.

One of the down-converted beams falls into an avalanche photo detector which
has an infrared filter attachment to minimize background counts. These photon
counts are separated by the FPGA counting module into intervals of size τ = 250
ms. They are then transmitted using serial communication to the desktop for
post-processing at 40 kbps.

Our method utilizes two steps in the post-processing stage to counter bias and
external dependence on our raw synthesized bit string. The first, as mentioned
above, checks the order of parity for each detection interval and outputs a binary
digit, ‘0’ for odd and ‘1’ for even. Since the down-conversion is quantum and spon-
taneous, the number of detection events registered by the APD is only dependent
on the power of the source beam. While the rate of down-conversion scales with
the power, the parity check ensures that at sufficiently high power the frequency
of ‘1’ reaches half. This is shown in Fig. 2, along with a plot of the bias, which is
defined as,

bias = abs[1− freq(Ones)

len(string)
].

Using these results we have optimized the power of the source beam such that the
bias is minimized and the a stable generation rate is reached such that the extra-
neous photon source has limited impact. Although this raw-string has composition
of the binary digits expected from a random source, the data is not inherently ran-
dom. Hence we implement algorithmic anti-cooling [5], where we break down the
generated string into pairs and remove those in which the first and second digits
are equal. For the remaining pairs, we drop the second bit and concatenate the
first one in all the pairs to generate a new string. This method reduces the size
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of the string, where the reduction in the size of string depends on the bias in the
string as shown in Fig. 2. One processed we achieve a truly quantum bit string
with a generation rate of approximately 10 kbps.
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Figure 2: Graphical representation of the composition of ‘1’ in the raw generated
data, the bias and the reduction in size due to processing against power of the
source beam.

5 Results

The data collected is tested using the NIST statistical test suite [6] which runs
multiple entropy and random tests on the data. For analysis, ten sets of binary
strings were generated, each containing a million bits and tested, once for good
laboratory conditions and another when an external infrared light source was in-
troduced. This external source is classically incoherent with random intensity,
orientation, and is exposed to the setup for varied intervals. The dotted red line
in the plots below represents the bound on the p-value for the data to be random,
where the p-value compares the result of the test with the results expected from a
truly random distribution with a significance level of 1%.

The various tests used are described below [6].

1. The Frequency (Monobit) Test: determine whether the number of ones and
zeros in a sequence is approximately the same as would be expected for a
truly random sequence.

4



F
re

q
u

en
cy

M
o
n

o
b

it

F
re

q
T

es
t

w
it

h
in

B
lo

ck

R
u

n
s

L
o
n

g
es

t
R

u
n

in
B

lo
ck

B
in

a
ry

M
a
tr

ix
R

a
n

k

D
F

T

N
o
n

-o
v
er

la
p

p
in

g

O
v
er

la
p

p
in

g

U
n

iv
er

sa
l

S
ta

ti
st

ic
a
l

L
in

ea
r

C
o
m

p
le

x

S
er

ia
l

1

S
er

ia
l

2

A
p

p
ro

x
im

a
te

E
n
tr

o
p
y

C
u

m
m

u
la

ti
v
e

F
o
rw

a
rd

C
u

m
m

u
la

ti
v
e

B
a
ck

w
o
rd

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
-v

a
lu

e

Without Interference

With Interference

Figure 3: Bar graph representation for the statistical test, comparing the p-values
with and without external interference.

2. Frequency Test within a Block: determine whether the frequency of ones in
an M -bit block is approximately M/2.

3. The Runs Test: determine whether the number of runs of ones and zeros of
various lengths is as expected for a random sequence.

4. Tests for the Longest-Run-of-Ones in a Block: determine whether the length
of the longest run of ones within the tested sequence is consistent with the
length of the longest run of ones that would be expected in a random se-
quence.

5. The Binary Matrix Rank test: check for linear dependence among fixed
length substrings of the original sequence.

6. The Discrete Fourier Transform (Spectral) Test: detect periodic features.

7. The Non-overlapping Template Matching Test: detect generators that pro-
duce too many occurrences of a given non-periodic (aperiodic) pattern.

8. The Overlapping Template Matching Test: similar to the previous test but
assumes that non-periodic patterns can overlap.

9. Maurer’s ”Universal Statistical” Test: detect whether or not the sequence
can be significantly compressed without loss of information.

10. The Linear Complexity Test: determine whether or not the sequence is com-
plex enough to be considered random.
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11. The Serial Test: determine whether the number of occurrences of the 2m

m-bit overlapping patterns is approximately the same as would be expected
for a random sequence.

12. The Approximate Entropy Test: compare the frequency of overlapping blocks
of two consecutive/adjacent lengths, m and m+1 against the expected result
for a random sequence.

13. The Cumulative Sums (Cusums) Test: determine whether the cumulative
sum of the partial sequences occurring in the tested sequence is too large
or too small relative to the expected behavior of that cumulative sum for
random sequences.

14. The Random Excursions Test: determine if the number of visits to a partic-
ular state within a cycle deviates from what one would expect for a random
sequence.

15. The Random Excursions Variant Test: detect deviations from the expected
number of visits to various states in the random walk.

Confidence Interval (σ)
Statistical Tests Without Interference With Interference
Frequency Monobit 4.88 7.84
Freq Test within Block 6.44 9.45
Runs 3.90 2.63
Longest run 7.69 5.66
Rank 4.50 6.78
DFT 3.48 6.45
Non-overlapping templates 4.82 8.32
Overlapping templates 6.32 4.52
Universal 8.66 4.40
Linear Complexity 6.02 7.62
Serial 8.18 4.92
Approximate Entropy 4.17 7.31
Cumulative Sums 5.43 6.94
Random Excursion 6.09 6.25
Random Excursion Variant 6.34 5.38

Table 1: Results of the statistical randomness test in terms of the confidence
interval for the data generated with and without external photon source.

The results for the first 14 tests are shown above in Fig. 3 with each test passing
the benchmark with a good margin for both with and without external interfer-
ence. We can see that for a majority of the tests, the presence of the external
source has increased the p-values instead of reducing them. Only the Runs, Over-
lapping, Universal Statistical, and Serial tests show a reduction in p-values under
the interference.

The random excursions test was run for 8 different states and although all of them
verify randomness, the p-values for 5 states are reduced when external interference
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Figure 4: Bar graph representation for the random excursions test, comparing the
p-values with and without external interference.

is applied as shown in Fig. 4. The random excursions variant test is a variation of
the above tests and incorporates other states. Among the 18 tests, only three had
increased p-values with interference as shown in Fig. 5.

An alternative representation of the statistical test results is given in Table. 1, in
terms of the confidence intervals. For tests with multiple variations for example
Serial, Cusums and Random Excursion means results are quoted. Hence we can
conclude that the random excursion tests show an overall reduction in the p-values
post interference.

6 Discussion

The results demonstrate that the QRNG we have constructed produced data with a
high measure of randomness. They also show that the time and order of generation
of this data do not adversely affect the random nature and that the laboratory
conditions have limited dependence on our results. Hence the generation scheme
and data generated is protected from external interference.

A significant advantage of this method is that since the photons counted belong to
a down converted classical beam and the time interval is set by the communication
rate, we can increase the rate of string generation by appending another similar
setup or reduce the time interval for counting detection events.
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Figure 5: Bar graph representation for the random excursions variant test, com-
paring the p-values with and without external interference.
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