
Project 3 Final Report – Week 4 

Coupled Oscillators 

In this experiment, we will investigate the oscillation of two coupled, identical masses. Springs will be 

used for coupling; two masses will be coupled with a spring in between them and two springs on each 

side to connect them to anchor points. The springs on the side will have the same spring constant, 

meanwhile the center spring will have a different spring constant. 

Theory 

For a linear oscillator, the of a mass m and a spring attached to a fix position the equation which relates 

to its simple harmonic motion is 

x = A · cos (ωot + δ), where ωo =√
𝑘

𝑚
 

Now for a coupled oscillating system, the equations are a bit more complex.  

Firstly using, –kx = ma, we get the following. 

Where k is the spring constant of the side springs and k’ is the spring constant of the center spring. m1 

and m2 are the masses of the oscillators and x1 and x2 are their relative displacements from their mean 

position. 

 

 

For the setup shown, we get 2 resonance frequencies for this system, ω1 and ω2.  

ω1 =√
𝑘

𝑚
  , ω2=√

𝑘+2𝑘′

𝑚
 

The general solution of the equation of motion is the superposition of the normal modes. Normal modes 

being the state of an oscillating system where both masses oscillate with the same frequency. 

 

 

 

Figure 1: A coupled oscillator system 



Where four constants A1, A2, δ1 and δ2 are set by initial conditions, outlining characteristics of Simple 

Harmonic Motion. 

Let us consider a few special cases of oscillation.   

Case 1: 

Displacing the masses by the same amount and in the same direction (x1 = x2), results in no extension of 

the spring k’. Therefore, the oscillation is completely dependent on the extension/compression of the 

springs with spring constant k. Therefore, k’ is not present in  

ω1 =√
𝑘

𝑚
   

Case 2: 

Displacing the masses by the same amount but in the different directions (x1 = - x2), the middle spring k’ is 

extended/compressed. Therefore, the oscillation is dependent on the extension/compression of both k 

and k’. Therefore, both k and k’ are present in 

ω2=√
𝑘+2𝑘′

𝑚
 

Case 3: 

Releasing one mass from rest and the other from a non-zero displacement results in an interesting 

phenomenon, encompassing both resonance frequencies, ω1 and ω2. The displacements from the mean 

position of both oscillators are given by.  

 

This is characteristic of Beat Phenomenon. Beats are caused by the interference between two waves of 

the same amplitude, travelling with the same wave speed, but having slightly different 

frequencies, f1 and f2. In this case ω1 and ω2. In this case, the energy of one oscillator is converted into 

the energy of the other. This results in the Oscillators moving with a common “beat frequency”.  

Figure 2: Sample MATLAB plots that show the Beat Phenomenon 



This MATLAB plot with arbitrary values of m, C, k and k’, helps us better visualize this phenomenon. The 

maximum of the displacements of the graph is equal to the magnitude of amplitude C. The sum of the 

displacements of both graphs at a point will always be equal to C. This can be seen in the equations 

where the displacement of one graph is dependent on Cosine and the other is dependent on Sine. 

Experimental Analysis 

To test our Theory, let’s examine the oscillation of two coupled gliders on a frictionless surface, in this 

case an air rail. 

Oscillator Design  

We designed two identical 3D-printed masses (oscillators) that were separately glued atop 2 freely 

moving platforms. For this purpose, we used Fusion 360 to design 2 laser cut slabs with dimensions 

12cm x 5.55 cm and 12cm x 6cm. with width 0.45cm. These will be glued together at their ends 

perpendicular to each other to form a right angle in between them. These will act as our gliders. 

We used fusion 360 to design our masses as well. The following are the resulting models after taking into 

account the center of mass of the oscillator and the gliding platform which must be in line with the springs 

and the anchor point.  

The measured masses of our mass-glider system were 98.8 and 99.0 g. (approximately similar) (we will 

use the average of 98.9 g in all later calculations) 

Spring Design: 

Considerations: 

• Springs had to be of a sufficient length so they can stretch comfortably between their hooking 

points without deforming.  

• The springs should not be too long and should not touch the Air rail at any point. 

• The spring constant should be sufficient enough to allow for the oscillations of the masses. 

• For this experiment, we have assumed the 2 springs connected to the anchor points to have the 

same spring constant, and they will be designed as such. 

• The middle spring will have a different k value (k’) 

 

Image 1: 3D Model in Fusion 360 
Image 2: Final mass-glider system 



Designing the springs and calculating the spring constant: 

The unstretched lengths for the side springs (5.0 cm) were chosen to be the same so that their spring 

constant is approximately similar. (1.75 N/m and 1.77 N/m) (we will use the Average value k = 1.76 N/m) 

The spring constant for the center spring has been chosen to be different than the side springs. Since it 

was made from the same material, it’s length (8.0cm) was increased to decrease the spring constant     

(k’ = 1.04 N/m) 

Spring constant was calculated using Hooke’s law (F = kx) by hooking the spring onto a stand, attaching 

known, measured, varying masses to its end, measuring the new lengths, comparing it with the original 

lengths and finding the extension. The data could then be imported into any plotting software, with plots of 

F (convert mass to Newtons) against x (extension). The gradient would then just be  

m = 
 𝐹

𝑥
 = k 

 

Figure 3: Sample plot in MATLAB which shows how data points may be plotted and gradient (k) may be found using a line of 
best fit 

Final Experimental Design and Calculations: 

We mounted the masses and springs in their respective positions on the Air Rail. 

Image 3: The Air rail powered by a blower which makes the rail nearly frictionless 



 

Data collection and Final calculations 

In order to examine each case of oscillation which we outlined previously; we used the method of timing 

the oscillations for a fixed number of oscillations. 

Before taking each measurement for time, we turn on the blower and ensure the masses are at their 

mean position and at rest. Then we displace the masses manually based on the Case being investigated. 

We used meter rules to ensure the magnitude of the displacement is the same. The same person holds 

and lets go of the oscillators. A different person mans the stopwatch throughout. We take the time for 10 

oscillations and find the time period T by tavg/10. Repeat the experiment 3 times for each case and find the 

average T.  

Case 1  

We displace both oscillators by the same distance in the same direction.  

t1 = 15.7 ± 0.4 s, t2 = 15.8 ± 0.4 s, t3 = 15.7 ± 0.4 s, tavg = 15.7 ± 0.4 s, T = 1.57 ± 0.05 s  

ω1 = 2π / T 

We find the experimental ω1 = 4.0 ± 0.1 s-1 

The theoretical value ω1 = 4.2 s-1 

Case 2  

We displace both oscillators by the same distance in different directions. 

t1 = 10.4 ± 0.40 s, t2 = 10.4 ± 0.40 s, t3 = 10.4 ± 0.40 s, tavg = 10.4 ± 0.40 s, T = 1.04 ± 0.04 s 

Image 4: Rough schematic of the design of the assembled experiment apparatus 

Image 5: The final assembled apparatus 



ω2 = 2π / T 

We find the experimental ω2 = 6.0± 0.2 s-1 

The theoretical value ω2 = 6.2 s-1 

Case 3  

We displace one oscillator while the other remains at the rest mean position. 

t1 = 29.5 ± 0.4 s, t2 = 29.7 ± 0.4 s, t3 = 29.6 ± 0.4 s, tavg = 29.6 ± 0.4 s, T = 2.96 ± 0.04s 

Ω = 2π / T 

We find the experimental Ω  = 2.12  ± 0.03 s-1  

The theoretical value Ω = ω2 - ω1  = 2.02s-1 

Reasons for experimental and theoretical variations: 

• Slight deformation of springs when mounting them onto masses. 

• Inaccuracies in measuring the displacements in Case 1 and 2. 

• The track is not completely frictionless.  

• The gliders do not have completely smooth surfaces 

• Air rail has ridges at connection points which may hinder motion 

• Difficulty in measuring T for Case 3.  

• Air resistance causes damping. 

Method to more accurately measure trajectories of the coupled oscillators 

Instead of timing the oscillations, we may measure the values of the displacements of each oscillator. 

Doing this manually is difficult, therefore we use displacement sensors (PhysDisp). We mounted the 

sensors at fixed positions near the left and right anchor points. 

We used sheets of paper to act as our position markers, attaching them to our oscillating masses. The 

configuration was setup as shown 

Image 6: Modified Setup used to measure Displacements 

https://www.bing.com/ck/a?!&&p=183a7e88b83d1dd4JmltdHM9MTcwMTkwNzIwMCZpZ3VpZD0yZWQ3ZDZiZi1mMDhlLTY4M2YtM2FiZS1jNWMwZjQ4ZTY2ZGYmaW5zaWQ9NjAzMw&ptn=3&ver=2&hsh=3&fclid=2ed7d6bf-f08e-683f-3abe-c5c0f48e66df&psq=omega+symbl&u=a1aHR0cHM6Ly93d3cuZ3JlZWtzeW1ib2xzLm5ldC9vbWVnYS1zeW1ib2w&ntb=1
https://www.bing.com/ck/a?!&&p=183a7e88b83d1dd4JmltdHM9MTcwMTkwNzIwMCZpZ3VpZD0yZWQ3ZDZiZi1mMDhlLTY4M2YtM2FiZS1jNWMwZjQ4ZTY2ZGYmaW5zaWQ9NjAzMw&ptn=3&ver=2&hsh=3&fclid=2ed7d6bf-f08e-683f-3abe-c5c0f48e66df&psq=omega+symbl&u=a1aHR0cHM6Ly93d3cuZ3JlZWtzeW1ib2xzLm5ldC9vbWVnYS1zeW1ib2w&ntb=1
https://www.bing.com/ck/a?!&&p=183a7e88b83d1dd4JmltdHM9MTcwMTkwNzIwMCZpZ3VpZD0yZWQ3ZDZiZi1mMDhlLTY4M2YtM2FiZS1jNWMwZjQ4ZTY2ZGYmaW5zaWQ9NjAzMw&ptn=3&ver=2&hsh=3&fclid=2ed7d6bf-f08e-683f-3abe-c5c0f48e66df&psq=omega+symbl&u=a1aHR0cHM6Ly93d3cuZ3JlZWtzeW1ib2xzLm5ldC9vbWVnYS1zeW1ib2w&ntb=1


 

The following are the plots made by the PhysLogger software using input from the PhysDisp. 

Figure 5: Graph for Case 2 

 

 

Figure 4: Graph for Case 1 



The oscillations slow down and the oscillators eventually come to a stop. This is due to the heightened 

effect of the damping caused by Air resistance because of the attached sheets of paper and their 

relatively large surface area. 

Let’s use a simulation in Web Vpython to see what the effect would be like without Air 

resistance/Damping.  

 

Figure 6: Graph for Case 3 

Figure 7: Simulation for Case 1 Figure 8: Simulation for Case 2 Figure 9: Simulation for Case 3 



 

 

Contributions: 

Abdul Nafae Imran: 3D design and Collection of Data 

Abdul Moeez Khurshid: Setup of Apparatus and Collection of Data 

Muneeb Ul Haq: Uncertainties and Measurements 

Zaryab Gohar: Reports, finding spring constants and simulation 

 

 

 

Image 7: Vpython code used for the simulation 


