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Preface

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida
mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique
senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras
viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices.
Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices
bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis
eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi
auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies
et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet
magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis.
Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis
natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque
cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat
at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec
nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum
massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec,
leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit
a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat
lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna.
Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus
eu enim. Vestibulum pellentesque felis eu massa.
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Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus
tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam
facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet,
enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus
eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus
quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a
faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.
Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis
lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in
sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu
lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo
lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula
sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla
egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus
vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet,
laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit,
rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit
amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque
vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis
elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor
odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est,
nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio.
Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan
risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit.
Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed,
volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac
sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies
tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum
vel, eleifend faucibus, vehicula eu, lacus.

Dr Muhammad Sabieh Anwar
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Chapter 1

An atomistic view of energy

We begin our discussion by looking at a fundamental concept in physics.
This is energy. Energy and mass are the two tenets of universal existence.
Since this is a course on modern physics and this necessarily deals with
bits, atoms, photons or molecules, we would like to take energy to the
atomistic realm. This chapter discusses the atomistic view of energy and
through it, introduces how energy is distributed with atomic systems, how
it changes and how these changes are measured in spectroscopic techniques.
Furthermore, we will also motivate why energy is quantized. This may be
our first rendezvous with quantum physics.

Before we proceed to an atomic description of energy, let’s proceed with the
energetics of some mechanical systems and how they are modeled.

1.1 What is a mathematical model?

In physics, systems are modeled mathematically. A model is an equation
that describes the behavior of an object.

For instance, consider a second order differential equation of the form

m
d2x

dt2
+ β

dx

dt
+ kx = 0 (1.1)

where m, β and k are constants, x = x(t) is the position of some ”object”.
This equation models a large variety of physical processes. A few examples
are in order.
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1. An object of mass m is attached to a string and placed on a frictionless
floor. The other end of the spring is connected to a wall (Fig. (1.1
(a))). This physical system, almost present in every physics laboratory
also abodes in our daily lives. It is modeled through Eq. (1.1) which
predicts the behavior of the system.

2. The behavior of a resistor R connected with an inductor, a capacitor
C, a switch and a battery of voltage V in a circuit can also be explained
by Eq. (1.1). This may not be entirely evident but let me state the
equivalent that is normally found in many books:

L
d2i

dt2
+R

di

dt
+
i

c
= 0 (1.2)

The structures of the equations (1.1) and (1.2) are the same. If one
were to make the substitution x ↔ q, L ↔ m, β ↔ R and k ↔ 1

C
,

the equations are in fact identical. Two disparate physical systems are
described by a model. That’s the elegance and universality of models.
They are generic. Let’s look at a third example.

3. Consider a photon trapped inside a cavity made by two perfectly
reflecting mirrors. The field of the photons comprises of electric and
magnetic fields that are perpendicular to each other and change sinusoidaly
with time.

E

B

t

m

Figure 1.1: Examples of mathematical models
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1.2 Harmonic oscillator

The harmonic oscillator is one of the most famous
models in physics. Many the physical systems, such
as the examples from the previous section (mass
attached to spring, RLC circuits, and trapped light)
can be modeled through the harmonic oscillator.

Revisiting a mass attached to a spring. Let’s probe
this a bit further. It will help us forage into
the energetics of atomic systems where defining
model is described in Eq. (1.1). This system is
described by Hooke’s law F = −kx, where k is
the proportionality constant (spring constant) and
x is the displacement from the equilibrium position.
This law states that the larger the force, the larger
will be the extension or compression1.

If a spring is stretched, it will store some elastic
energy but will remain at rest. Therefore, the
spring does not possess kinetic energy, rather it only has elastic potential
energy stored in it. Similarly, if the spring is compressed, it is still at rest and
therefore possesses only potential energy. The potential energy is denoted
by U .

(a)

(b)

(c)

Figure 1.2: Spring compression, relaxation and extension

1Or, as Robert Hooke himself stated, ut tensio, sic vis (”as the extension, so the
force”)
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The potential energy U and the resting force F are related as

F = −dU
dx

(1.3)

Therefore, the potential energy is found by integration.

U = −
∫
Fdx

= −(−k)
∫
xdx

U = k
x2

2
+ C (1.4)

where C is an integration constant. This is the relationship between the
potential energy stored in the spring-mass system and the displacement x.

Let’s plot U as a function of x. At x = 0, U = 0 which indicates the normal
equilibrium state of the spring. If we stretch or compress the spring, the
potential energy increases.

U(x)

x
O

U(x)

x
O

A L

(a)

(b)

Figure 1.3: U-x plot for an ideal and non ideal harmonic oscillator
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Fig. (1.3 (a)) is the potential energy versus position curve of an ideal
harmonic oscillator. This curve is iconic and with modifications, form the
basis of energy combinations inside atoms and in ??? of atoms too. In reality,
however, no oscillator is ideal. For example, if we extend or compress the
spring and remove the force, it will return to its original state. But if we
keep on increasing the force, there will be a point from where the spring
will not be able to restore its normal state; it will be permanently deformed
and will no longer act as a harmonic oscillator. Thus, there is a limit to the
harmonic oscillator beyond which it will deviate from ideality.

Fig. (1.3 (b)) shows that the real curve is very close to ideal when x is
small. Once x becomes large, the curve deviates from ideality. So, in the
small region AOL, we have a good approximation of the ideal harmonic
oscillator when the displacement is small.

Potential and Kinetic Energy with respect to time

The mass-spring system in its idealized form is a harmonic oscillator. What
if it is displaced from equilibrium and set free? It will ”oscillate”.

Let’s now plot the potential energy U(t) against time t as this undulating
motion progresses. The potential energy oscillates between a minimum value
0 (at equilibrium x = 0) and a maximum value (at extreme positions x =
±x0). Of course, it cannot have a negative value.

The potential energy is not the only kind of energy possessed by the harmonic
oscillator. By virtue of its motion, it also has some speed v yielding a kinetic
energy.

K =
1

2
mv2

=
1

2
m(

dx

dt
)2 (1.5)

The kinetic energy also oscillates between the minimum (at x = +x0) and
the maxima (at x = 0). When the potential energy is zero (at equilibrium
position), the kinetic energy is maximum. When we reach a turning point
(the maximum compression or extension), the mass comes to rest momentarily
and becomes zero. Therefore, a graph similar to that of the potential energy
can be drawn for the kinetic energy of the oscillator.

The total energy E = U +K is conserved for the oscillator and we can draw
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Maximum
compression

Maximum
extension

Mean
position

Total Energy

Potential Energy

Kinetic Energy

U(t)

t

t

(a)

(b)

Figure 1.4: U-t plot and total energy for a harmonic oscillator

a straight line corresponding to the constant E. There is a never-ending
interconversion between K and U . We can prove this mathematically as
well.

A solution of Eq. (1.1) is

x(t) = x0 cosωt

Hence, U from Eq. (1.4) becomes

U =
1

2
kx2

=
1

2
k(x0 cosωt)

2

=
1

2
kx20 cos

2 ωt

as drawn in Fig. (1.5).
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U(x)

Total Energy

Kinetic Energy

Potential Energy

x
O

Figure 1.5: Plot of total energy

Similarly, K is

K =
1

2
mv2

=
1

2
m

(
dx

dt

)2

=
1

2
m(ωx0 sinωt)

2

=
1

2
mω2x20 sin

2 ωt

=
1

2
kx20 sin

2 ωt

Adding these two kinds of energies

E =K + U

=
1

2
kx20(sin

2 ωt+ cos2 ωt)

=
1

2
kx20

=constant

This shows that the higher the amplitude of oscillation, higher will be the
energy of motion. The energy breaks up like a see-saw between its kinetic
and potential forms. This is characteristic of any harmonic oscillator.
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1.2.1 Interaction between atoms

We go straight from a mass-spring system to two neutral atoms brought in
close proximity to each other. This is quite a cataclysmic shift, but as I
will show, this physical situation, under certain simplifications, resembles a
harmonic oscillator, at least as far as the model is concerned. When two
atoms are placed far apart , they will not interact with each other and will
behave as two isolated, independent and identical atoms. Their potential
energy of the system can be counted as zero, which is a datum energy.

Figure 1.6: Two atoms far apart and close

As we move one atom closer to atom the other, its nucleus will attract the
electron cloud of the other. As a result, the spherical electron cloud will
slightly change its shape and become elongated. This charge redistribution
is shown in Fig. (1.6 (b)) through a highly exaggerated form. Each atom
becomes a temporary (induced) dipole and will result in nudging the atoms
even closer. Therefore, if we bring atoms closer together, they take advantage
and use innate electrostatic forces to facilitate the mutual attraction.

Let’s plot the potential energy of the system U versus the distance r between
atoms (Fig. (1.7)). Since the atoms are extended objects, we can consider
r to be the distance between the nuclei.

At point r1, the atoms are very far apart (r is very large), so the potential
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r0
r+0 r-0 r1

U
(r
)

Repulsion
preferred

Attraction
preferred

∞

Figure 1.7: Morse potential

energy is zero. As they come closer, electrostatic attraction develops between
them and the electron clouds and the atoms would like to come closer.
Hence, the potential energy decreases until, at r = r0, U reaches a minimum.
If we were to squish the atoms closer together, both nuclei start to repel each
other. Now the only way to further push them together is by pumping in
more external energy. In other words, U takes a twist and blows up.

Even though it doesn’t look so, this pair of atoms is quite similar to the
harmonic oscillator. However, there are some notable differences. First,
we observe regions of preferred attraction and preferred repulsion. We also
found the U curve of the harmonic oscillator to be symmetric about x =
x0 (Fig. (1.7)). However, for the atoms, the curve is not symmetric; it
tapers off at large r and goes to infinity at small r. It approximates the
harmonic oscillator only in the region (r − r0) < ε where r is really close to
r0. It is within this narrow region that the inter-atomic interaction can be
appreciated by a harmonic oscillator. Outside the ???, the system is ???.

This graphical description of P.E can also be written in form of an
approximate equation, called Morse potential1.
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U(r) = E0

(
1− e−α(r−r0)

)2

−E0 (1.6)

where α is some positive constant. By changing its value, the width of
depression in the P.E curve changes. However, the critical points remain
unchanged.

α = 0.2 α = 0.3

α = 0.4 α = 0.7

0U
(r

)

U
(r

)
U

(r
)

U
(r

)

r r

rr

0

0 0

If r approaches infinity, the potential energy becomes

U(r) = E0(1− 0)− E0 = 0

Whereas at r = r0, the potential energy is

U(r) = E0(1− 1)− E0 = −E0

Sometimes r0 is called the bond length and E0 is called the bond energy.
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Thus, the description of the behavior of harmonic oscillator is automatically
carried over to the description of interaction between atoms, albeit in a small
region.

1.2.2 Einstein Solid

An ideal solid has numerous atomic forms enmeshed in an intricate network
called a crystal structure. A simple network is the Einstein solid which
is a mesh of harmonic oscillators. For example, a polonium crystal. I
use this rather strange example of polonium because it is a simple cubic
crystal structure. Most other elemental solids have slightly more complicated
structures (body-centered or face-centered cubic). can be modeled on a 3D
network of iron atoms connected by springs. Each atom of the crystal is
’attached’ to its neighboring atoms through these springs. These spring-like
interactions are described by Morse-like potentials, which are in turn
approximated by a harmonic oscillator. The polonium crystal is therefore a
giant three-dimensional harmonic oscillator.

Figure 1.8: 3D polonium crystal

Thus, we can view any solid as a large network of harmonic oscillators,
in turn allowing us to apply everything we have learned about harmonic
oscillator to solids. In fact, this is how Einstein originally thought about
the heat capacities of solids: modeling solids as a network of harmonic
oscillators. We have now introduced the model called the harmonic oscillator
and noticed how it applies to real solids. We can introduce the concept of
the total energy of a solid.

1Named after the physicist Philip P. Morse
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1.3 The Internal energy of atomic systems

1.3.1 Diatomic Molecules

The atomic pair of section 1.1.1 can exist independently. It is then called
a diatomic molecule. It can be compressed or extended configurations(Fig.
1.9). The molecule, on a whole can also be moving with a speed v. Let’s
find out the molecular energies.

(a)

(b)

(c)

v

v

v

Figure 1.9: Diatomic molecule moving with velocity v

The most straightforward is the kinetic energy of the molecule as a whole
totally irrespective of the internal compressional configuration. This energy
is

KCM =
1

2
Mv2 (1.7)

where v is the velocity with which the center of mass (M) of the molecule is
moving. Therefore, this kinetic energy is associated with the center of mass
of molecule. All three cases shown in Fig (1.9) have the same center of mass
and kinetic energy.

However, the molecule will also have some additional energy present inside
the molecule. This energy is called internal energy and can be denoted by

12



U or Eint. Cases (b) and (c) will have higher internal energy Eint than (a),
even though all three have the same KCM. Hence, the total energy of each
of these molecules is given by

E = KCM + Eint (1.8)

For the diatomic molecule that is free to oscillate just like any ideal harmonic
oscillator, Eint =

1
2
kx2+ 1

2
mu2 as described in Eq (1.4), allowing us to write

E = KCM + 1
2
kx2 + 1

2
mu2 where 1

2
mu2 is the effective kinetic energy inside

the molecule. The variable m and u are effective masses and speeds. Note
that x is measured from the equilibrium position relative to the CM. So x
is internal to the body of the molecule. The body of the molecule may itself
be moving with a velocity v which impacts KCM to the overall energy.

”Internal energy of an object is the energy that is measured inside the frame
of reference of that object (atom, molecule, etc.)”.

For example,

(a)

(b)

(c)

Translational

Vibrational

Rotational

Figure 1.10: Translational, rotational and vibrational motion of a diatomic
molecule
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Components of Internal Energy and degrees of freedom

The example of the diatomic molecule highlights that the molecule is free
to translate and is also free to oscillate. In physics parlance, we say that
the molecule has two degrees of freedom, translational and vibrational. The
latter is an internal degree of freedom.

Let’s have a look at the different components of internal energy.

� A translating molecule has translational energy Etrans associated with
it which adds to Eint of the system.

� The energy associated due to the vibratory motion of oscillators, like
the compression and extension of a spring, is called vibrational energy
Evib.

� If we take the axis of rotation at the center, the molecule may also
rotate about this axis of rotation. Hence, there is a pure kinetic energy
associated with this rotation, called rotational kinetic energy Erot.

There could also be numerous other exotic forms of energy. For example,
sunlight falls on chlorophyll and energy is absorbed inside the ATP
molecules. There is no kinetic, rotational and vibrational energy, yet
energy is still stored. This chemical energy Echem also contributes to
internal energy. In fact, Eint can also comprise other energies such as
magnetic energy, electrostatic energy etc.

Mathematically, the internal energy budget is accounted by all these various
forces.

Eint = Etrans + Evib + Erot + Echem + Emag + Eelect + · · · (1.9)

Finally, note that Evib is both kinetic and potential while Etrans and Erot

are purely kinetic. We now have a fair idea how the energy of a system
confining atoms, or solids with some internal structure, can be computed.
Identify the various degrees of freedom and contemplate whether they have
kinetic or potential energy components.

1.4 Thermal Energy

The components of internal energy can be of two kinds, ordered and disordered.
The disordered component is called thermal energy.

14



Eint = Ethermal + Echem + Emag + Eelect

where

Ethermal = Etrans + Evib + Erot (1.10)

This requires a bit of explanation. In an Einstein solid, as the equilibrium
positions of the atoms are fixed inside the crystal structure, but the atoms
undergo vibrational motion. If we had a solid in which all of the springs,
or bonds, stretched and compressed at the same time in perfect unison,
this synchronous motion would have qualified as ordered motion. In reality,
these vibrations are completely out of sync (Fig. 1.11). Some of these
springs undergo extension while others undergo compression at the same
time. In ??? ???, the compressions and extensions are out of phase. This
random vibrational motion contributes to the thermal energy of the system.
The random jostling goes up with the temperature. Similarly, vibrational
and translational motion are also degrees of freedom to which no particular
order or directivity can be associated. They all contribute to thermal energy.
Sometimes, ordered degrees of freedom are called ’waves’ or ’modes’ in
physics terminology.

Disordered Ordered

Figure 1.11: Einstein solids undergoing disordered and ordered motion

1.4.1 Measuring thermal energy

Suppose we have a volume of solid comprising 6 × 1023 atoms. This is one
mole of a monoatomic solid with each atom connected to six neighboring
atoms. The number of distinct harmonic oscillators in the solid is N =
3 × 1023. This means that to calculate the thermal energy of the solid, we

15



will have to find 3× 1023 values of energy. Furthermore, each energy has a
kinetic and potential energy component.

A puritanist theorist would write the energy of each harmonic oscillator
inside this solid and average over all these energies to obtain the thermal
energy.

∑N
i=1Ei

N
= Ethermal. (1.11)

This task is evidently daunting and close to impossible. Fortunately, we can
agree upon some definitions and directly measure the average thermal energy
by using an appropriate instrument. This instrument is called a thermometer
and the average thermal energy is called the temperature. One of the most
well-known thermometers is of the mercury kind.

Suppose we have a solid, in which a hole is drilled and a glass bulb thermometer
containing mercury is placed into it.

Insulation

Q

Figure 1.12: A mercury thermometer is immersed into a hole drilled into an
insulated solid

This solid is thermally insulated from its surroundings. The mercury level
will either rise or drop depending on the temperature of the solid. The
atoms inside the solid are undergoing random motion. They have thermal
energy and as they come in contact with the glass thermometer or with the
air molecules in the intervening air,they will transfer their energy to the
mercury’s or air’s atoms. As a result, there is energy transfer from the solid
to the mercury. This is denoted as Q in Fig (1.12).
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If one were to taker a closer look at the energy transfer process, in this
transfer of energy, there is work done on air molecules by the solid atoms
but this work is done only on the microscopic scale. There is no evidence of
macroscopic work. This energy transfer Q entails microscopic work, but no
macroscopic work. Eventually, there is a transfer of thermal energy to the
mercury atoms and the mercury atoms expands.

1.4.2 Explaining thermal expansion

Let’s look into the potential-energy curve to understand the expansion of
mercury. The harmonic oscillator model and its anharmonic upgrade. The
Morse Potential curve comes in real handy here.
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U
(r
)

r

E3

E2

E1

r2 r3r1r2r3
' ' '

Increasing r

r1 r2 r30 0 0

Figure 1.13: Morse potential for mercury

Let’s follow the Morse potential curve for mercury atoms. Here r0 is the
equilibrium distance between the two mercury atoms. As the mercury atoms
are brought closer to each other, both attractive and repulsive interactions
come into play. At a particular value of thermal energy, we can represent the
total energy E by a straight line, before the thermometer comes in contact
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with solid. Consider three energies, E1, E2 and E3 where E1 < E2 < E3.
For E1, the U curve intersects this straight line at r = r1 and r = r′1,
therefore the range of r′s associated this straight line of E1 is (r1, r

′
1). Since

everything is in equilibrium, the average distance between the two atoms r10
must be at the center of r1 and r′1. As the thermometer comes in contact
with the solid, the thermal energy of the mercury column increases. Thus,
the total energy must increase. Say it goes up to E2. With the increase in
the total energy E, the average distance between the two atoms increases,
i.e. if we interpolate the points r2 and r′2 on distance curve, the average of
these points has moved to the right r′0, which means the average distance
between the atoms has increased. Viola! This is thermal expansion. If
the solid is at a higher temperature, more thermal energy is transferred
to the mercury atoms and we will get another energy line, E3, further up.
The average distance between the two atoms also increases further and the
volume of mercury will increase as a consequence. Therefore, as the thermal
energy of mercury atoms goes up, volume expansion takes place. It is our
fundamental harmonic oscillator model and its variants that allows one to
adequately explain thermal energy expansion.

1.4.3 Basic meaning of temperature

The height of the mercury column inside the glass capillary indicates the
thermal energy inside the mercury column and the glass walls of thermometer.
This, in turn, indicates the thermal energy of the air molecules, which
bespeaks the thermal energy of the solid itself.

Note that if this device, called a thermometer, has to work, there has to be
good contact between the solid and mercury, and mercury must have smaller
mass as compared to the solid so that we can calibrate the thermometer
scale in terms of thermal energy. Thermal energy has units of joule (J)
but conventionally, we calibrate thermometers in terms of temperature.
Hence, there is one to one correspondence between thermal energy and the
temperature. It means temperature is a measure of the thermal energy of
the system. The thermal energy is the disordered part of the internal energy.

1.4.4 Voltage and thermal energy

There are a host of clever ways to measure thermal energy and temperature.
Consider a solid with a grove in it (Fig. (1.14)). A battery and an ammeter
are connected in series with two resistors R1 and R2. The resistor R1 is
studded into the solid with which it makes thermal contact. A voltmeter
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is used to measure the voltage across R. The passage of current heats R1

which increases the thermal energy of the solid, but as the thermal energy
of atoms inside the solid changes, the resistance R1 changes accordingly.
This change in resistance will be registered as a change in voltage across R1

and will be measured by the voltmeter. Hence, this voltage is a measure of
the thermal energy inside the solid. This scheme is an example of thermal
energy measurement using an electric circuit.

A

V

R

R

1

2
R2

Figure 1.14: A device to measure thermal energy

In the previous examples, we’ve seen how thermal energy transfers from one
solid to another, such as from the resistor to the surrounding block. The
transit of thermal energy is accomplished by microscopic work.

1.4.5 Flow of thermal energy

Let’s take two solids of unequal size lying separately from one another. The
larger is hotter and the smaller is colder. We establish contact between the
two atoms and place the complete system inside thermal insulation.

As the solids are in contact with each other, There will be a flow of energy
from the hot object to the cold one.The atoms in the hot object undergo
random motion and transfer a part of their energy to the atoms in the cold
object. This energy flow involves microscopic work only and no macroscopic
work is involved because the center of mass of the cold object does not move.
This energy flow is generally denoted by Q and can be regarded as energy
in transit. The process is also called heat transfer.

Note that there is no such thing as heat inside an object. It is the thermal
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Figure 1.15: Flow of heat from a hot body to a cold body

energy which is present inside an object due to the disordered motion of
atoms and which can be increased by various means such as transfer of
energy.

1.5 The First Law of Thermodynamics

So far we have talked about the energy flowing into objects through microscopic
work thus raising the internal energy but the increase in internal energy does
not only depend on the flow of heat. There are other means too. We open
up the discussion by a simple example.

Consider a reservoir of water such as the Mangla Lake. River Jehlum flows
into Mangla Lake. Consequently, the volume of water in the lake increases.
Pressures gradients cause the river to flow into the reservoir. The flowing
stream of water can do mechanical work. This work is of the microscopic
kind.

However, it is quite possible to stop the flow of river into the lake by using
floodgates. In this case, there is no macroscopic work done on the lake.
Even in this case, the volume of water may not remain preserved. This
is because of condensation and evaporation – evaporation will decrease the
volume of water in the reservoir while condensation will increase it. These
local phenomena can change the volume. The processes of evaporation and
condensation entail microscopic work done between the water and the air
molecules and are accompanied by heat transfer. The volume of water in
the lake roughly represents its internal energy. This energy can increase
or decrease depending upon whether one does macroscopic or microscopic
work. Macroscopic work is generally denoted by W and microscopic work
by Q. Earlier we have associated Q with energy transfer as well. Hence, we
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Figure 1.16: Jhelum river flowing into Mangla reservoir

can say that the change in Eint is due to multiple components.

∆Eint = Q+W + other forms of energy transfer (1.12)

This statement is called the first law of thermodynamics and is merely a
manifestation of energy conservation. This principle is a cornerstone concept
and is like a tenet of nature. The ”other forms of energy” in Eq. (1.12)
encompasses electrical, chemical etc. However, looking at these processes at
the atomic scale, they are all of the microscopic or macroscopic kind.

Suppose we have an electric heater that is drawing 1 kW power. The heater
is simply a coil of resistive wire like nichrome connected to a power supply.
Since the nichrome wire has high resistance, the mobile electrons and atoms
frequently collide with each other. As a result, the vibratory motion of
the atoms inside the nichrome wire increases and consequently the internal
energy of the wire also increases.

Suppose that we have reached a heater is operating such that the temperature
T remains constant. Furthermore, nothing moves or expands or contracts:
there is no macroscopic work involved. Since the wire has a constant temperature,
there will be no change in Eint.

∆Eint = 0,

In a time period of 1 second, involving the first law of thermodynamics,

∆Eint = Q+W + 1 kW× 1s,

0 = Q+ 0 + 1kW× 1s
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Figure 1.17: Electric Heater

resulting in the microscopic energy transfer Q = −1kJ , meaning that all
the electrical energy that enters the nichrome wire is transferred out of the
heater through microscopic work only. The energy is radiated out to heat
up the room.

Let’s plot the temperature of the wire against time and discuss how the
temperature T varies with time and reaches a steady value T in house hold
heaters.

A

T

t}

Figure 1.18: Temperature-time curve of an electric heater

When we plug the heater into the mains, the temperature of the heater
starts from room temperature Troom and increases until it reaches a steady
value Tsteady. If the electrical energy were to keep on flowing, Eint would
perpetually increase. Soon we will have unbearably hot temperatures in
the room - a sun in our vicinity! Fortunately for us, the temperature
stabilizes because energy is transferred to the environment due to the large
temperature gradient between the nichrome wire and the atmosphere. Although
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the internal energy and thermal energy also increase in this region (region
A in Fig. (1.18)), but once the whole environment (heater+ room) reaches
a steady temperature Tsteady, the internal energy remains constant.
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Chapter 2

Quantization of Internal energy

The previous chapter introduced the concept of internal energy. One of the
most important advances of the twentieth century physics is the quantization
of energy. This allows one to associate energy levels inside atomic or molecular
systems. The current chapter will slowly lay the foundations of this concept.
Quantization of energy just like conservation can be regarded as a cornerstone
principle. However, before discussing the quantization of internal energy,
we need to introduce the particle called the photon. Where do photons
come from? Photons are important because their energies truly reveal the
quantization of energy i.e energy comes in discrete packets.

2.1 Photon

A photon is a packet of energy.The amount of energy is determined by its
frequency f . The energy of the photonic packet is

Ephoton = hf, (2.1)

where h = 6.63x10−34Js is called the Planck constant.

In vacuum, this packet moves with the phenomenal speed of light c =
2.99795x108ms−1. It is not possible to change the speed of a photon while
it freely propagates in vacuum.

When moving with a speed c, the photon must also have linear momentum
given by

pphoton =
hf

c
. (2.2)
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This is easy to remember if we write pphotonc = hf . In classical physics, the
momentum of any object is the product of its mass and its speed. Therefore,
the momentum of photon can also be written as

pphoton = mc. (2.3)

Comparing Eq. (2.2) and Eq. (2.3), we obtain hf = mc2 = Ephoton which is
Einstein’s famous energy-mass equation. The massm of the photon becomes

m =
hf

c2
. (2.4)

This is called the relativistic mass of the photon. A photon therefore moves
with the speed c in vacuum and has a mass hf

c2
. This mass and speed mc

qualifies as its momentum and can exert a force on objects. This force (x
area) is sometimes called the radiation pressure.

How are photons affected by gravity?

The earth is a massive object and it attracts any other ??? object. Photons
are no exception. The mass of the photon manifests in various interesting
ways.

Hold a ball and throw it against an opposite facing wall. What happens?
Unless the ball is filled with helium, it is pulled downward due to Earth’s
gravity and eventually drops. In a similar fashion, consider we shine a laser
to the wall. If the earth were heavy enough to attract photons and the
effective mass of the photon were appreciable, we should actually see the
beam of light falling back to the earth just like a projectile falling down to
the ground. In fact, the extreme case of pulling a photon happens near a
black hole. The black hole is such a massive object that light falls into it
very easily and cannot escape it.

Consider a star far away from our sun. When the light from this star moves
out, which means photons are being emitted by the star, they enter our solar
system and come closer to the sun. Now the sun has mass and the photons
have relativistic mass too, so the beam of light is bent by the sun and as it
reaches us, we see only the star’s apparent position. The sun acts like a lens
which bends light and the phenomenon is, quite aptly, called gravitational
lensing.
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Figure 2.1: Gravitational lensing

2.1.1 Where do photons come from?

Photons may come in streams, one after the other. If the flux is appreciable,
we call this stream simply light or radiation. Radiation has a wave property
associated to it, which defines a frequency f and wavelength λ = c

f
. Hence,

the energy of photon in terms of λ is

Ephoton =
hc

λ
· (2.5)

Photons thus carry energy and are emitted by objects. These emitters could
be atoms, molecules, solids and so on. Since the energy of a system as a
whole must be conserved, the emitter of photons must lose its energy in the
emission process. So, if an emitter is firing out photons of energy hf = hc

λ
,

the energy of the emitter must continually decrease in steps of hf to conserve
energy. After n emissions, the number of emitted energy would have gone
down by nhf .

The energy harbored by the photon may stem from either the internal energy
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Figure 2.2: Emission of photons

or the center of mass energy ???. Eventually, with time the energy of the
emitter diminishes. If we consider photons emitted by a hot object, a process
called thermal radiation, the object is sent to ??? with time. The stepwise
drop in energy hints that the (internal) energy may be quantized.

2.1.2 An Electron inside a Quantum Dot

The advent of nanotechnology has given us countless new atomic toys to
play with. An example is a quantum dot which can be considered as an
artificial atom, which can harbor only a few electrons, possibly even one.
Suppose we have a single electron in the quantum dot. The electron will
have some energy and the system, in turn, will have some internal energy.
According to quantum mechanics, the electron can only have precise values
of energy due to its confinement inside the dot.

Let’s have a look at the potential-energy curve of this electron (Fig. 2.3).
Here, r is the distance between the electron and the center of atom. As
r approaches infinity, the potential energy U(r) approaches zero. When
the atom is ionized, the electron escapes the atom and is free to wander
anywhere. When the electron is not within the attraction of nucleus, its
energy will be zero and when it is inside the atom, its energy will be
smaller than zero. In this curve, the straight green line drawn on the
potential-energy curve AB represents one choice of the total energy. If the
electron is oscillating back and forth (just like in the harmonic oscillator)
between two points A and B, its Eint is constant and fixed at this green line
even though kinetic and potential energies are interchanging. At points A
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Figure 2.3: A quantum dot with a trapped electron

and B, all of its energy is solely potential whereas at point O, the energy
is purely kinetic. We can draw other straight lines on the potential-energy
curve. In fact, we can draw an infinite number of straight lines in this
region of negative energy up to the datum line. This datum line represents
a boundary between bound electrons and free electrons.

If we view the quantum dot through classical mechanics, we can draw a
shaded region instead of drawing infinite number of lines in bound region
because all these energies are possible. This is the classical picture: the
energy of the electron inside the atom is continuous and can take any value.

However, this notion really contradicts the quantum picture, according to
which the energy of a bound electron cannot be continuous. We can only
have discrete (quantized) energy levels in a bound region.

On the other hand, the quantum mechanical picture, while appearing to
be daunting, is no more complex than a child taking a slide at a park. A
child climbs up the stairs of a slide through discrete steps and comes back
down sliding. While climbing, the child can only step on individual steps of
stairs, he can only have discrete values of height and hence discrete values
of potential energy. On the other hand, no such restriction is present while
the child slides down to the ground. Therefore, while his upward motion is
discrete, his downward motion is continuous.

In a similar fashion, we can imagine the energy of an electron to be like that
of the child: its energy is quantized when it is bound and continuous when
it is unbound.

In the potential energy curve, we can represent the energy levels in bound
regime with discrete values E1, E2,..... and so on (Fig. 2.5). We cannot
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Figure 2.4: Playground as an example of discrete and continuous motion.

have any energy value in between the two consecutive energy levels. As
electron escapes nuclear attraction above the datum line, it does not have
any potential energy and only kinetic energy which can take up any value.
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Figure 2.5: Energy levels in a quantum dot

Suppose there is only one electron in the quantum dot. It can exist in any of
these five discrete energy levels with energies E1, E2, E3, E4 and E5. Let’s
consider the electron to be residing in energy level E3. As E3 is an excited
state. It cannot stay there forever. It can either make a transition to E2

or it could fall directly to E1. As it makes a transition from E3 to E2, Eint

of the system decreases. However, the center of mass energy of the system
does not change because the whole system is not moving. This decrease in
energy is accompanied with the emission of a photon such that the total
energy of the system remains conserved. The energy of this photon will be
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equal to the difference between E2 and E3

Ephoton = E3 − E2 = hf.

The frequency of the emitted photon depends on the energy difference
between two quantized levels.

Now, consider four quantum dots in our system (Fig. (2.6)). An electron is
present in the first excited state in each quantum dot. They can either fall
down together to the ground level or at different times. In any case, four
photons will be emitted, each with an energy around 1 eV. These photons
can be detected by a detector. By comparing the four-quantum-dot system
with two-quantum-dot system, we can easily see that the four-quantum-dot
system may produce a higher intensity of photons for the same kinds of
transitions. This also shows that intensity (or brightness) depends directly
on the number of photons emitted, but higher brightness does not mean
higher energy per photon. Each photon has the same energy hf . Quantized
energy levels lead to the concept of photons carrying discrete packs of energy.
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Figure 2.6: A four-quantum-dot system

2.2 The Electromagnetic Spectrum

The electromagnetic spectrum (EM) covers a wide range of wavelengths
and photon energies. The EM spectrum is merely a classification of photons
based on wavelength or frequency or energy. For example, blue light is
a photon with wavelength λblue ∼ 400 nm and red light is a photon of
wavelength λred ∼ 630 nm. Similarly, λgreen ∼ 550 nm. There are no
white photons, but if a large number of photons of different frequencies are
correctly mixed in the right proportion, white light can be obtained.

The visible range in the EM spectrum is exceedingly small. The photons
of the observable frequency enter the eye and strike the retina. The retina,
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in turn, is connected to the optical nerve that carries the information to
the brain. Our brain processes these photons and we see different colors as
a result. The eye is a very sensitive device, as only 30 to 40 photons are
enough to register a signal. This limit, however, is being pushed by some
recent work (REF TO WORK) which shows that or eye could in fact be
sensitive to even single photons.

Radio Micro Infrared Ultraviolet X-Rays Gamma

HardSoftNIRFIR

Wavelength (nanometers) Shorter

(400nm - 700nm)

Longer

Red Blue

VISIBLE

Figure 2.7: The electromagnetic spectrum

Due to biological evolution, the human eye can only detect light in the
visible region but not in other regions. For example, We cannot detect
infrared photons, but the camera in the mobile phones can though certain
animals in marine environment, like eels and octopuses, can detect infrared
photons. Blind Dolphin in Indus River cannot detect visible photons, but
can detect photons in radio frequency regime. Furthermore, certain insects
can detect ultraviolet photons.

Fig. (2.7) shows the electromagnetic spectrum in order of increasing frequency
(or decreasing wavelength). In the regions of higher frequencies beyond blue,
there are different kinds of waves. All of them have photons moving with
the same speed and differing only in their frequencies. On the other side
of spectrum (on the left of red) lies the infrared regime (near infrared, far
infrared, etc), microwaves regime and then radio waves, in decreasing order
of frequency. Most telecommunications ??? take place around 1550 nm in
the infrared regime.

2.2.1 Types of Spectrums: an eye into quantization

We now have an idea of what a photon is and that quantized levels lead
to photons of precise wavelengths. We build upon this concept further. In
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the seventeenth century, Newton performed an experiment, among countless
others. He made a hole in the wall such that a beam of sunlight could pass
through it. He then placed a prism in the path of the beam and used a screen
to observe the beam coming out of it. He saw different colors visible on the
screen. Actually, the prism had resolved the white light into a spectrum of
colors. A spectrum is any distribution of photons resolved with respect to
wavelength.

What Newton observed was an example of continuous spectrum. In fact,
every photon emitted has its origin in an atomic transition and carries a
discrete value of energy but since the atomic levels are distributed across a
wide range, a continuous flux of energies and wavelengths is seen. I will talk
more about this later.

Let’s modify his experiment a bit. This time we use a tube filled with
hydrogen gas and having two electrodes (anode and cathode) connected to
a power supply. The remainder of the equipment is the same. We’ll place a
prism in front of tube and a screen to observe the spectrum.
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Figure 2.8: Continuous spectrum

Different lines of various colors will be observed on the screen. We will only
be able to observe the visible, obtaining discrete lines instead of a continuous
spectrum. This is a direct proof of the quantization of energy levels inside
two hydrogen.
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There is only one electron in hydrogen atom which experiences attraction
towards the nucleus. The energy of electron inside the atom is quantized
and is given by

En = −13.6

n2
eV (2.6)

where n = 1, 2, 3 · · · is called a quantum number. Eq. (2.6) is a quantization
formula. This is similar to the energy quantization of an electron in a
quantum dot. Returning to Fig. (2.9), suppose the quantized energy levels
inside the quantum dot obey the formula. Hence, we can formulate its energy
as

En = (−6 + n) eV (2.7)

where the quantized levels are labeled by quantum numbers n = 1, 2, 3, 4, 5.
This will yield an energy level diagram given in Fig. (2.9).
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Figure 2.9: Quantized energy levels inside the dot

Let’s analyze a similar energy level diagram of hydrogen atom.
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Figure 2.10: Energy level diagram of hydrogen atom

The ground level energy is given by

E1 = −13.6

1
eV = −13.6 eV, (2.8)

and then excited energy levels have energies

E2 = −13.6

22
eV = −3.4 eV ,and (2.9)

E3 = −13.6

32
eV = −1.5 eV (second excited state) (2.10)

E4 = −13.6

42
eV = −0.9 eV (third excited state) (2.11)

and so on.

Suppose that initially the hydrogen atom is in its ground state. In this case,
it will not emit any photon. Let’s excite the hydrogen atom by promoting its
electron to a higher level, say E2, and wait long enough so that this electron
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eventually comes down to E1. It does so by emitting a photon having a
particular frequency and a particular energy given by

Ephoton = E2 − E1 = 10.2 eV. (2.12)

We now provide enough energy to the electron to jump to a higher level
E3. If it is in the second excited state E3, it could fall to E2 by emitting a
photon of energy

Ephoton = E3 − E2 = 1.9 eV, (2.13)

and then fall back to E1 by emitting another photon of energy

Ephoton = E2 − E1 = 10.2 eV, (2.14)

or it could fall down directly to E1 by emitting a photon of higher energy

Ephoton = E3 − E1 = 12.1 eV. (2.15)

As a result of one transition, a single photon is emitted. When the electron
reaches state E1 in two steps, light becomes brighter doe to the emission
of two photons E3 → E2andE2 → E1. Each photon has a characteristic
frequency and wavelength. However, the overall energy does not change.
These photons of precise energies and frequencies give rise to a line spectrum.

The photon emitted in E3 to E2 transition has a wavelength

λ =
hc

E3 − E2

≈ 650 nm.

Similarly, in the single transition from E4 to E2

Ephoton = E4 − E2 = 2.5 eV

which corresponds to the wavelength 495 nm.

In Fig. (2.10), peak 3 is nearly at λ = 656 nm, which corresponds to an
electron that has jumped up the level E3 by electrical discharge and then
fallen back to the level E2. While peak 2 is at λ = 470 nm, it is actually
due to a transition that is taking place from E4 to E2. The smaller peak
1 is due to the transition from E5 to E2. This is the direct proof that the
energy levels inside the hydrogen atoms are quantized. The humps in graph
are due to background light.

From Fig. (2.10), it is clear that peak 3 which corresponds to the transition
from E3 to E2 is stronger than peak 2 which corresponds to the transition
E4 to E2. Actually, since E3 is closer to the ground state than E4, it is more
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populated than E4. More electrons are available to de-excite in E2, thus
emitting more number of photons. Therefore, the intensity corresponding
to λ ∼ 656 nm (E3 to E2 transition) will be higher than that corresponding
to λ ∼ 470 nm (E4 to E2 transition). However, when we increase the
temperature of hydrogen atom, more electrons are excited to E4 and peak 2
will start to increase. Since E3 is at lower energy, there is a higher probability
of the electron to excite to E3 than to E4. In transition from any of the
higher levels to E1, more energetic photons are emitted (having shorter
wavelengths). The spectrometer, on the other hand, works only in the visible
regime.

The photon emitted during the transition from E2 to E1 has wavelength

λ =
hc

E2 − E1

∼ 100 nm, (2.16)

which is in ultraviolet regime and cannot be detected by this spectrometer. If
we had a spectrometer that could detect light beyond the shorter frequencies,
we would have seen this stronger peak as well.

Modification of Newton’s experiment

Another experiment is performed using an incandescent tungsten lamp as a
source of white light and continuous spectrum is observed. This is Newton’s
experiment, with the only difference that we have an incandescent lamp
instead of sunlight. The bulb is emitting photons of different frequencies.
As there are different kinds of atoms in the incandescent lamp, each atom is
emitting its characteristic light spectrum. Hence, this continuous spectrum
has almost all these wavelengths.

We can filter the light of desired wavelengths using different filters. Suppose
we place a filter in front of an incandescent lamp which allows light of
wavelength λ ∼ 530nm (green light) to pass and blocks all other photons.
Hence, it lets photons between 520 nm and 540 nm to pass.

Spectrum of LEDs

In this experiment, four kinds of LEDs are used: red, white, blue, and
green. Suppose we turn on the blue LED having a wavelength λ ∼ 490 nm.
If we put a filter of wavelength λ ∼ 430 nm, the peaks for the rest of the
wavelengths (including blue) disappears. This verifies that the blue LED is
indeed emitting photons of wavelength λ ∼ 485 nm.
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Figure 2.11: (a) Blue LED spectrum (b) Blue LED spectrum with filter

The band gap of blue LED is Eg. If we apply a voltage equal to Eg/e to the
electron in the valence band, it will go to a quantized level in the conduction
band. As it leaves the valence band, a hole is created. The electron has to
eventually come back to its origin (hole) by emitting a photon of energy
Ephoton = Eg and frequency f = Eg/h. The LED is made up of such a
material that the gap corresponds to blue color.

If a higher voltage is applied, the electron will excite to a higher level in
the conduction band, and will jumps back by emitting a photon of different
frequency. Hence, all of the photons are not precisely of the frequency
f = Eg/h and we don’t obtain a straight line in the spectrum of blue LED.

Line spectra of various mediums

The spectra of various mediums is shown in Fig. (2.12). Hydrogen has only
a single electron so it can jump to a few different energy levels (which are
quantized, as seen by the separate peaks). Compared to this, a mercury-filled
tube has a more complicated line spectrum due to its many electrons which
can jump to many different energy levels. This creates many combinations
for the electrons’ path. The same could be said about a neon-filled tube.

On the other hand, the bulb and tubelight spectra show a continuous graph
of wavelengths.
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Figure 2.12: Hydrogen, mercury, neon, bulb and tubelight spectrum

2.3 Absorption and emission of photons

2.3.1 Absorption and spontaneous emission

Consider a quantum dot comprising of three discrete energy levels labeled
E1, E2 and E3. The electron can exist in any of the three levels. Suppose
that an electron is in the ground state E1 and a photon of just the correct
amount of energy Ephoton = E2−E1 comes in. The electron will be excited to
the first excited state E2. This process is called absorption, and is shown
in Fig. (2.13).
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Figure 2.13: (a)Absorption, (b) spontaneous emission and (c) stimulated emission.

Note that if the frequency of the incoming photon does not match either of
the differences E3−E1 or E2−E1, it will pass straight through the quantum
dot. Such a photon cannot be absorbed and no transition will takes place.
The transparency of the quantum dot depends on the incoming photon’s
frequency. A few specific examples might help.

� If the incoming photon has energy Ephoton = E3−E2 and the system is
in E1 in the three-level system, the photon will pass straight through
(Fig. 2.14(a)).

� A photon having energy Ephoton < (E2−E1) cannot excite the electron
from E1 to E2 as there is no level below E2. The electron does not get
promoted and will remain in the lower state with the specific energy
E1 (Fig. 2.14(b)).
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Figure 2.14: Three examples when atom is transparent to the photons

� Similarly, for a photon of energy (E2 − E1) < Ephoton < (E3 − E1)
no transition will take place. No doubt, it has sufficient energy to
excite the electron to level E2, but the electron will not be excited
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as there is no level between E2 and E3 that can serve as a receptacle
for the excited electron. Actually, photon is a particle which can only
be destroyed while in vacuum, it can neither share its energy with
anything else nor can it split into two particles wherein one daughter
photon is providing enough energy to excite to level E2 and other
daughter photon carries away the remainder of energy (Fig. 2.14(c)).

However, if through some process, the electron has been excited to the state
E3 it will stay there on average for a certain amount of time (roughly of
the order of nanoseconds) and will decay to the ground state E1, emitting a
photon of energy (E2−E1), Fig. (2.13(b)). This process is called spontaneous
emission. Hence, the excited state lifetime can be around τ ≈ 10−9s.

Before Einstein, only two processes were known; absorption and spontaneous
emission. A third process namely stimulated emission was presented by
Einstein and forms the basis of lasers.

2.3.2 Stimulated emission and lasers

Suppose the electron is in a state E2 and a photon of energy Ephoton =
(E2 − E1) comes in and stimulates the downward transition from E2 to
E1, Fig. (2.13(c)). To conserve the energy of atom, a photon with energy
(E2 − E1) must emit in downward transition of electron from E2 to E1,
to balance the decrease in internal energy of this atom. So the incident
photon will pass straight through, after doing the business of stimulating
the emission of a photon. In this process, we input one photon of the
correct energy and two photons come out. One is the incident photon and
the second is a photon whose emission has been triggered by the incident
photon. This process is called stimulated emission. The wonderful thing
that is happening in this process is that these two photons are moving in
same direction and are in phase. They are absolutely coherent.
Stimulated emission is really an instantaneous process, as soon as the photons
comes in and interact with the system, other photons are emitted. The two
photons have an associated wave that is exactly in phase, totally synchronous,
so even there could be a delay but the phase could actually match itself
(Fig.2.13(c)).

In summary, three processes can happen, when an electron inside an atom
or a quantum dot sees a incoming photon. Each process occurs with specific
rates and probability.
In fact, spontaneous emission can be received as stimulated emission triggered
by photons coming from nowhere, i.e vacuum. Huh! Strange isn’t it.
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Vacuum has some residual, zero-point energy which is manifest by virtual
vacuum photons. So the major difference between spontaneous and stimulated
emission, is that the two photons coming out in the stimulated emission
process are phase coherent.

2.4 Lasers

Now that we know about the types of emission, we are ready to take our
discussion towards lasers. The word LASER means Light Amplification by
Stimulated Emission of Radiation. This abbreviation gives us an outline for
our discussion on lasers in this section. All we need to make a laser is a
system that takes in light and amplifies it using stimulated emission.

2.4.1 Two-level system

Let us begin by analyzing a system with only two energy levels. The lower
energy level has an electron population ofN1 electrons, and the higher energy
level has an electron population of N2 electrons.

N
1

N
2

Figure 2.15: Two level system

Electrons in the lower level are photon absorbers while the electrons in the
upper level are electron emitters as we have seen in the previous sections. We
know that under normal circumstances ,when everything is at equilibrium,
electron population in energy levels follows Boltzmann distribution i.e. there
are more electrons in the lower level (absorbers) than in the higher level
(emitters). This means that the number of photons absorbed is greater
than the number of photons absorbed. In other words, the rate of emission
and absorption is proportional to the electron population in energy levels.
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This is the opposite to what we need to make a laser. Hence, to make a
laser, we somehow need to invert this general trend of electron population
and get more electrons in the upper energy level than there are in the lower
energy level. We need to get population inversion.

N2

N1

> 1 (2.18)

The most obvious solution might be to simply pump in energy corresponding
to the energy gap. However, there are a couple of complications with that

� Spontaneous emission: As we pump in energy, the number of electrons
in the higher energy level will increase. These electrons will tend to
go back to the lower energy state. Hence, making this state difficult
to maintain.

� Simulated emission: As an electron transitions to the lower level
spontaneously, the emitted photon will trigger stimulated emission of
other electrons present in the higher energy level; this would make the
situation even less favorable for us.

Therefore, the best we can achieve by just pumping in energy (even if we
pump in an infinite amount of energy), is an equal number of electrons in
both energy levels. It is a limit imposed by the laws of nature.

Observing the expression of the Boltzmann distribution, one might suggest
that another way to make N2

N1
> 1 is to somehow make the power of exponential

( −E
KBT

) a positive number. Since ∆E and KB are constants, the only way to
make that happen is to get negative temperatures. That, yet again, is not
permitted by nature. In conclusion, population inversion cannot be achieved
in a two-level system.

2.4.2 Three level system laser

The time for which an electron stays in an excited state, due to the uncertainty
principle, is known as the lifetime of that excited state (denoted by the Greek
symbol τ). Let’s say, for the two level system we analyzed in the previous
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section, the lifetime of the excited electrons in N2 was of the order 10−15s.
We now introduce another energy level having less energy than N2, with N3

number of electrons. This energy level is more stable than the N2 level and
has a lifetime of 10−10s (105 times longer than the N2 level). These finite
lifetimes give us finite line width in the energy spectrum. The longer the
lifetime, the sharper the peak.

Long τ

Short τ

Frequency

Figure 2.16: Lifetime of different levels

Such a three level system is very hard to make ourselves but, luckily, nature
already gave us one such system in the form of Ruby crystals (the gemstone).
A Ruby crystal is just an Alumina crystal Al2O3 with one of its Aluminum
atoms replaced with a Chromium atom Cr : AlO3. The Chromate ion Cr+3

causes a defect in the Alumina crystal and makes it have a three-level energy
system. One of the first lasers ever made were made using Ruby crystals.

We start off by pumping in photons using a Xeon flash lamp (just like the
one used in cameras) (Fig. (2.18)). The photons that we provide, excite
the electrons the ground level to the N2 level just like before. Level N2

quickly starts to lose these electrons because it has a very short lifetime
(10−15s). But this time, when the electrons de-excite, they move to level
N3. The transition from N2 to N3 releases photons but they are all of very
long wavelengths, giving a very broad peak in the energy spectrum. Since
the level N3 it has a lot longer lifetime than N2, it starts hoarding these
electrons and makes a meta-stable state.

After some time, we see that, because the electrons are getting stuck in the
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Figure 2.17: Three level system

meta-stable state, the electrons are leavingN1 faster than they are returning.
This results in a greater number of electrons in N3 (higher energy level) than
there are in N1 (lower energy level). In short, we have achieved population
inversion by tricking nature using a meta-stable state that was provided to
us by nature itself. For Ruby, when an electron transitions from N3 to N1, it
will release a photon of wavelength 693 nm, and these photons will constitute
the laser light. Until now, we have only seen spontaneous emission and it
is not robust enough to make a laser. We will need stimulated emission to
kick-in for that.

Ruby crystal Xenon ash tube

Figure 2.18: Ruby crystal

In a Ruby crystal, there isn’t a sole Cr+3 ion making a three-level system,
rather an entire ensemble of them. When one of the electrons decays and
releases a photon, this photon will act as a trigger to stimulate another
photon of the same frequency. Now these two photons will trigger the
emission of two new photons and the effect will go on; this is known as
the snowball effect (Fig. (2.20)). We now have an avalanche of coherent
photons inside the crystal, all synced up. It is like a giant wave-function
of many photons. This is a macroscopic quantum phenomenon; millions of
photons moving in the same quantum state. For an instance of time, we have
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Figure 2.19: Population inversion

more emission than absorption of radiation (photons) and we have achieved
that using stimulated emission. The only thing left is to throw these photons
out of the crystal in the form of a beam. This completes our definition of a
Laser that we defined in the beginning of this section.
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Figure 2.20: A snow ball: Effect of coherent photons

2.4.3 Extraction of produced photons

The medium that emits the photons for the laser is called a lasing medium.
We enclose this medium with two perfectly reflecting mirrors. The coherent
wave of photons reflects from these mirrors and makes many trips back
and forth between them. While doing so, the photons will interfere with
one another and make standing waves inside this cavity. To sustain this
wavelength of light we need constructive interference, which is only possible
if the length of the cavity L is an integral multiple of half the wavelength,
i.e L = nλ

2

We get many many peaks inside this cavity corresponding to different
wavelengths (Fig. (2.21)). Some of them get amplified, while the rest get
absorbed.
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The giant wave of photons is oscillating inside the cavity and all that we need
now is to get it out in the form of a beam of light. For this purpose, instead
of using two perfectly mirrors, we replace one of the mirrors with a partially
reflecting mirror (Fig. (2.22)). Some of the coherent light will escape the
cavity in form of a narrow beam of light (though with some divergence).

Perfectly re ecting mirrors

99.9% re ected 99.1% re ected

(a)

(b)

Figure 2.22: a) Photons in a perfectly reflecting glass tube b) Photons in a
partially reflecting glass tube
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2.4.4 Helium-Neon Laser

Another type of laser is a Helium-Neon laser. It is made by trapping Helium
and Neon gases inside a vacuum tube. In this case, we get a four-level energy
system unlike the three-level energy system of Ruby lasers.

We start this laser by providing energy to the He atom and excite its
electrons from N1 to N2 (2p energy level of He in this case). Neon happens
to have an energy level only slightly lower than the 2p energy level of He.
When the He and Ne atoms come close, they collide mechanically. This
collision transfers electrons from He to Ne by a non-radiative process. The
particles that get emitted are phonons instead of photons in this case (for
now, you can consider a phonon as a packet of heat).

When the electrons transfer to the Ne atom, they end up in a meta-stable
state. Beneath this meta-stable state we have got an empty energy level and
when electrons decay to this lower level, lasing transition takes place. From
here the electrons move back to their ground state energy level N1 in the
He atom. Throughout this process, all the transitions are fast except the
one with a meta-stable state and only that state is responsible for giving the
lasing transition.

N
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3
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2

Lasing transition

Meta-stable state

Figure 2.23: Four level system

A He − Ne laser is more efficient than the Ruby laser for the following
reasons:

� In this case, the lasing transition is taking place when we go back
to a higher energy level which has little or no electrons. It is easy
to establish population inversion in this case. Previously, the lasing
transition led the electrons to the ground state which was already
heavily populated.
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� A He−Ne laser has a lower input requirement as compared to a Ruby
laser.

� In a Ruby laser, the laser took some time to charge up and we got
output in the form of laser pulses only. On the other hand, in a
He−Ne laser, we get a continuous wave.

2.4.5 Semiconductor laser

Semiconductor lasers are the type of lasers we often see in our daily lives.
To make a semiconductor laser, we combine an n-type semiconductor (with
excess electrons) with a p-type semiconductor (with electron deficiencies
known as holes) and make a diode (Fig. (2.24)).
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Figure 2.24: Diode

The electrons and holes have a tendency to succumb one another. They
diffuse into the junction and recombine, due to which energy is released and
there is no overall charge in this region. This junction where the charge gets
depleted is known as the depletion region.

We then connect a battery to this diode. Negative terminal to the n-type
material side and positive terminal to the p-type material side. Battery’s
positive terminal pushes the holes and the negative terminal pushes the
electrons into the depletion region where they combine to release a packet
of energy (a photon). At this point the photons released are incoherent and
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this is just a normal LED (light emitting diode). However, if we supply a
large enough voltage (more than the threshold voltage), population inversion
can be achieved and we get a laser light (coherent photons) (Fig. (2.25)). To
make a light trapping cavity just like before, we can use a perfectly reflecting
mirror on one side of the junction and a partially reflecting mirror on the
other side.

Laser

region

Threshold voltage

Intensity

V

Figure 2.25: Threshold Voltage

2.4.6 Applications of lasers

Lasers are a very handy invention and have tons of applications. Lasers
carry power, can trigger fusion reactions and can even cut through metal.
In general, lasers are a source of energy and it’s interesting to know that this
source of energy can also be used to cool things down; to a level that none of
the other cooling methods can. Inventing such fascinating applications get
you Nobel prizes, just like the one awarded in 1997 to a group of scientists
who invented this cooling method.
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Laser Cooling

There are a lot of methods to cool things. We can use a refrigerator, put
the object in dry ice, use the solvent bath of acetone and isopropanole, and
putting salt on ice also causes cooling. Some of the extreme cooling methods
we know of are cooling using liquid Nitrogen or liquid Helium. Liquid He
can get us to temperatures as low as 4.2K and that was the limit of cooling
temperature before laser cooling was invented.

Temperature is related to the average energy of atoms and molecules in a
system. The higher the kinetic energy, the higher the temperature and vice
versa. In laser cooling, we target these atoms and molecules and drain the
energy out of them.

Consider a soup of atoms all moving in different directions. The kinetic
energy of an object constrained to move in x-direction is 1

2
mv2x. Equipartition

theorem tells us that this energy, on average, is equal to 1
2
kBT and since the

atoms in our soup are free to move in all three directions (three degrees of
freedom), the total energy will be 3× 1

2
kBT .

3

2
kBT =

1

2
mv2 =

1

2
m(v2x + v2y + v2z) (2.19)

We begin by shining a laser light from the x-direction onto gaseous atoms.
The frequency of laser light used (fL) is lower than what is needed (fo) to
cause an electron transition to the higher energy level. However, assuming
that the atom is moving towards the laser, the frequency being received by
the atom (f ′) is actually higher than what was supplied. The laser light has
Doppler shifted.

f ′ =
fL

1− vx
c

f ′ = fL(1−
vx
c
)−1

Using binomial expansion we get,
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f ′ = fL(1 +
vx
c
)

f ′ = (fo +∆f)(1 +
vx
c
)

f ′ = fo + fo
vx
c
+∆f +∆f

vx
c

In the final term of the last equation we are getting two small variables being
multiplied which will turn out to be a negligible value that can be ignored.
So our final equation becomes

f ′ = fo + fo
vx
c
+∆f (2.20)

The frequency observed by the atom f ′ must match fo for the transition to
take place. For this purpose, we detune our laser such that we get ∆f =
−fo vxc . Substituting this value in eq.(2.20) we get,

f ′ = fo + fo
vx
c
− fo

vx
c

f ′ = fo

Now the atom absorbs this photon and goes to an excited state. The
absorbed photon had a momentum −h

λ
and so our atom gets a kick of

∆px = m∆vx = −h
λ
. Following the law of conservation of momentum,

the atom slows down(it decelerates).

v
x

p = -h/λ

Figure 2.26: Photon absorbed by the atom
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After the atom has slowed down, the photon gets released through spontaneous
emission. The emission is in a totally random direction and for a large
number of atoms, the momentum stays conserved. This emission takes even
more energy out of the atom. The atom has lost a tremendous amount of
energy and hence gets cooled down. With such laser beams coming from
all six directions, the atoms get a backward kick from wherever they move
and lose energy. We can achieve temperatures as low as 10µK using this
method.

Laser

Figure 2.27: Cooling laser

2.4.7 Scattering Processes

Now we discuss how scattering of incoming photon with an atom at rest,
may occur obeying the first law of thermodynamics. Consider an atom or a
quantum dot which comprises of four energy levels labeled E1, E2, E3, E4

and furthermore there is only one electron in this atom. There are precise
energy gaps between these quantized levels. The atom as a whole could
be moving, which means the center of mass could have exhibit certain kind
of motion, so it could have a kinetic energy due to its center of mass, but
this motion has nothing to do with internal energy. If a photon of precise
energy equaling energy gap, Ephoton = (E2 − E1) negotiates an atom and
the electron is indeed present at the lower level E1, then absorption process
will occur. This excites the electron to E2. Similarly, if the electron is
initially in level E2 and a photon of the exact energy E2 −E1 hits the atom
then stimulated emission may take place resulting in the emission of another
photon. If E3−E2 = E2−E1, then the incoming photon may either trigger
stimulated emission or promote the electron to E3. There is a probability
associated with each process. Atomic physics describes how to calculate
these probabilities.

If the electron is initially in level E3 and a photon of energy Ephoton = (E2−
E1) = ℏω impinges on this atom, then there could be different possibilities.
First of all, the photon will not be absorbed and will pass straight through.
No change in internal energy takes place. Secondly, if the atom is at rest then
this photon may collide with the atom, lose some of its energy, and could
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Figure 2.28: (a)Absorption, (b) stimulated emission (c) scattering
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be scattered off at a certain angle with new energy E ′ = ℏω′ < Ephoton. So
the scattered photon will have frequency ω′ smaller than incident one. For
example, a blue photon may get scattered off as a red photon, an ultraviolet
photon may scatter off as a visible photon, a γ-ray incident on an atom at
rest may get scattered as X-ray photon and a microwave photon incident on
an atom (at rest) may scatter off as a radio frequency photon.

The remainder of the incident photonic energy goes into the overall kinetic
energy of the atom, conserving the total energy. This remainder energy
will not change the internal energy of the atom. The atom as a whole
will take a kick in a direction, such that the final momentum remains the
same as the initial momentum. This means that the scattered photon must
have a direction such that it vectorially add to the momentum of atom, to
give the same net momentum as before the collision. Such a photon-atom
interaction is an elastic collision. On the contrary, when the incident photon
has an energy exactly matching an energy gap, a change in internal energy
exists ??? This is called inelastic scattering. (This process in which a high
energy photon collide elastically with an atom at rest, is named asCompton
scattering.)

2.4.8 Electron colliding with an atom

Let’s now consider the scenario the scenario in which an electron with kinetic
energy K = 1

2
mv2 (ignoring the relativistic effects), hits an atom. There is

only one electron in this atom that can exist in three energy levels i.e., E1,
E2, E3.
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Figure 2.29: An electron hits an atom

Suppose that the kinetic energy of the incident electron is

(E2 − E1) < Ke < (E3 − E1), (2.21)

and the electron in the atom is initially at level E1. Unlike the photon,
the electron is happy in sharing its energy between the internal energy and
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center of mass kinetic energy of the atom. The incident electron imparts
some of its energy with the internal energy, exciting the electron to level E2,
while the remainder of the energy Ke − (E2 −E1) is further shared between
the kinetic energy of the atom and the electron,

Ke − (E2 − E1) = K ′
e +KCM , (2.22)

where K ′
e is the kinetic energy of the electron after striking the atom and

KCM is the center of mass kinetic energy of atom. Thus, energy and
momentum will surely be conserved in this process.

2.5 Quantum harmonic oscillator

A mass attached to a spring is a harmonic oscillator where potential energy
U(x) varies quadratically with x, i.e U(x) = 1

2
kx2 (ADD REF). If this

energy is associated with an electron in a ??? confined environment, the
energy levels becomes quantized at E4. We have seen ample examples of
these quantized levels. The energy levels are identified by the quantum
number n which takes up integer values 0, 1, 2, 3.... For a quantum harmonic
oscillator, these energy levels are all equally spaced. The spacing between
any two consecutive levels is equal to ℏω0, where ℏ = h/2π, h is Plank’s
constant and and ω0 is the (natural) frequency of oscillation. For a mass
spring system, we have figured out that

ω0 =

√
k

m
, (2.23)

Therefore, if we take the energy of the ground state to be E0, the first excited
state will have an energy E1 = E0 + ℏω0, the second excited state will have
E2 = E0 + 2ℏω0 and so on. Note that E0 is never equal to zero, it has some
finite value E0 = ℏω0/2. This is the vacuum energy (Section 2.3.2). We
can write a relationship between the quantized energy En and the quantum
number n as

En =
(
n+

1

2

)
ℏω0 with n = 0, 1, 2... (2.24)

Suppose there is only one electron in energy level E3. It has to come down to
ground state as it cannot stay in excited state forever. So there are different
possible ways that an electron can follow to come down. For example, the
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electron first comes from energy level E3 to E2, emitting a photon of energy
E0 = ℏω0, then de-excite from level E2 to E1 emitting another photon of the
same energy. Finally, it jumps down to ground state E0 from E1, emitting
another photon of same energy. In this case, three photons in total, each of
energy E0 = ℏω0 are emitted. It may well ??? happen that electron first
de-excite from energy level E3 to E2 emitting a photon of energy E0 = ℏω0

and then from E2 it directly jumps down in E0, emitting a photon of energy
E0 = 2ℏω0.

n=1

n=2

n=3

n=4

n=0

Figure 2.30: Four possible ways of transition from n=3 to n=0 level

Yet a third possibility is that the electron jumps down directly from E3 to
E1 emitting a photon of energy E0 = 2ℏω0 and then it falls down into E0

from E1 emitting a photon of energy E0 = ℏω0. Finally, the electron may
directly jump from E3 to E0 emitting a single photon of energy E0 = 3ℏω.
In summary, the atom can deexcite by emitting four, three, two, or a single
photon.

We have discussed the modeling of a two-atom system to a classical harmonic
oscillator ???. In a similar fashion, we can take a step further and model it
to a quantum harmonic oscillator.

Consider Fig. (2.31) wherein r0 is the most favorable distance between
the atoms. In the region close to r0, we have good approximation of an
ideal harmonic oscillator which corresponds to a parabolic energy curve.
However, the energy levels are quantized in the true spirit of quantum
mechanics. In the harmonic regions, the quantized energy levels will be
equally spaced. The potential-energy curve is totally symmetric (parabola)
for harmonic oscillator. But as we go to longer inter-nuclear distances,
the potential-energy curve becomes asymmetric, and the equal spacing rule
breaks down. We now have energy levels that are unequally spaced. They
get closer and closer together up to datum line. Above this, the energy
becomes continuous, because the atoms are no longer interacting with one
another.
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Figure 2.31: Two atoms modeled as quantum harmonic oscillator

2.5.1 Quantized energy levels in the hydrogen atom

A hydrogen atom consists of a nucleus (single proton) of charge +e and an
electron with charge −e revolving around it. The force of attraction between
electron and proton is given by Coulomb’s force

−→
F = − 1

4πε0

e2

r2
. (2.25)

The magnitude of this force is

|
−→
F | = 1

4πε0

Ze2

r2

=
ke2

r2

Looking at this equation, one can deduce that if the electron is very far away
from the nucleus (r → ∞), the force of attraction between the electron and
the proton becomes zero. Thus, its potential energy is also zero. When the
electron is brought close to the nucleus, some work is being done by the
nucleus to attract the electron which is stored in the electron as a non-zero
potential energy. This potential energy is given by

|
−→
U | = kZe2

r2
r

=
kZe2

r
(2.26)
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However, the electron does not simply ’fall into’ the nucleas. Thus, there
must be an equal and opposite force keeping the electron in orbit. This
is the electron’s centrifugal force which is given by mv2

r
. Equating the two

equations gives us

mv2

r
=
kZe2

r2

mv2 =
kZe2

r
(2.27)

The total energy of the electron is given by its kinetic energy and potential
energy.

E =
1

2
mv2 − kZe2

r
(2.28)

Inputting Eq. (2.27)

E =
1

2

kZe2

r
− kZe2

r

=
kZe2

r
(
1

2
− 1)

= −kZe
2

2r
(2.29)

If we input Bohr’s equation for the atomic radius in place of r

E = −kZe
2

2

Ze2πm

n2h2ε0

=
−Z2e4m

8ε20n
2h2

(2.30)

where n is the energy level of the electron. For a hydrogen atom, Z = 1.
Hence the equation becomes

E =
−e4m
8ε20n

2h2

and the difference between energy levels n1 and n2 is given by

△E =
−e4m
8ε20h

2
(
1

n1

− 1

n2

)

2.6 Further examples of quantization

Now that we understand the quantization of atomic energy, we can delve
into some examples.
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2.6.1 Franck-Hertz experiment

The Franck-Hertz experiment was designed by two scientists, James Franck
and Gustav Hertz, to represent the quantum nature of atoms by demonstrating
the excited states of mercury atoms. It won them the Nobel Prize in 1923.
The setup consisted of a Tungsten filament within a vacuum chamber filled
with mercury atoms. Current is passed through the filament to raise its
temperature and hence, electrons are emitted through thermionic emission.
These electrons are attracted to a positively charged perforated plate within
the chamber. The collector at the end of the chamber has a negative charge
to ’collect’ the electrons (if they have sufficient energy to reach this point).
The ammeter then registers the current flowing through the wire connected
to the collector. This setup is shown in Fig. (2.32)

A

Vacuum tube

lled with mercury

Collector

Filament

Perforated plate

- -

-
-

- -
-

--
-

-

Figure 2.32: Setup for the Franck-Hertz experiment

As the electrons are bombarded, the dense mercury atoms may sometimes
come in the way. This would lead to collisions between them, and hence, a
transfer of energy from the electrons to the mercury atoms. This collision is
inelastic as the external kinetic energy of the electron is transferred to the
mercury atom in the form of internal energy. If enough internal energy is
provided to the electrons of the mercury atom, they may jump to a higher
energy level. This is the reflected in the equidistant ’dips’ of current in the
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graphs in Fig. (2.33), which are the original results of the Franck Hertz
experiment.
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Figure 2.33: Original results of the Franck-Hertz experiment

These ’dips’ occur as the bombarded electrons lose substantial energy to the
electrons within the mercury atom, causing them to jump energy levels. The
fact that these dips are equidistant show the quantized energy levels of the
mercury atom.

As the voltage applied to the filament is increased, the temperature of
the filament increases and the energy in these electrons increases as well.
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This causes more ’dips’ in the graph as the electrons within the mercury
atom overcome more and more energy levels. On the other hand, if the
temperature decreases, a point may come when the dips disappear and the
plot shows a flat line. At this point, the energy provided to the Tungsten
is lower than its work function, which is the minimum energy required for
thermal emission.

62



Chapter 3

Schrodinger Equation and
Quantum Systems

There are two types of waves in nature: mechanical waves like sound and
water waves, and electromagnetic waves like gamma waves and visible
light. The speed of these classical waves is given by:

v = fλ (3.1)

where f is the frequency of the wave and λ is its wavelength.

We have seen that the wavelength of de Broglie’s wave is given by ℏ/mc. This
matter wave is denoted by ψ(x, t) or by ψ(x, y, z, t) in three dimensions. ψ
holds the information about the evolution of matter wave. But how can we
extract this information? The answer lies in classical wave equation, given
by

∂2

∂x2
y(x, t) =

1

v2
∂2

∂t2
y(x, t) (3.2)

where y(x,t) is a classical wave given by y(x, t) = A sin(kx − ωt) with A
being the magnitude of the wave.

Plugging it in Eq. (4.2) gives us

k2A sin(kx− ωt) =
1

v2
ω2A sin(kx− ωt)

or
k =

ω

v
(3.3)

Notice that if we plug in the values of k and ω, we arrive at Eq. (4.1) once
again.
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3.1 Schrödinger Wave Equation

The behavior of a free non-relativistic particle is described by Schrödinger’s
wave equation:

ℏ
ι

∂Ψ(x, t)

∂t
=

ℏ2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) (3.4)

where Ψ(x, t) is the wave function of the wave associated with the particle.
This equation states that the space part is equal to the temporal part.

Let me propose the solution of this equation to be Ψ(x, t) = A exp i(kx− ωt)
. By plugging it in Eq. (4.4) and considering V to be zero (as is the case
with a free particle), we arrive at

ℏ2k2

2m
= ℏω.

As ℏk = p and ℏω = E, the above equation becomes

p2

2m
= E (3.5)

Let’s make the equation a bit complex by placing the particle in a nonzero
potential V. However, to simplify the situation, let’s take V = V (x) so that
the Schrödinger equations becomes

ℏ
ι

∂Ψ(x, t)

∂t
=

ℏ2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) (3.6)

Can you come up with a way to solve this equation? (Hint: The left-hand
side is entirely time-dependent while the right-hand side entirely space-dependent)

3.2 Time-Independent Scrödinger’s Equation

By using variable separable method to solve the equation, let’s consider
Ψ(x, t) = ψ(x)ϕ(t).

Plugging it in Eq. (4.6)

ℏ
ι
ψ(x)

dϕ(t)

dt
=

ℏ2

2m
ϕ(t)

d2ψ(x)

dx2
+ V (x)ψ(x)ϕ(t)

Further dividing by ψ(x)ϕ(t)

ℏ
ι

1

ϕ(t)

dϕ(t)

dt
=

ℏ2

2m

1

ψ(x)

d2ψ(x)

dx2
+
V (x)ψ(x)

ψ(x)
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I have multiplied and divided V (x) with ψ(x) to show that it is acting on
ψ(x).

Notice that the left-hand side is entirely time-dependent while the right-hand
side entirely space-dependent. This can only be true if both the sides are
equal to some constant. Let’s call that constant E (the reasons of this choice
will be obvious in the coming sections.)

Schrödinger equation becomes

ℏ
ι

1

ϕ(t)

dϕ(t)

dt
=

ℏ2

2m

1

ψ(x)

d2ψ(x)

dx2
+
V (x)ψ(x)

ψ(x)
= E (3.7)

Solving the left-hand side of this equation gives us

ℏ
ι

1

ϕ(t)

dϕ(t)

dt
= E

or
1

ϕ(t)

dϕ(t)

dt
=
ιE

ℏ

By rearranging and integrating∫
1

ϕ(t)
dϕ(t) =

ιE

ℏ

∫
dt

or

ϕ(t) = Ae
ιE
ℏ t (3.8)

Eq. (4.8) determines the evolution of the wave function Ψ(x, t) in time.

Coming back to Eq. (4.7) and separating the spatial part gives us

ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (3.9)

Here, ℏ2
2m

d2

dx2 = p2

2m
is the kinetic energy while V (x) is the potential energy

of the particle. It implies that E is the total energy of the system. Hence,
Eq.(4.7) is telling us that for separable solutions, the energy of the system
becomes constant.

The probability of finding the wave function Ψ(x, t) can be calculated as
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|Ψ(x, t)|2 = |ψ(x)ϕ(t)|2

= (|ψ(x)| · |ϕ(t)|)2

= |ψ(x)|2|Ae
ιE
ℏ t|2

= |A|2|ψ(x)|2

Notice that the probability density is independent of time. Hence, Eq. (4.9)
is called the time-independent Scrödinger equation.

3.3 Quantum Systems

3.3.1 Free Particle

A free particle will have zero force acting on it. As force is given by F =
−dV/dt, this means that a constant potential V is acting on it. This makes
TISE quite simple i.e.

− ℏ2

2m

d2ψ(x)

dx2
= Eψ(x)

or
d2ψ(x)

dx2
+

2mE

ℏ2
ψ(x) = 0

The characteristic equation will be

p2 +
2mE

ℏ2
= 0

or

p = ±ι
√
2mE

ℏ
(p should not be confused with the momentum operator.) Thus, the solution
comes out to be

ψ(x) = Ae
ι
√
2mE
ℏ x +Be−

ι
√
2mE
ℏ x (3.10)

We know that

E =
p2

2m
=
k2ℏ2

2m
or

k =

√
2mE

ℏ

66



Thus, Eq. (4.10) becomes

ψ(x) = Aeιkx +Be−ιkx

Therefore,

Ψ(x, t) = ψ(x)ϕ(t)

= (Aeιkx +Be−ιkx)(e−
ιE
ℏ t)

Since E = ℏω,
Ψ(x, t) = Ae−ι(kx+ωt) +Beι(kx−ωt)

The first term is a sine wave that propagates to the right while the second
term is a sine wave that propagates to the left. Intuitively, this is what we
should expect: a wave function that propagates in both directions.

3.3.2 Particle in a well

Suppose we have a particle confined to a one-dimensional well of height h. It
is doomed to remain inside this well. It is just like a rabbit trapped between
two mountains, each of potential energy V = mgh. The rabbit needs an
energy E higher than this potential energy to escape from the mountains.
If E > V , the rabbit, or the electron in our case, has enough energy to
’climb’ the mountain and go outside. If the electron can never go outside of
the well, the height h is practically ∞. Inside the well, we assume that the
potential energy is zero.

Let’s define three regions: I, II and III. Region I and III have infinite
potential energy while region II has zero potential energy. Now, let’s calculate
the wave function of the particle. The wave function in regions I and III
is zero because the potential energy is ∞. In region II, the Schrödinger’s
equation is

−ℏ2

2m

d2

dx2
ψ(x) = Eψ(x)

−ℏ2

2m

d2

dx2
− Eψ(x) = 0

Upon rearranging,

d2ψ(x)

dx2
+

2mE

ℏ2
ψ(x) = 0

d2ψ(x)

dx2
+

2m

ℏ2
p2

2m
ψ(x) = 0

d2ψ(x)

dx2
+ k2ψ(x) = 0
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Since P.E =0, the energy is only kinetic. Therefore, the solution to this
equation is

ψ(x) = Aeikx +Be−ikx

where A and B are arbitrary constants. We can find out their values by
applying boundary conditions. We know that ψ(x) = 0 at x = 0 and x = L.

At x = 0

ψII(x = 0) = A+B = 0 or B = −A ,

The original wave function in region II becomes

ψII(x) = A(eikx − e−ikx) = 2iA sin kx

this is the wave function inside the well.

At x = L

ψII(x = L) = 2iA sin kL = 0

or sin kL = 0

kL = nπ or k =
nπ

L

The possible values of k = π/L, 2π/L, 3π/L, ....,. i.e. k is quantized. So the
energy

E =
ℏ2k2

2m
= n2 ℏ2π2

2mL2
,

is quantized. The energy of the confined particle takes up special values

En =
ℏ2

2mL2
,

4ℏ2

2mL2
,

9ℏ2

2mL2
· · ·

∴ En ∝ n2

The wave function can also be written as

ψII(x) = 2ιA sin

(
nπx

L

)
(3.11)

The particle is present everywhere inside the well. In the ground state, it
has maximum probability at the center of the well. In the first excited state,
it will never be found at the center of the well. Moreover, if we increase the
length L of the well, the energies will decrease.
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There is some minimum, non-zero energy E1 possessed by the electron even
at the absolute zero temperature. This is called zero point energy. At 0
K, only the ground state is populated.

Consider 4 electrons, each of them in a potential well. At 0 K, all the
electrons will be in their ground states. By increasing the temperature,
there is a possibility that higher states will be occupied. It is the same as
having 4 electrons inside a single potential well. When the electrons are
excited to a higher state then upon decaying they will emit photon with a
certain frequency. The electron before measurement is everywhere but the
measurement restricts it and the wave function collapses to find a particular
position for the electron. The hydrogen energy levels were derived from
Bohr’s model but they can also be calculated from Schrödinger equation.
By luck, or unsurprisingly, the results of both of these calculations is the
same. The old quantum theory fails because it cannot give the position of
the electron. The energy levels for the hydrogen atom can be calculated if
we use the correct potential i.e; V (r) = −1/4πϵ0. If you consider a harmonic
oscillator, then the energy levels are equally spaced with energy gap of ℏω.
The potential energy for the harmonic oscillator is V (x) = 1/2kx2.

Any electron that is not bound to the nucleus in a hydrogen atom has
continuous, non-quantized energy. Let’s plot the wave functions for the
infinite well. The ratio between their energies is

N2

N1

= exp

(
− E2 − E1

kBT

)
The wave function inside the well is given by Eq. 4.11. There is only one
quantum number in this case because we are dealing with one-dimensional
case. For the hydrogen atom there are three quantum numbers n, l,ml

because it is in 3 dimensions. Every quantum number quantizes something.
In the case of a potential well, it quantizes energy. Suppose we take the
wave function of the ground state

ψ1 = 2iA sin

(
πx

L

)
,

the electron must exist somewhere in space otherwise its non physical. It is
trapped inside the well so the probability of finding electron here is 1, i.e.∫ L

0

4A2 sin2

(
πx

L

)
dx = 1 ,

By solving this to find A =
√

2/L and putting in the wave function, we get

ψn =

√
2

L
sin

(
nπx

L

)
, (3.12)
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Physically achievable wells

Infinite wells are an idealization and do not really exist in real life. If we
make the well such that the floor of this well is sloping, it means that the
potential energy is higher at one end and lower at the other. What if there a
hump inside the well? What if electron is moving inside teh well encounters
an obstacle such that the potential energy suddenly goes up by some value
V0? Once again, we imagine a rabbit in between the two mountains with a
certain height. If this rabbit takes food and gathers up energy, if it wants
to cross the mountain, it needs energy more than the potential energy mgh.
This is a classical picture. However if this was a quantum rabbit, it could
escape the mountains with lesser energy than that of the potential energy.
In other words the kinetic energy can be negative in quantum mechanics.

Suppose we have two parallel plate capacitors placed at some distance from
each other. If we apply a voltage V0 to both capacitors, one of their plates
becomes positively charged and the other negatively charged. In each of the
plates, we make a hole such that if an electron impinges them with energy
E, it can pass through the hole. Once the electron passes through, the hole
is plugged so that the electron is trapped inside the parallel plate capacitor
for eternity.

If the centrepoint of the first capacitor is x = 0 and x = L of the second
capacitor, what will the potential energy for this configuration look like?
The potential for the electron is given by

V =

∫ a

x=0

Eelectricdx (3.13)

As Eelectric is constant, the potential depends linearly on x. We can draw
the potential energy curve for such a configuration. However, if we reverse
the polarity of plates, the potential energy curve will be the y-mirror of the
former curve.

Let’s bring the plates closer and see what happens. In this case, the potential
energy curve will become steeper. If we keep on decreasing the distance
between the plates to the point where this distance becomes infinitesimal, the
setup will predominantly become an infinite potential well. If the voltages
of the plates are not equal, how will the potential energy look like? It will
be curved.

Let’s consider another kind of potential well with a ”sloping” floor. In this
case, the potential will be lower at x = 0 and higher at x = L. The negative
plate in the second capacitor is more negative as compared to the first one.
If the ejected electron has energy E, do you think it can exist outside the
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well? It cannot, because the potential energy outside the well is ∞. The
electron’s energy needs to be conserved. What kind of wave function do we
get inside this sloping potential well?

If we look at the time independent Schrödinger’s equation

−ℏ2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x)

−ℏ2

2m

d2

dx2
ψ(x) = (E − V (x))ψ(x)

by simplifying it a little more, we get

d2

dx2
ψ(x) = −

[
2m

ℏ2
(E − V (x))

]
ψ(x) , (3.14)

Since E > V (x), the term to the right of the equation is positive. E − V (x)
is simply the kinetic energy of the particle. The term in the square bracket
in Eq. 4.14 is [2m/ℏ2(E−V (x))] = k2. By putting this in Eq. (4.14) we get

d2

dx2
ψ(x) = −k2ψ(x)

k2 will be less than that in the case of a straight floored potential well. As
k decreases, the wavelength should increase. The solution should be the
same mathematically except now the wavelength changes as we move from
lower to higher potential. Since the potential energy is still infinite, the wave
function must die at the walls. As k is decreasing when we move from left
to right in the well, the momentum and velocity will also decrease. It means
that while travelling in the potential well, the electron will spend more time
in the proximity of the right wall. Hence, the amplitude of the wave function
also increases. The probability density function also increases towards the
right.

Consider another region where the potential energy is zero and an electron
moving inside this region. The electron has some kinetic energy, and the
solution of the Schrödinger’s equation will look like

ψ(x) = Aeikx +Be−ikx (3.15)

If we inject the electron in this region, it will move from left to right. In Eq.
(4.15), eikx represents its movement from left to right and e−ikx represent
its movement from right to left. The two counter-propagating matter waves
interfere with each other and produce standing waves. Normally, we need
confinement to produce standing waves. However, in this case, we are
considering that the particle has no chance of reflection because there is
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no obstacle. For a free particle, there is only a field propagating in a single
direction. If we include time dependence as well

ψ(x, t) = (Aeikx +Be−ikx)e−iωt

= Aei(kx−ωt) +Be−i(kx+ωt)

= Aeik(x−
ω
k
t) +Be−ik(x+ω

k
t) , (3.16)

where vp = ω/k. For a free particle, the phase velocity is the same as
group velocity. Since the signs of the velocity terms in this equation are
different, the first term represents a forward propagation and the second
term represents a backward propagation. Hence for a free particle, the wave
function will be

ψ(x) = Aeikx

If we plot it, the real part will simply be a cos function and the imaginary
part will be a sin function.

Now suppose that the potential energy initially zero and it takes a step of V0.
I we inject a particle with energy E into this region where E > V0 and plot
the wave function, the wave will have some wavelength initially. When it
reaches the step, the difference between the energy and potential decreases,
which decreases k. Consequently, the wavelength increases. The wavelength
beyond the step will remain constant.

Now, instead of positive step, consider a valley where the potential energy is
negative and the particle is again injected from the left. The wavelength will
initially be smaller but when it reaches the valley, the wavelength decreases
with an increase in k. Remember that we are only talking about E > V .

Suppose we have an atomic mirror placed on earth and an atom at a certain
height h above it. The atom hits the mirror and rebounds. The atom is
having an oscillatory motion in this region. The potential energy is zero on
the ground and it increases linearly as the atom moves up. At the top, the
potential energy is mgh – this is like the slopping potential with E > V .
The difference between energy and potential is small such that k is small.
Hence, the wavelength will be longer at the higher points and it decreases
when we move down.

3.3.3 Quantum dot

A quantum dot is a nanoparticle with quantized energy levels. The smaller
the quantum dot, the larger the energy difference between the energy levels.
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We know that when an electron decays from E1 to E2, it will emit a photon.
If we reduce the size of the quantum dot, the emitted photon will have a
higher frequency. If we keep on decreasing the size of the quantum dot, the
energy gaps will increase and the emitted photons will have higher frequency.
In this way, we can tell the size of the quantum dot by looking at the emitted
photon. This process is called fluorescence.

Let’s now demonstrate. We have prepared a solution of quantum dots.
These are semiconductor quantum dots made up of Cd-Se of varying sizes.
The solutions are of different colors to differentiate between the sizes of the
quantum dots. This phenomenon is shown in the demonstration.

3.4 Time dependence of wave functions

Let’s continue our discussion of the particle in the box. If we want to find
out the realm of possibilities for the position of particle i.e. ∆x, this would
be the order of L (the dimensions of the well). If ∆x ∼ L, p ∼ ∆p = ℏ/2L.
In this situation, the kinetic energy becomes

E =
p2

2m
=

ℏ2

2mL2

This is almost of the order of minimum energy. Thus, without solving the
Schrödinger’s equation, we can find te minimum energy just by looking at
the uncertainty principle. If the well shrinks in space, the minimum energy
goes up.

We have discussed the dependence of wave function on space but we have
not discussed it on time. If the wave function evolves with time, it means
that Ψ(x, 0) evolves to a new wave function Ψ(x, t) after some time t. We
have the time-dependent part is the Schrödinger’s equation as

ih

f(t)

d

dt
f(t) = E ⇒ ιh

d

dt
f(t) = Ef(t)

ih
df(t)

f(t)
= Edt⇒ df(t)

f(t)
= −ιEdt

ℏ
(3.17)

On solving this differential equation, we get

ln f(t) = −ιEt
ℏ

f(t) = exp

(
− ιEt

ℏ

)
(3.18)

73



Hence, the total wave function becomes

Ψn(x, t) =

√
2

L
sin

(
nπx

L

)
exp

(
− ιEt

ℏ

)
. (3.19)

If we write the complete wave function for the first state

Ψn=1(x, t) =

√
2

L
sin

(
πx

L

)[
cos

(
Et

ℏ

)
− i sin

(
iEt

ℏ

)]
=

√
2

L
sin

(
πx

L

)
cos

(
Et

ℏ

)
− i

√
2

L
sin

(
πx

L

)
sin

(
Et

ℏ

)
(3.20)

Let’s have a look at the plot of the real part of Eq. (4.20) at different times
starting from t = 0, which will look like this:

0

t
��

2E

_

Ψ

Figure 3.1: Plot of the real part of Eq. (4.20) at different times starting from
t = 0

As we progress in time, the real part will decrease because of the decrease in
cos function. There is a specific time at which the real part becomes zero.

Et

ℏ
=
π

2
⇒ t0 =

πℏ
2E

(3.21)

If the time increases any further, the cos function becomes negative and
the wave function starts increasing in the negative direction till it reaches a
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maximum point. This is a static wave –a wave which start from a maximum,
goes all the way to the negative maximum and then starts oscillating.

Now let’s plot the imaginary part of Eq. (4.20). At t = 0, the wave

0

t

Ψ

Figure 3.2: Plot of the imaginary part of Eq. (4.20) at different times starting
from t = 0

function is zero because sin(0) = 0. As time increases, the sin function
starts increasing but in the negative direction because of the negative sign.
It is the converse of the real part i.e. once it reaches the maximum point in
the negative direction, it starts increasing upon moving further in time till
it reaches a positive maximum. There is a flip-flop of the real and imaginary
parts; as one goes up, the other goes down and vice versa.

In real experiment, we do not measure the wave functions of the particles.
Instead, we measure their probability densities. The probability density
P (x, t) of Eq. (4.20), it becomes

P (x, t) = ψ∗
n(x, t)ψn(x, t) = |ψ∗

n(x, t)|2 =
2

L
sin2

(
πx

L

)
(3.22)

Note that the probability density is independent of time. Hence, we can
ignore it for time dependence. Even though the wave function is changing
with time, the probability does not change with it. If we plot this function,
it will simply be the square of the spatial part of the wave function. This is
called a stationary wave.
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In the ground state, the maximum probability of finding the electron is at
the middle of the well. The electron is everywhere because its mass has
a field. It has a distribution of charge as well, changing only with space
and not with time. This means that the charge is not accelerating and
hence not emitting any radiations. This is the last nail in the coffin of the
Rutherford’s model which says that an electron emits radiations even in its
own orbit. Schrödinger’s equation verifies the postulate of Bohr’s theory
that an electron can not emit any radiation in its own state.

3.4.1 A software-aided approach

The probability density function and the real and imaginary parts of the
wave function are also shown here plotted with the help of a software. For
the ground state of an infinite potential well it looks like the following. Now
I am going to run the simulation where in the back script the Schrödinger’s
equation is solved in JAVA script. We want to see what happens to the
plot when we change the time. We are observing that the real part is
decreasing, the imaginary part is increasing in the negative direction but
nothing happens to the probability density function. The real part is going
towards the zero and the imaginary part is going to the negative maximum.
Further increasing time the real part increases in the negative direction and
the imaginary part goes up in the positive. We notice that the variation is
faster in between the walls and slower towards the walls.

I am now going to run the simulation a bit faster. This is another way of
showing the same results. The probability density function does not change
with time. The magnitude of the wave function is not changing with time.
The phase is changing with time and it is shown with different colors in the
simulation.

Now lets look at the first excited state n = 2. There is only node in the
wave function and two lobes in the probability density function. The red
part of the wave function is going up and down in time, the blue part is also
changing direction and it is having a phase difference of 90◦ with the red.
However the probability density function does not change with time, you
will never find the electron at the center of the well. The total area under
the curve is 1 but the probability is different at different positions in the
well.

Lets look at even the higher excited states. In the 5th excited state once
again the probability density function does not change with time and the
wave functions are oscillating. Are these wave functions oscillating at a
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higher frequency compared to the lower states, why is it so? Because the
energy is higher so the frequency is higher. We can see five nodal points in
the density function excluding the walls for n = 6. We can say that for the
n state there are n− 1 nodes.

Now suppose we have an electron which is in the two energy levels at the
same time or it is in a superposition. Suppose the electron is in the ground
and the first excited state at the same time. The wave function for the
electron will be a superposition of the two states. Now the real and imaginary
parts of the wave function is changing but it is changing such that the
probability density function is also changing. The density function has two
humps when one goes up the other one goes down.

3.5 Superposition of states

Let’s go back to the infinite potential well having states n = 1 and n = 2.
We derived the general form of the wave functions as a function of time and
space. In this case, the energy of the particle is fixed in any state and does
not have any imprecision in it. We cannot tell where the particle exactly is –
it is a pointless question in quantum mechanics. However, we can calculate
the probability of finding the particle in a particular region. In the old
quantum theory, the energy of the particle depends upon the distance from
the nucleus. However, such is not the case in new quantum theory.

For the ground and first excited states, we can write the complete wave
functions as

Ψ1(x, t) =

√
2

L
sin

(
πx

L

)
exp

(
− iE1t

ℏ

)
Ψ2(x, t) =

√
2

L
sin

(
2πx

L

)
exp

(
− ιE2t

ℏ

)
(3.23)

In the double slit experiment, we have seen that the electron can pass
through the two slits at the same time. This implies that its wave function
is a composition of two wave functions. In this situation, we cannot tell
through which slit the electron has passed. It may make you question
whether the electron can exist in a superposition of two states E1 and E2.

The wave function of the electron in a superposition of states will be

Ψ(x, t) =

√
1

2

(
Ψ1(x, t) + Ψ2(x, t)

)
(3.24)
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In superposition, we lose the information of the energy of the electron.
Putting Eq. (4.23) in Eq. (4.24) we get

Ψ(x, t) =

√
1

2

(
ψ1(x) exp

(
− ιE1t

ℏ

)
+ ψ2(x) exp

(
− ιE2t

ℏ

))
(3.25)

The probability density function is calculated as

P (x, t) = Ψ∗(x, t)Ψ(x, t) (3.26)

By putting in the values

P (x, t) =
1

2

((
ψ∗
1(x) exp

(
ιE1t

ℏ

)
+

(
ψ∗
2(x) exp

(
ιE2t

ℏ

))
.((

ψ1(x) exp

(
− ιE1t

ℏ

)
+

(
ψ2(x) exp

(
− ιE2t

ℏ

))
(3.27)

after multiplication and simplification the result is

P (x, t) =
1

2

(
|ψ1(x)|2 + |ψ2(x)|2 + ψ1(x)ψ2(x)

[
exp

(
ι
∆Et

ℏ

)
+ exp

(
− ι

∆Et

ℏ

)]
,

where ∆E = E2 − E1. On simplifying the equation a bit further

P (x, t) =
1

2

(
|ψ1(x)|2 + |ψ2(x)|2 + 2ψ1(x)ψ2(x) cos

(
∆Et

ℏ

))
(3.28)

Since ω = ∆E/ℏ, therefore

P (x, t) =
1

2

(
ψ1(x)

2 + ψ2(x)
2 + 2ψ1(x)ψ2(x) cos(ωt)

)
, (3.29)

This gives us the probability density of the wave function which changes
in both space and time. This is the first time in our study so far that the
probability density has changed with time.

Let’s now look at how it changes with time. Plot cos(ωt) as a function of
time. Starting from the point A to point B, the time t = π/2ω at which
the function is zero. It is negative maximum at t = π/ω. At point A, the
probability is

P (x, 0) =
1

2

(
ψ1(x)

2 + ψ2(x)
2 + 2ψ1(x)ψ2(x)

)
P (x, 0) =

1

2

(
ψ1(x) + ψ2(x)

)2

(3.30)
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Figure 3.3: Plot cos(ωt) as a function of time

At point B, it is

P

(
x,
π

ω

)
=

1

2

(
ψ1(x)− ψ2(x)

)2

, (3.31)

Let’s now have a look at the plot superposition of the states and its probability
density function at points A and B. Since the cos function is sinusoidal,
there is a periodic toggling in the probability density at different times with
a frequency ω.

The analogy from the old quantum theory is that when an electron jumps
from the upper level to the lower level, it emits a photon. However, in the
new quantum theory, the probability density shows a charge that is smeared
out in space and redistributing itself in time. There is equivalent to a force
acting on the electron; it accelerates under that force and emits radiation.
The radiation is emitted as a stream of photons. So we should stop thinking
about the electron being a discrete particle in the upper level which somehow
emits a photon when it decays. In the proper quantum theory, superposition
gives the transition.

Let’s look at a demonstration. This is a continuous simulation of what is
happening. The program is solving the Schrödinger’s equation. One hump

79



0 L

A B

Figure 3.4: Superposition of the states and its probability density function at
points A and B.

is going up and the other one going down. This toggling is at frequency
ω which is also the frequency of the emitted photon. If we integrate this
function from 0 to L, we will always get 1, implying that there is a 100%
chance that the particle is inside the potential well. The electron is doomed
to remain in this well forever.

There can be a superposition of hundreds of states, which happens in quantum
computing. In these computers we can have the binary states 0 and 1 at the
same time. Let’s see what happens when there is a superposition of three
states. The probability density function for three states in superposition
toggles as well, but in this case it has two frequencies. We can also plot the
superposition of higher states.

Let’s look at the probability density function for the superposition of two
states. It takes 0.8 s for the peak to go up and then go down. If we increase
the frequency, the time taken will decrease. Let’s now consider what happens
if we increase the energy difference between the states. How long will the
process take to repeat itself? If we increase the spacing between the two
peaks, the oscillation will increase and correspondingly, the time taken will
decrease. Consequently, a photon of a higher frequency is emitted.
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3.6 Quantum obstacles and tunneling

Consider a step function where the step V0 is at x = 0. The infinite well has
two regions: region I where the potential is zero and the region II where it
is V0. The kinetic energy of the particle will be reduced when it encounters
the step but it will still have enough kinetic energy to go to region II.

In region I, the wave function is

ψI(x) = Aeikx +Be−ikx (3.32)

where k2 = 2mE/ℏ2. Both terms will now be included in the wave function
because of the discontinuity in the potential. The particle is encountering
another medium at the step. It means there has to be some force acting on
the particle for it to accelerate. It can reverse its velocity so the B in Eq.
(4.32) is zero.

Let’s write the solution in region II

ψII(x) = Ceik
′x +De−ik′x (3.33)

But here, D equals zero because once the particle enters region II, it has no
obstacle. Hence, we are left with

ψII(x) = Ceik
′x , (3.34)

where k′2 = 2m(E − V0)/ℏ2.

If we plot the wavefunctions, the wavelength will be smaller in the region I
but due to the decrease in k in region II, the wavelength will be greater. In
this case, either the coefficient C is large or the particle is moving slowly.
For this scenario, we now define the transmission probability.

3.6.1 Transmission and reflection probability

In this configuration, if a particle is injected from the left, it may either
be reflected from the step or go into region II. There is a probability of
reflection and transmission of a particle just like a wave. If I need to find
the transmission probability I would make a plane in region I and in region
II and find the probability of the particle passing this screen from left to
right. When I divide the probability of particle passing the screen b by the
probability of it passing the screen a, I get the transmission probability. The
transmission probability is defined as the probability that the particle crosses

81



b per unit time divided by the probability that the particle crosses a per unit
time. We can also define

P

t
=
P

l

l

t
= |ψ(x)|2v (3.35)

where P is probability, l is the length and t is the time. We can find the
speed as

p = ℏk ⇒ v =
ℏk
m

the transmission probability then becomes

T =
|C|2 ℏk′

m

|A|2 ℏk
m

⇒ |C|2k′

|A|2k
(3.36)

this is the transmission probability. We now have to find what are A and C
by boundary conditions. The probability of reflection will then be

R = 1− T , (3.37)

applying boundary conditions, at x = 0 the wave functions are equal

A+B = C , (3.38)

the other condition is that the derivatives at x = 0 will also be equal

ik(A−B) = ik′C

A−B =
k′

k
C (3.39)

Adding Eq. (4.38) and Eq. (4.39) we get

A =
C

2
(1 + β) , (3.40)

where β = k′/k. The transmission probability becomes

T =
4|C|2k′

|C|2(1 + β)2
=

4β

(1 + β)2
, (3.41)

This is the transmission probability of a single particle. In case there are N
particles, the probability will be NT .

We define the reflectivity R as

R =
|B|2k
|A|2k

=
|B|2

|A|2
(3.42)
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here k cancels out because both incident and reflected parts are in the same
medium. We also know that

R + T = 1. (3.43)

Let’s consider the case of negative potential again. Initially, there is no
potential followed by a valley where the potential is negative. A particle with
energy E enters the infinite potential well. Will this particle be reflected
at the discontinuity? Yes, because if there is some discontinuity in the
potential, some force will act on the particle whether the potential is positive
or negative. If the potential is positive, the particle should pass without any
reflection but quantum mechanically, there is reflection. Moreover, as the
energy of the particle is higher than the potential, its kinetic energy should
increase in region II. However, the particle can still be reflected because of
the discontinuity in potential.

It’s just like a pool of water – a cricket ball is thrown into the pool with
some energy. Suppose the energy of the ball is 50J and the pool of water
presents a potential barrier of 20 J to it. Classical mechanics says that the
ball should enter the pool with its kinetic energy reduced. Inside the water,
the ball experiences some viscous force and its energy drops. Once it enters
the pool, there is no chance for the ball to reflect back. However, if this were
a quantum cricket ball, there would have been some finite probability of its
reflection from the surface (counter-intuitive, right?).

To understand it better, consider a beam of light from air reaching glass.
When the beam impinges the air-glass interface, some of it will be refracted
to the glass will some of it will be reflected from the interface. As the
refractive index of glass is higher than that of air, the speed of light is lower
inside glass.

3.7 Quantum tunneling

Suppose the energy of the incident particle is smaller than the potential
barrier and the particle is injected from the left. In region I, the wave
function would be same as that for V = 0. According to classical mechanics,
the particle cannot penetrate in region II. However, quantum mechanically,
this is not true. If we solve the Schrödinger’s equation in region II, we can
come up with a wave function

ψII(x) = Ce−αx +Deαx (3.44)

where α2 = 2m(V0 − E)/ℏ2. Note that there is no imaginary term in this
wave function and that α is real. The second term in Eq. 4.44 blows away
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when x → ∞. Since the wave function cannot be infinity, we neglect this
term. In region I, the wave function will be oscillatory but when it touches
the boundary, it decays exponentially. Even though the energy of the particle
is less than the potential, it penetrates to a small length in region II which
is classically forbidden region.

Suppose situation is changed such that the potential is zero in region I and
III but V0 in region II. The energy of the incident particle is less than the
barrier and the length of the barrier is L. Even in this case, the particle
can penetrate in region II provided that we reduce the length of the barrier.
This phenomenon is called quantum-mechanical tunneling.

In region I, the wave function will be oscillatory. In region II the wave
function will be decaying but it will have both the terms of Eq. (4.44)
present because x does not go to ∞ here. The decay will be very fast. If the
wave function has not decayed completely when we reach the other barrier
– which is possible if the length is small – then some of the energy can leak
out to region III. The wave function in the region III will have the same k
values but the height will be very small.

Let’s go back to the example of glass and air. If we increase the angle of
incidence of a beam of light traveling from glass to air such that θi > θc,
the beam will not be refracted anymore but will only be reflected back in
glass. This phenomenon is called total internal reflection. This is just like
a photon hitting the barrier with less energy than the barrier so that all
of light is reflected. If the beam somehow leaks into the air, it will be
damped very quickly. Since we are not able to see the quick damping, we
place another glass tube very close the interface. The new glass is inserted
such that it is in the region of the penetration depth of the leaking field.
If the glass is brought extremely close to the first interface, we can observe
the transmission of light beam to air. This is called optical tunneling or
frustrated total internal reflection.

Let’s see a demonstration of this effect (Fig. 4.5). Consider a green color
laser light on the screen with a glass prism with a certain refractive index
placed in front of it. The refractive index is such that θc = 42◦. Let’s take
θi = 45◦. As θi > θc, total internal reflection should take place. But, by
virtue of quantum tunneling, some of the light must go into the classically
forbidden region. If we place another prism close the first one, no light
is transmitted. To capture the evanescent light, the prism needs to be
extremely close to the first such that the dimension of the prism should
match the wavelength (∼ 500nm). In order to capture the light we have
made another arrangement, in this arrangement two prisms are joined back
to back with a fluid in between them such that the distance between them
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is less than a micron. In this case, we will be able to capture the evanescent
light and frustrate total internal reflection.

1 m

45°

Figure 3.5: Demonstration for quantum tunneling

3.7.1 Radioactivity and nuclear stability

We are now looking for quantum devices. We discussed tunneling and we
can even say that we exist because of tunneling. An alpha decay can only
be explained through tunneling. One of the greatest successes of quantum
mechanics is the explanation of radioactivity.

Suppose we have a mountain with a person A standing on one side of the
mountain and a person B standing on the other side of it. The mountain
has a height such that a person standing at the top would have a potential
energy of 1000J. The person A throws a cricket ball with some energy so
that it reaches the person B. B then measures the energy of the ball.

What is the minimum energy that this ball must possess? It should be
greater than 1000J because on coming down all of ball’s potential energy
is converted into kinetic energy. Let’s say that the energy is 800J – is this
classically possible? No, because this would mean that the potential energy
at the top of the mountain is −200J. However, since tunneling works, this
ball can somehow reachB even with its energy of 800J. This effect is observed
in radioactivity.
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Suppose we have a 234
92 U nucleus. This (parent) nucleus decays gives rise to

a daughter nucleus Thorium-232 along with α particle.

234
92 U →232

90 Th+ αparticle (3.45)

A parent nucleus with 90 protons and large number of neutrons decays and
gives a daughter thorium nucleus with 90 protons along with an α particle.
The α particle moves away with some kinetic energy typically of the order
of 5MeV. This process is known as α decay and it is a naturally occurring
process. Both of the resulting species are positively charged particles.

Suppose I draw a plot of the distance from the nucleus r against the potential
V (r). What happens to the potential energy of the α particle when it is
brought close to the Thorium. The potential energy increases according to
the following equation:

|V (r)| = 1

4πϵ0

q1q2
r

(3.46)

If the parent nucleus has not decayed yet, the α particle must have a
very high potential energy. Increasing the number of protons in a nucleus
increases the potential energy. In that case, what keeps the nucleus stable?

In 1930, a theory was proposed to explain nuclear stability. According to this
theory, when protons are brought together, the repulsive force is overcome
by an attractive force. That is, there is a switch from the repulsive to the
attractive force at smaller r and the potential energy of the nucleus decreases.
The repulsive force is electrostatic. The attractive force, on the other hand,
is not electrostatic because then the two forces would repel each other. The
attractive force is called a strong nucleus force and it is a short range force.

In describing α decay, we say that α particle is bound to the Thorium
nucleus by this strong nuclear force and it sees a potential barrier. If r0 =
7.5× 10−15m then

|V (r)| = 35MeV (3.47)

But the α particles only have an energy of 5MeV and they are coming from
inside of the nucleus. This is analogous to the example of the cricket ball.
As the ball cannot go from above the barrier, it tunnels through it.

3.7.2 Tunneling probability

There is a certain probability of the tunneling of this α particle denoted by
T . It depends on the height of the barrier and the initial energy of the α
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particle. There are a large number of α particles hitting the barrier and
there is a small probability that a single α particle can tunnel through the
nucleus. The tunneling probability is given by

T ∼ exp

(
− L

δ

)
where δ =

ℏ√
2m(V0 − E)

(3.48)

where E is the energy of the α particle and V0 is the height(potential) of the
barrier.
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Figure 3.6: Tunneling probability density function

If T ∼ 10−15, there will still be a large number of α particles coming out.
But the process is indeed probabilistic, as it depends upon the initial energy
of the α particles. We can also write

N

t
≃ Nα

t
× T (3.49)

where N is the number of decays, t is the time and Nα is the number of α
particles hitting the barrier. The mean time or the average time between
two decays is given by the inverse of Eq. (4.49).

Consider α particles having energies of 4, 5, 6, 7, 8, 9 MeV – much less than
the barrier – coming out from the parent nuclei. They are escaping the
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nucleus because of tunneling. In other words, if ℏ = 0, the penetration
length would be zero and the α particle would not be able to reach the
classically forbidden region and no tunneling would take place. Because ℏ
is very low, we cannot observe tunneling in daily life. However, the mean
lifetime of decay is very diverse because of the huge range of tunneling
probabilities which in turn depend on the initial energy of the α particles.
Suppose the length of the barrier L ≃ 10nm, V0 = 0.1eV and E ≃ 0.05eV.
Now, if we increase E to 4eV, we will see a long range of probabilities and
corresponding mean times of decay.

Let’s have a look at a demonstration. We have some radioactive materials
which are sealed. They have low activity and are safe to use. One of the
sources is placed in a holder with a lead sheet. This is continuously emitting
radiations which are picked up by the Geiger-Muller tube, a device which
detects the number of counts per unit time. When an α or a β particles
hits the tube, it produces a flash which can be heard. We can observe
the decays on a computer screen as well as the counts per second. As
we are not receiving a constant count, we can assess that the process is
probabilistic. Let’s plot the number of occurrence versus the number of
counts after running the experiment for some time (Fig 4.7). The plot is in
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Figure 3.7: Histogram of number of occurrence versus the number of counts
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the form of a histogram. This histogram peaks at 35 but it also has lower
regions. This is due to the probabilistic nature of the radioactivity. Such a
process is called the Poisson distribution.

3.7.3 Scanning tunneling microscope

Imagine a solid surface made up of atoms which are bumping out. There are
free electrons inside the metal which cannot come out of the metal because of
the work function. The electrons initially experience zero potential followed
by a potential step of work function ϕ. Therefore, they cannot escape the
metal.

Let’s change the situation a little bit. Suppose we have two pieces of metal
and one of them has a tip. We apply a voltage to the metals such that the
tip is a bit positive with respect to the other metal. The distance between
the tip and metal is L. If we bring the tip closer and closer to the metal,
the metal tip will eventually ’scan’ the surface of the metal. Whenever there
is an atom, there is a bulge in the surface. The atoms are spaced apart at
a certain distance. When the tip is directly above the atom, the effective
distance L decreases. As the tip is positively charged with respect to the
metal surface, the electrons will favorably tunnel from the tip to the metal.
If we connect an ammeter, we can actually measure the current flowing in
the metal plates. However, if the distance L is increased, the current will
decrease. This is called tunneling current. The current is then converted to
an audio signal which indicates the detection of the atom.

If the tip is brought extremely close to the atoms, a chemical bond can be
formed between the atoms. Now, if the metal tip is carried to a different
location, the atom will be carried off along with it. This allows us to pick
individual atoms from the metals and place them wherever we like. In this
way, scanning tunneling microscope can manipulate metals.

Scanning tunneling microscope has revolutionized the physics. This microscope
was invented in the late 1980s and the inventors, Gerd Binnig and Heinrich
Rohrer, were awarded the Nobel Prize in 1994 for designing it.

3.7.4 Our sense of smell

You might have studied about cell signaling in biology courses. Our cells
have a cell membrane and the atoms present outside act like messengers (e.g.
adrenaline is a molecule which gets excited and transmits signals to the cell

89



membrane). This is possible due to the fact that the cell membrane has
receptors embedded in it. The messenger molecules bind to the receptors
and trigger the activation of some proteins known as G-proteins. Once
activated, these G-proteins act like a molecular switch which is normally in
off state. When it is turned on, other channels in the cell membrane are
opened which leads to the release of sodium and potassium ions. If their
concentration surpasses the threshold, a neuron will be triggered and the
electric impulse will travel to the brain. This is how we breath or smell.
There are cilliary molecules and olfactory receptor cells on the nasal epithelium.
The receptor cells are triggered by molecules and a signal is transmitted
to a dedicated region inside the brain. As another example of G-proteins,
consider a small adrenaline molecule traveling in the extra cellular environment.
This molecule binds with a receptor. The receptor gets activated and changes
its geometry. Guanosine triphosphate (GDP), a component of the G-protein,
acts like a switch; teh G-protein is in OFF state as long as GDP is attached
to it. As soon as adrenaline binds to the receptor, the G-protein is activated.
The resulting change in geometry causes the G-protein to exchange its GDP
for a GTP molecule. This GTP moves along the cell membrane and results
in the production of cyclic adenosine monophosphate (cAMP) molecules.
As the cAMP molecules are produced by a single adrenaline molecule, this
whole mechanism is acting like an amplifier. These molecules result in the
opening of ions and if this is a neuronal channel, neurons are fired. In this
way, the signals are transmitted to the brain.

To understand our olfactory senses better, we need an odorant molecule.
Let’s choose an ester with the chemical formula CH3CH2COOH to serve
the purpose. The geometry of this molecule is such that it fits the receptor.
An electron from one side of the receptor has to cross the barrier after the
G-proteins are linked up with the receptor molecules. We have to activate
this molecule via switch. The G-protein has to gain an electron so that
the link is broken. The other side of the receptor molecule has some excess
electrons and the region is called the donor region. The electron has to cross
the barrier to go to the acceptor region. The barrier ester does not conduct
and is an insulator. The electron crosses the barrier by tunneling. Both
inside the donor and acceptor regions the electrons are at some energy which
is different from each other. A free electron enters the donor region which
comes from some other molecule present nearby which is called a reducing
agent. One such reducing agent is NADH which can supply electrons. The
electron has energy E1 in the donor region. The electrons through the
odorant molecules tunnels towards the acceptor region having energy E2.
Why do we need an odorant molecule? The electron loses its energy while
tunneling which has to be depleted somewhere and that excess energy goes
to the odorant molecules. This molecule shows vibrations which are called
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phonons. This is an example of “Phonon assisted tunneling”.

Phonon is a quantum of vibrational energy. The energy levels for the
vibration of molecules are quantized. The lower energy level represents the
ground state of the molecule having n = 0. If the molecule is in the ground
state, its energy will be

E0 =
1

2
ℏω0 (3.50)

where ω0 is the fundamental frequency. The energy of the first excited state
having n = 1 is

E1 =
3

2
ℏω0 , (3.51)

If the molecule is in the ground state, we can excite it, for instance, by
an incoming photon. It absorbs that photon and jumps to a higher level.
Another way of exciting the molecule can be by increasing the temperature.
The difference between the states is given by ℏω0. We define this energy gap
by phonons. In the nth state, the oscillator has energy

En =

(
n+

1

2

)
ℏω0 (3.52)

In this state, we can say that the oscillator has n+1/2 phonons. If n is very
large, n+1 ∼ n i.e. we can say that the oscillator has n phonons, each having
energy of ℏω0. A phonon can be treated as a particle just like a photon. If
one of the electrons is excited from its energy level, it leaves a hole behind.
This hole is not a real particle – it is a quasi-particle but it can be treated
like a real particle. Similarly, a phonon is not a particle but it can be treated
like one. If the electron is de-excited from E1 to E2, it will emit a phonon
of the corresponding energy. This is what happens in tunneling. Hence, the
process of smelling involves the process of phonon-assisted tunneling.

A photon is a packet of energy which cannot be destroyed but a photon
itself can be. Phonons are not conserved – they can be created or destroyed
through temperature. If the atom is excited to higher levels, new phonons
are created all by themselves.

3.8 Bohr’s correspondence principle

Consider a teardrop on the tip of an eyelash. Suppose the tear drop has
a mass of 1 µg and is being pulled down by gravity. This scenario can be
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considered analogous to a harmonic oscillator. If the spring constant k is
0.1N/m, how many phonons are excited in this process? The total downward
displacement due to gravity is given by

x0 =
mg

k
(3.53)

Therefore, the energy will be

E =
1

1
kx20 =

(
n+

1

2

)
ℏω0 (3.54)

We can calculate the value of n from this equation, which comes out to be
n ≈ 3 × 1022. It is such a large number that the wave-nature of quantum
mechanics is washed away. This is called Bohr’s correspondence principle.

3.8.1 Capacitors

Consider a circuit with a capacitor C and a resistor R. The capacitor is
initially uncharged. If we close the circuit at t = 0, the current will flow
through the circuit but it will be resisted by the positive end of the charging
capacitor. When the voltage across the capacitor equals the voltage across
the battery, the current stops flowing.

We are interested in observing the change in the capacitor charge with time.
Applying Kirchoff’s voltage law to the circuit

V0 =
Q

C
+R

dQ

dt

rearranging this a little

dQ

dt
=

1

R

(
V0 −

Q

C

)
Multiplying both sides by an integrating factor we get

d

dt

(
Qet/RC

)
=
V0
R
et/RC

integrating this equation we get

Q = V0C + Ae−t/RC

At t = 0, Q(t = 0) = 0 so A = −CV0. Putting it back, we get

Q(t) = CV0(1− e−t/RC) (3.55)
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This is the maximum charge the capacitor holds at a particular time and is
shown in Fig. 4.8. It shows that the capacitor does not immediately charge
to CV0 and requires time. At t = RC the capacitor is charged to 63% of its
maximum value. This RC is called the time constant.

C
h
ar

ge
 (
Q
)

Time (t)RC

63%
charged

(time constant)

Figure 3.8: Plot of charge against time

Now, let’s open the switch and see what happens. The equation in this
discharging condition is

Q

C
+
dQ

dt
R = 0 (3.56)

By solving this differential equation, we get

Q = Q0e
−t/RC (3.57)

This is an exponentially decreasing curve.
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Figure 3.9: Exponentially decreasing curve

3.9 The quantum revolution in electronics

Transistors were invented in 1947 by Shockley and Bardeen and can act like
switches and amplifiers. There are different kinds of transistors. We will
briefly discuss a specific type known as field-effect transistors (FETs).

In a metal-oxide-semiconductor field-effect transistor (MOSFET), we have
a slab of silicon, which is a group 4th semiconductor. We know that energy
levels are quantized. If we have free electrons and positive ions in the
solid, the energy levels are bunched up to make an energy band. One
bunch of levels is separated from the other by some gap called a forbidden
or energy band. The electrons are filled according to the Pauli exclusion
principle. The lower band is called the valence band and the upper band
is called conduction band. If the valence band is completely filled and the
conduction band is empty, then such a material is called an insulator. If
we have electrons at the top of valence band and we provide it with energy
by an incoming photon, they can go to the conduction band. Then, an
electron-hole pair is created and the material becomes a semiconductor.
Even room temperature is sufficient to start conduction. If we increase the
temperature of a semiconductor, the conductivity goes up whereas for the
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insulator it goes down. When the excited photon comes back a photon
is emitted which is the working principle of a light-emitting diode (LED).
Converse is the working principle of a solar cell.

A MOSFET is made of a silicon chip which is a very abundant and pure
element. We can purify the silicon to such an extent that the impurity is less
than 1 atom in 108 silicon atoms . This transistor has two metal electrodes
made of gold. These electrodes have wires known as interconnects. One of
the electrodes is called a source and the other is called a drain. On top of
the silicon we have an insulator which is a metal oxide such as silica. On
top of it we have another electrode known as the gate. The thickness of the
gate defines the kind of technology under use. Classically, no electrons can
go from the gate to the silicon and vice versa. This device is kept at room
temperature. The electrons are spread out in the silicon – the higher the
temperature, the higher will be the density of these electrons. Now we apply
a voltage to the source. Suppose it is a negative voltage and to the drain we
apply a positive voltage. Electrons should flow from the source to the drain
but can they flow through the silicon to make up the current? They cannot,
because no conduction can take place through it. This transistor is now in
the OFF state. If we want to make it go to the ON state, we would need to
apply a voltage of 10 volts to the gate. We apply this potential difference
to the source and drain. The electrons in the silicon will be attracted to the
vicinity of the gate. Free electrons are already available in the source and
now, due to repulsion, the conduction channels open up between source and
drain. By switching the gate voltage ON and OFF we can turn the current
ON and OFF.

If the number of electrons controlling the transistor is very high, power
dissipation will also increase accordingly. In 1970 when these ICs were made,
there were 10 million electrons which made the transistor switch. In 2013,
only 5−10000 electrons were able to switch it. This means that the number
of electrons controlling the transistor are reducing day by day, resulting
in less power dissipation and faster operation. Currently a microchip of
the dimensions of 1in2 squared has 100 million transistors and each one is
switching in 100 millions per second. This, however, is not desirable and we
want to decrease it. This is where quantum mechanics comes to the rescue.

Flash memory cell

A flash memory cell is similar to MOSFET. It consists of a source and a drain
and there are two electrodes on a metal oxide wafer. The top electrode is
the gate while the lower electrode is the floating electrode. To study the
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working of the flash memory cell, let’s apply a voltage to its source and
drain. If a voltage is applied to the gate, a conduction channel known as an
N -channel opens up. When the number of conduction electrons is high, they
can tunnel through the metal oxide to the gate because the channel width
is small (l = 1mm). Now, if the gate voltage is turned OFF, the conduction
electrons fade away. However, the tunneling electrons remain there.

Metal oxide

Gate

Drain Source

Silicon

Channel

Figure 3.10: Flash memory cell

Let’s write something onto the memory cell. This process is carried out
through quantum mechanical tunneling. These cells are non-volatile devices
because turning OFF the power does not change the state of this cell. We
can also erase the information stored in these cells if we apply a positive
voltage to the drain and a ground voltage to the source and gate. In this
case, the electrons will now tunnel through the metal oxide to the drain.

3.9.1 Single electron transistor

Once again, we have the three electrodes: a source, drain and gate, all of
them having voltages. Instead of electrons, we now have a quantum dot
inside the chip. We would like to put one electron in the quantum dot or
quantize the current because charge is quantized. We would like to have
tunneling on purpose for this to happen. If the quantum dot is neutral, its
electrostatic energy is zero. If we put one electron in the quantum dot and
then another, is it easy for the second electron to go in? The first electron
will repel the incoming electron, so adding the electron to the quantum dot
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increases its energy. If this quantum dot acts as a capacitor, its electrostatic
energy would look like

EC =
e2

2Cdot

(3.58)

This increase in energy acts like a potential barrier. This effect is known
as Coulomb blockade. If we have large temperatures electrons from the
source and gate can tunnel to the quantum dot. We would like to make
the temperature smaller so that the electrons cannot overcome the Coulomb
barrier or we can also write this condition as

10kBT <
e2

2Cdot

At this condition we can control the tunneling. The capacitance of a quantum
dot is given by

Cdot = 2πϵd , (3.59)

where ϵ is the conductivity and d is the diameter of the dot.
The second condition to control tunneling is given as

∆E < EC , (3.60)

where ∆E is the uncertainty in energy. If it is so large that it is in the order
of the charging energy EC , then the charging energy is as good as nothing.
If this condition is not met, then electrons will tunnel to and from the dot.
From the uncertainty principle we know that

∆E ∼ h

2∆t
=

h

2RtCdot

, (3.61)

where Rt is the tunneling resistor, and if ∆t is large then the ∆E should be
small. Writing the second condition again by putting these values, we get

∆E =
h

2RtCdot

<
e2

2Cdot

⇒ Rt ≃ 26k Ω . (3.62)

Electrons in the source and the drain are filled upto the Fermi energy. In
between these, we have the quantum dot and the barrier is the Coulomb
blockade. Suppose there is an energy level inside the dot which is coincident
with the Fermi level. If an electron is in the source can it tunnel to the dot?
It can, but when it happens, the energy of the quantum dot increases which
is against the conservation of energy and is classically forbidden. So the
electron has to pay the price to enter the quantum dot. The drain is moved
downwards because of the positive voltage applied to it. If a positive voltage
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is now applied, the the energy levels in the quantum dot will decrease. Now,
the electron can tunnel through the barrier by paying the price which is met
at the condition

Vge =
e2

2Cdot

, (3.63)

At this condition, the quantum dot increases its number of electrons by 1
only.
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Chapter 4

Double slit experiment

Richard Feynman stated that double slit experiment captures all of the
mysteries of quantum mechanics. The experimental setup is as follows.

S
1

S
2

S
3

Figure 4.1: Young’s doulbe-slit experiment

We have a coherent source of light. Light falls from this source onto a screen
that has one slit in it, this is followed by another screen that has two slits.
After the screen with two slits, we have another screen that we use to observe
the pattern that the light makes after passing through the two slits.

99



Light is an electromagnetic wave, and waves interact with each other. Light
waves passing through the two slits interact and we observe fringe formation
on the screen. The graph of light intensity against the position on the screen
is called the interference pattern.

If instead of waves we were sending particle through the slits (bullets let’s
say), we would not get an interference pattern, but just two humps. Closing
one slit will give us one hump and closing the other will give us another hump
at a different position on screen. Opening both the slits simultaneously will
give us a sum of these two humps but not an interference pattern. This is
because particles do not interfere.

4.1 Quantum realm
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Figure 4.2: Young’s doulbe-slit experiment with electrons instead of light

We alter the previous experiment a bit and instead of a light source we
put a source that produces electrons using thermionic emission. It consists
of a filament that heats up when current passes through it. When the
temperature gets large enough, the electrons come out from inside the metal
to the surface and evaporate out of it.

We accelerate these electrons by providing a potential difference between
the filament and the screen containing slit. Kinetic energy gained by the
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electrons will be

E = V e

Where V represents potential, and e represents elementary charge.

When the electrons pass through the screen with two slits and fall on the
detection screen coated with Zinc Sulfide, we see the interference pattern
instead of two distinct humps. This reveals a strange phenomenon that
electrons that we are used to consider as particles are behaving as waves
in this experiment. This idea was first proposed by deBroglie when he said
that there is a wave associated with each and every particle, big or small.

Our general description of this experiment is that we have millions of electrons
passing through the slits at a given time. Some of the electrons pass through
S2 while the others pass through S3. The electrons interfere with one another
and give us the interference pattern we observe. Let’s change this experiment
a bit more. We reduce the intensity of electrons produced to a level that
a new electron is released only when the previously released electron has
already reached the final screen. This means that at a time only one electron
passes through the slits. One can intuitively think that since it has no
other electron to interact with, it will simply pass though one of the two
slits, fall on some point on the screen and we should not see a pattern.
But, contrary to our intuition, the experimental outcome came out to be
an interference pattern. This means that the electron passed through the
two slits simultaneously, interfered with itself like a wave, and gave us the
interference pattern.

But how is it possible for an electron to split? The electron has to pass
through either of the two slits to reach the final screen. So is it passing
through S2 or S3? To find this out we introduce an observation device in
the setup: a light bulb. Light from the bulb bounces off the electron and
it shines. A shine near S2 means that the electron chose that slit and vice
versa for S3. By sending one electron at a time, we find that the electron
actually behaves like a particle and passes through either of the two slits
but not both.
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Figure 4.3: Observation device introduced in experimental setup

However, after installing this bulb in the setup, we do not get the interference
pattern anymore. Instead, we see only two humps on the intensity plot. This
means that the electrons started acting as particles the moment they were
observed even though the observer did not interact with the electrons.

This problem occurs because introducing an observer (bulb) alters the nature
of the experiment. The overall experiment has changed because of this
measurement device. Even if we were focusing on a single slit, and from
a very large distance (through a telescope let’s say), we will still see this
change of nature.
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Figure 4.4: Telescope as observation device

Nature or properties of something should not change because of our choice
to observe it or not. At least that’s what we thought. Quantum mechanics
negates that perception of ours.

4.2 Particels or waves?

In the slit region the electrons are acting as waves and energy is spread out
in the whole setup; but as soon as the electron reaches the final screen, the
wave collapses into a particle, and all of that energy confines into a single
point giving us a dot on the screen. Before detection, there was a realm of
possibilities for position on screen; Measurement confined that to a single
point.
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4.2.1 Copenhagen interpretation

This problem was resolved by quantummechanics. According to Copenhagen
interpretation, we do not consider an electron as either a particle or a wave.
Instead, we say that it is a quantum field, represented by the Greek letter
psi ψ.

We say that the field associated with the path of slit S2 is ψ1 and with S3

the associated field is ψ2. The overall field ψ of the electron that passes
through S1 is a superposition of these two fields.

ψ = ψ1 + ψ2 (4.1)

A superposition is a field state that can exist in quantum interpretation of
world, but not in the world how we perceive it. So our act of trying to find
the electron destroys this superposition state and it collapses to either of it’s
two components states.

There is another interpretation of this changing nature called the many
world interpretation. It says that another universe is created when we make
a measurement. In some other universe with the exact same conditions, the
observer will not see a flash.

4.3 Heisenberg’s uncertainty principle

A bit of mathematics is required before this concept can be explained.

104



S
1

S
2

S
3

-
--
-

y

d

D
}

Path difference 

P

Figure 4.5: Path difference in double-slit experiment

Equation of a wave can be written as

ei(ϕ)

Without considering its propagation with respect to time. The factor of phi
in the exponential is the phase difference in radians between the two waves
that interfere given by ϕ = kx. x is the path difference between the two
waves and k is the wave number given by

k =
2π

λ

Path difference can be calculated from the figure using simple trigonometry
and turns out to be dsin(θ). Using this path difference, the phase difference
becomes

ϕ = kdsin(θ)

Substituting expression of k,

ϕ =
2π

λ
dsin(θ)

We know λ = h
ρ
. Substituting this, we get

ϕ =
2π

h
ρdsin(θ)
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The point at which we want to find the intensity will be dictated by the
angle θ as the rest is constant.

Intensity at any point is given by amplitude squared.

I = A2

In our experiment we have wave functions which can also be thought of as
probability amplitudes like we did in the previous chapter. So, intensity at
any point P on the screen is given by

1IP = |ψ|2IP = ψψ∗

Using eq(5.1) and the fact that ψ1 and ψ2 are same except for a phase
difference of ϕ, the overall wave function can be written as

ψ = ψ1 + ψ1e
iϕ

and the conjugate is given by

ψ∗ = ψ∗
1 + ψ∗

1e
−iϕ

Intensity can then be written as

IP = (ψ1 + ψ1e
iϕ)(ψ∗

1 + ψ∗
1e

−iϕ)

= ψ1ψ
∗
1(1 + eiϕ)(1 + e−iϕ)

Let ψ1ψ
∗
1 = c as it is a constant value.

IP = c(1 + 1 + eiϕ + e−iϕ)

= c(2 + 2cos(ϕ))

= 2c(1 + cosϕ)

1IP = 4c

(
cos2

ϕ

2

)

1Modulus sign is used because ψ is, in general, a complex number
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Figure 4.6: Derivation of possibly confusing step

Plotting this equation will give us the intensity pattern that we observe on
the screen.

I
P

Figure 4.7: Intensity against angle θ

If one wants to plot the graph of intensity against the displacement from
mean position y, it can be achieved using the following calculations.

ϕ = kdsinθ

For small θ, sinθ ≊ θ ≊ tanθ.

tanθ =
y

D
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So,

ϕ =
kdy

D

Substituting in eq5.2

IP = 4c

(
cos2

(
πdy

λD

))

Here we get a minimum when the angle is a multiple of π
2
, i.e. y = nλD

d

where n is an integer.
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y

Figure 4.8: Intensity against position y

The uncertainty ∆y in the path that the electron chooses depends on the
distance between the slits. Farther apart the slits are, greater will be the
uncertainty in path.

∆y ≈ a

Let’s reduce the distance d between the slits and see how it effects our graph;
considering only the central maxima for now.
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Figure 4.9: Intensity against displacement y from mean position

Decreasing the slit separation d, increases the distance where first minima
appears. Intensity must decrease if that happens because the area under the
curve corresponds to the number of electrons and it should stay constant.

The spread in the intensity shows that there is some uncertainty associated
with what direction the electron moves in after passing through the slits.
Motion of a particle is related to momentum. So, there is a whole range of
momentum vectors that can be attained by the electron.
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Figure 4.10: Uncertainty in momentum

The uncertainty in momentum ∆ρy depends on the spread of the peak i.e.
2ρsinθ.

∆ρy ≈ 2ρsinθ

Product of the two uncertainties turns out to be

∆ρy∆y ≈ 2dρsinθ

We know that ρ = h
λ
, so

∆ρy ≈
2dh

λ
sinθ

This can be simplified a bit more. We see that a single hump like this
central maxima of ours can be seen even if we have a single slit. This can
be explained if we consider our single slit as a combination of two smaller
slits with a slit separation of a

2
.
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Figure 4.11: Magnification on a single slit

At the ends of this peak we see that the brightness is low, so destructive
interference must have taken place. Condition for which is that the phase
difference must be π

2
. So,

ϕ = kdsinθ
π

2
=

2π

λ

a

2
sinθ

1

2
=

asinθ

λ

Substituting this result in eq5.3, we get

∆x∆ρx ≈ h

This is where Heisenberg’s uncertainty principle comes from.

Heisenberg’s uncertainty principle says that the product of uncertainty in
position and uncertainty in momentum has a minimum value it can not go
below no matter how precise our measuring instrument is. This minimum
value is given by ℏ

2
.

∆x∆ρx =
ℏ
2

Where ℏ = h
2π
.

It should be kept in mind that these uncertainties are quantum uncertainties.
When we flip a fair coin, we say that it will land on either heads or tails
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with equal probability; but we can improve this prediction if we do some
extra measurements and calculations like using the force of our initial flick,
the strength of wind flow, the angle at which the coin leaves the hand and so
on. There is no minimum value of uncertainty that restricts us from making
our prediction better. Such is not the case with quantum uncertainties.

Suppose that we have an electron in our room moving from one wall to the
other in x-direction. Complete information of this electron is given by

ψ = ψ(x, t) = Aei(kx−ωt)

Real part of this wave function will be Acos(kx− ωt)

x

Figure 4.12: Real part of wave function

Note that this time the wave is not stationary in time and at some other
time it will have displaced.
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Figure 4.13: Real part time-varying

Now, we are posed with the question ”Where is this electron?”. It might
seem a bit too simple considering the problems you have already solved in
mechanics. We had objects attached with pulleys, sliding on planes etc. and
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using Newton’s laws we could calculate where our object of interest was at
any instant of time.

However, simple it may seem at first glance, we can not determine the exact
position of this freely moving electron in our room. Rather, we can only
propose a realm of possible locations where it might turn out to be if a
measurement is made. The act of measurement collapses the wave function
to a single point out of those realm of possible points and gives it a new state
given by δ(x−xi)

2. This means if we perform subsequent measurements of
position on this very electron again and again, we will always find it at xi.
However, if we take another electron, keep all the conditions same as were
for the first one, and perform a measurement, we will find the electron at
a different position than what was determined in the previous try. Every
new electron whose state we have not collapsed yet, will land at a different
position even though they face the exact same conditions.
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Figure 4.14: Similar electrons collapsing at different positions

Before we made the measurement, we knew what was the wavelength of our
function and using it we could find the momentum, ρ = h

λ
. But once we

2This is a special kind of function called a Dirac Delta function. Its value is non-zero
only when the input parameter is zero itself. In this case we will only get a value when
x = xi
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have made the measurement, we know exactly where we have confined our
electron and lose all the information about the wavelength of our function.
Hence, we become completely clueless about the momentum of our electron.
Getting information about one of the two variables destroys information
about the other. There is a trade-off between position and momentum.
If ∆x→ 0,∆ρx → ∞.
If ∆ρx → 0,∆x→ ∞.
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Figure 4.15: Trade-off between position and momentum
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4.3.1 Uncertainty Diagram

x

Figure 4.16: Uncertainty diagram

For uncertainty diagram, we get take the values of ∆x and ∆ρx using
full width at half the maximum height of Gaussian distribution of the
uncertainty.
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Figure 4.17: Gaussian distribution

We now know that the act of measurement collapses the wave function
and uncertainty in position should be zero, turning it into a Dirac delta
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function (figure 3a). However, due to the lack of precision of our equipment
(classical uncertainty), we see a little spread in uncertainty diagram instead
of a perfect straight line, giving us Fig. (5.18(a)) instead of Fig. (5.18(b)).

x x

(a) (b)

Figure 4.18: Uncertainty theory diagram vs experimental result

4.3.2 Another form of uncertainty principle

So far, the form of uncertainty principle that we have seen is the relationship
between position and momentum

∆x∆ρx ≥ ℏ
2

This equation can be manipulated to describe the uncertainty relationship of
some other parameters as well e.g. energy-time uncertainty principle. Let’s
consider an electron that has an uncertainty in momentum ∆ρx. Mass of an
electron is definite and we can write this uncertainty as

∆ρx = m∆vx

If we have to observe this electron, we shine light on it. The photon that
comes to interact with the electron and bounce off of it, has a time window
of ∆t to do so

∆x = vx∆t

Energy of an electron can be written as (considering kinetic energy only
because electrons are very light)

E =
1

2
mvx

2

Written in terms of momentum, this becomes

E =
ρ2x
2m
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To find the uncertainty in energy, we take partial derivative on both sides.

∆E =
ρx
m

∆ρx

∆ρx = ∆E
m

ρx

∆ρx =
∆E

v

Plugging these in the uncertainty relationship, we get

∆x∆ρx = v∆t
∆E

v

= ∆E∆t ≥ ℏ
2

Intuitively, this can be thought of like this: an object with higher energy is
moving faster and more time is required to observe what it is doing, while
it is easier to observe a slow moving object and requires less time. This
new form is just as important as the previous one. It’s just a matter of
application that we choose one or the other.

4.3.3 Applications of Uncertainty Principle

1. Measuring the energy of a photon (Light)

For this application we use monochromatic source of light, a Laser. We send
a pulse of light at a spectrometer that gives us the frequency of the light that
it received. The time period for which the laser is sent to the spectrometer
is varied using a shutter placed in the laser path.

f

Spectrometer

Spectrometer output

Shutter

Laser

Figure 4.19: Laser observed by spectrometer
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If we keep the shutter open time small and repeat the experiment with
several pulses, we will observe that the spread in the frequency ∆f displayed
by the spectrometer is larger than what we get if the shutter is opened for
a larger interval of time.

Large ∆t 

Small ∆t

I
P

f

Figure 4.20: Relation of ∆t and ∆f

This spread or uncertainty in frequency is directly related to energy

∆E = λ∆f

But why do we get this spread in frequency when we send in pulses to the
spectrometer? This happens because when we increase the sample time,
we get more information about the wave nature and can easily determine
its wavelength. Lowering this sample time creates some blank portions in
our wave plot/information about the wave. These blank portions are what
increase our uncertainty about the wavelength of sample received.

118



t

t

t

��f

Figure 4.21: Different samples of light

Even if we remove this shutter, we do not get perfect information about
energy. This is because we have an in-built shutter in the electrons themselves.
We saw in chapter 2 lasers’ section that the electrons stay in meta-stable
state for some time known as the lifetime of that excited level. Pulses are
generated after every one lifetime when the electron transitions to the lower
level. More the time an electron gets to make transition (higher ∆t), the
more precise frequency it will release (lower ∆f).

2. Bohr’s orbitals

In 1913, Bohr proposed his model of a hydrogen atom. In this model he said
that the electrons move around the nucleus in quantized circular orbitals,
and each orbital has a quantum number n associated with it. Distance of
each orbital from the nucleus is given by rn, and the electrons are bound to
stay in these quantized orbitals.
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Figure 4.22: Atomic orbitals

But what if we somehow try to confine the electron in the region between two
orbitals? What stops us from doing that? Let’s see. If we try to confine the
electron in between the orbitals rn and rn+1, the uncertainty in the position
will be of the order of the difference between the two orbitals.

∆r = rn+1 − rn

There will also be an uncertainty in momentum according to the Heisenberg’s
uncertainty principle

∆ρr ≈
h

∆r

This will then result in uncertainty in energy given by

∆E =
ρr
m
∆ρr

Plugging in the value of ∆ρr we get

∆E∆r
ρrh

m

This shows that when we try to confine the electron in the region between
two orbitals (reducing ∆r), the uncertainty in energy ∆E will become large.
This means that the minimum value of energy Emin, which was previously
zero, is also uncertain by an amount ∆E now. This makes the overall energy
to go up and enough for the electron to get rid of the hold of nuclear force.
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This is the reason for why the states between orbitals are highly unstable
and difficult to occupy.

∆E

∆E

Energy �

New E
min

Old E
min

Figure 4.23: Increase in minimum energy

Let’s quantify these uncertainties. Centripetal force on the electron moving
in an orbital is given by mvn2

rn
and this is provided by the nuclear pull on the

electron given by Coulomb’s law of attraction

mvn
2

rn
=

e2

4πϵ0rn2
(4.2)

With every electron there is an associated wave. The orbital where the
electron can exist has to be such that this wave can sustain in it, it only
happens when the size of orbital is appropriate for the wave to constructively
interfere when it loops around the circular path.

r

Figure 4.24: DeBroglie wave sustained in an orbital

121



This requires an integer number of wavelengths to be accommodated in the
path

2πrn = nλ

usnig ρ = h
λ

2πrnρn = nh

substituting ρ = mv
2πrnmvn = nh

We know that angular momentum L = mvr. Using this and rearranging the
equation a bit, we get

mvnrn = Ln = nℏ
We can use this expression to get rid on vn in eq5.2

vn =
nℏ
mrn

vn
2 =

n2ℏ2

m2r2n

Substituting in 5.2,

m

rn

n2ℏ2

m2r2n
=

e2

4πϵ0r2n
rnm

n2ℏ2
=

4πϵ0
e2

rn =
4πϵ0ℏ2

me2
n2

All of the terms in fraction are constants and can be combined as a0, the
value of which is 0.529Å.1

rn = a0n
2

Using this expression, the uncertainty ∆r becomes

∆r = rn+1 − rn

= a0[(n+ 1)2 − n2]

= a0[2n+ 1]

If n is large as compared to 1, this expression becomes

∆r ≊ 2a0n

Similarly, we can use ρr =
Ln

rn
= nℏ

rn
in the expression for ∆E,

∆E =
ρr
m
∆ρr =

nℏ2

mrn∆r

1Å is a Greek symbol called angstrom. It is equal to 0.1nm.
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Substituting the value for ∆r, we get

∆E =
nℏ2

ma0n22a0n
=

ℏ2

2a0m

1

n2

The value of this uncertainty turns out to be around 140eV , much larger
than the energy of an electron in ground state of the hydrogen atom i.e.
13.6eV . This shows why it is not possible to confine an electron between
the orbitals. This energy is so high, that the electron will leave the atom
before it attains that much energy. For this very same reason, we do not
find electrons in the nucleus. Energy of electrons is of the order of tens of eV
but for nucleons, it is in MeV . Radiation emitted from electron transitions
give us light, while radiations originated from nucleus contain much higher
energy and give x-rays and γ-rays.

3. Zero point energy

Classically, it is possible to reduce the temperature of an object to 0K by
reducing it’s motion by cooling it to a point when all the molecules stop
completely. Temperature is just a manifestation of the total kinetic energy
of the molecules 1

2
mv2. Let’s consider Einstein’s model of solid in which all

the atoms are attached with springs representing interactive forces. Each
atom has its kinetic energy and the average energy is given by

〈
1
2
mv2

〉
1.

This energy can also be written as

E =

〈
1

2
mv2

〉
= 3× 1

2
kBT

Where 1
2
kBT represents the energy associated with each degree of freedom,

and the multiplicative factor of 3 is there because every atom has three
degrees of freedom x, y,andz. If we cool our solid using liquid nitrogen,
we can reduce the temperature to 77K, using liquid Helium can lower it
down further to 4.2K, using dilution mechanism we can take it to the mK
(milliKelvin) regime, and finally the laser cooling can take the temperature
to pK (picoKelvin) regime. Seemingly so, we can take it to even 0K if we
try hard enough. However, this is not possible according to Heisenberg’s
uncertainty principle, and there is a minimum value of energy that can not
be receded.

∆E =
ρ

m
∆ρ

Minimum value of momentum is also bounded by the uncertainty ∆ρ, so

Emin ≈ ∆ρ2

m
1⟨⟩ is used to represent average.
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For simplicity, we consider our solid to be one dimensional and that dimension
has a length of a units. This turns the uncertainty in position equal to a.
Using Heisenberg’s uncertainty principle again

Emin ≈
(

ℏ
2a

)2
1

m

≈ ℏ2

4a2m

No energy can go below this value even if the whole universe was to be frozen
still.

4. Optical Imaging

The mechanism of camera is just like a single slit experiment. The light
passes through a slit, then some optical components, and falls on the image
plane where it is observed. As we already know, the light would not fall on
the screen at an exact spot, rather, there will be a spread on the screen
because of the uncertainty in momentum. This uncertainty is inversely
proportional to the slit size i.e. uncertainty in position.

L
�

x
min

Image plane

Figure 4.25: Image formation on a screen

For small θ, the value of xmin turns out to be as discussed in section 4.3.

xmin =
λL1

a

If we want the image formed to be sharper (have higher resolution), we need
to make the spread of light on the screen smaller i.e. making xmin smaller.
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One way to do so is to increase the slit size a, and the other way is to
use waves of smaller wavelength. We could use electrons as an example.
Electrons have a much smaller wavelength than light, given by

λ =
h√
2mK

λ =
h√

2meV

Where K is the kinetic energy, e is the elementary charge, and V is the
potential difference. Higher the energy of electrons, shorter will be the
wavelength, and sharper will be the image formed. Short wavelength of the
electrons is the reason why electron microscopes give much sharper images
than optical microscopes.

Resolution of an imaging device is determined using Rayleigh’s Criterion.
It states that two distinct objects will be distinguishable by our imaging
device if the peak formed by one object on the screen goes to zero before
the peak of the other starts to rise. For this purpose, the separation of the
two maxima should be at least 2xmin.

�x
min

Figure 4.26: Rayleigh’s criterion

Let’s examine a telescope we are using to observe the surface of the Moon.
We are interested in finding out the minimum distance d that should be there
between two distinct objects on the surface of the moon for our telescope to
be able to resolve them as distinct.
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�

L
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min

d

Figure 4.27: ”Note: The figure is not drawn to scale and L2 is much larger than
L1”

Comparing ratios of one right-angel triangle from each side,

xmin

L1

=
d

2L2

(4.3)

d =
2L2

L1

xmin (4.4)

Substituting xmin = λL1

a
,

d =
2L2

L1

λL1

a
(4.5)

=
2L2λ

a
(4.6)

There are two ways to resolve smaller and smaller distances. One is to
increase the slit size a i.e. using a larger telescope, and the other is to use
shorter wavelengths. So, instead of using visible light, we could do γ-ray or
x-ray imaging for better resolutions.
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EXAMPLE

All of this discussion has been purely classic. So far, making better instruments
can give us better resolutions, however, there must be some limit where
uncertainty principle kicks in. After all, we are dealing with waves and
there must be a limit for how small ∆x can get.
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Chapter 5

Quantum Computing

Detailed study of natural systems reveals that they are inherently quantum-mechanical
and, hence, cannot be modeled by classical means. Even a hydrogen atom,
one of the simplest quantum-mechanical systems, cannot be modeled in a
classical computer without some assumptions. Even large-scale supercomputers
have computational limitations. As an example, calculating the prime factors
of millionth-order number (≈ 106) is a computationally intensive task and
will take classical computers more time than the age of the universe to
enumerate those factors (can’t wait for that long, can we?).

That’s where the quantum revolution comes into play.

The quantum-mechanical revolution came in the 20th century and changed
the very foundations of natural sciences. On the other hand, the revolution
in computer sciences came about later in the century, when Claude Shannon
found the fundamental limits of signal processing by studying the quantification
of information. This was followed by the invention of transistors and the
creation of neural networks and the birth of artificial intelligence, machine
learning, and deep learning. The merger of these two fields gave rise to a
novel field: quantum information processing. In the next few years, quantum
computers are likely to become commercial.

By this point in the book, you have all the concepts necessary for understanding
quantum computing and quantum information processing. So, let’s get to
it!
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5.1 Quantum Bit

Generally, computers work on Boolean logic, having two distinct states: 0
and 1. These states are classically achievable. For example, if a capacitor is
charged, we can consider it state 1, and if the capacitor is uncharged, we can
consider it state 0. At a certain time, the capacitor can either be charged
(1) or discharged (0) but not both. Such a system with a mutual exclusivity
between the states 0 and 1, is known as a bit.

5.1.1 Quantum Interference

Quantum mechanics, however, is probabilistic. We have a pretty good idea
of this fact, thanks to the double-slit experiment. As we have seen before,
it comprises of two slits followed by a screen. Thus, there are two paths
available to the photons entering the apparatus. Electron passing through
slit 1 was said to be in state ψ1, and electron passing through slit 2 was said
to be in state ψ2.

+

Figure 5.1: Double slit experiment.

If it were to be a classical system, we would have obtained two distinct dots
on the screen. But what we observed instead, was an interference pattern
on the screen. This means that in between the slits and screen, there exists
a superposition state of two wave functions ψ1 and ψ2. This brings quantum
uncertainty within the quantum channels.

Let’s make a system that is quantum in nature and still gives us two distinct
values; a quantum bit. For this purpose, we will need a Beam Splitter (BS).
A BS is a device through which a photon of light can either get transmitted
or reflected. A 50 : 50BS is the one that transmits the photon with a 50%
probability, regardless of what polarization state the incoming photon was
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in. If the intensity of incoming light is Io, half of the light (Io/2) will be
transmitted and half of it will be reflected, and our detectors D1 and D2 for
transmitted and reflected beam respectively, will detect an equal amount of
light. This experiment can be performed in a laboratory.

Io/2

Io/2Io
D

D2

1

Figure 5.2: Transmission and reflection of light beam by a beam splitter

Let’s repeat this experiment with a single photon now. If a single photon
enters the slit, only one of the detectors D1 or D2 will detect the photon at
a particular instant. The path undertaken by the photon defines the state of
the system to be either 0 or 1. Consider transmitted photon to be in state
0 and reflected photon to be in state 1. A click on D1 means that the beam
splitter transmitted the photon (turned to state 0 by the BS) while a click
on D2 means that BS reflected the photon (turned the photon to state 1).
Note that 0 and 1 are orthogonal states, which means that the state of the
system must be either 0 or 1 at a single instant, but not both.

1

00
D

D2

1

Figure 5.3: Discrete paths for a photon.

The photon also possesses other properties, but we will confine our discussion
to its path for now. The path of the photon is a quantum two-level system
that will serve as the basic unit of information for our quantum computer.
Such a two-level system is called a quantum bit (aptly called qubit or qbit).

In quantum mechanics, we will use a useful notation called ‘bracket’. This
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notation was introduced by Dirac1. According to this notation, the state 0 of
the system is represented by |0⟩ and the state 1 of the system is represented
by |1⟩. The symbol |⟩ is called ‘ket’ and the symbol ⟨| is called ‘bra’.

5.1.2 A Simple Quantum Computer

Now that we have a qubit, let’s try to build a simple quantum computer.
This computer consists of two 50 : 50 beam splitters BS1 and BS2. Two
mirrorsM1 andM2 are placed to direct the photons coming from BS1 to BS2.
The mirrors are perfectly reflecting i.e. any photon that falls on this mirror
will reflect with a 100% probability. Two detectors D1 and D2 are placed to
detect the photons coming from BS2. The state of transmission is defined
as |0⟩ and the state of reflection as |1⟩ like in the previous experiment.

D

D2

1

Figure 5.4: Single photon interferometer.

The incoming photon has two options of path to enter BS1: |0⟩ and |1⟩. If
the photon enters with state |0⟩, the beam splitters create a superposition
of states |0⟩ and |1⟩, i.e. the coherent sum of |0⟩ and |1⟩.

|0⟩ = 1√
2
(|0⟩+ |1⟩)

If the incoming photon is in state |1⟩, it creates a superposition state again.
However, the relative signs are changed this time.

|1⟩ = 1√
2
(|0⟩ − |1⟩)

1Named after the English theoretical physicist Paul Adrien Maurice Dirac
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Wondering where this
√
2 factor came from and how the signs changed?

Don’t worry, we will get back to it later in the chapter.

Notice that the beam splitters are acting like logical gates (AND, OR and
NOT etc.) i.e. they are transforming the state of the photon as it passes
through them.

The beam splitters take the quantum states and create a superposition. This
superposition cannot exist classically. If you have a classical bit, you cannot
have a 0 and 1 at the same time. You cannot have a capacitor that charges
and discharges simultaneously. But quantum mechanics allows you to have
a superposition of orthogonal states. This is what happens in the double-slit
interference experiment: both paths interfere with one another to produce
a final outcome that is a superposition of the two paths.

Now that we have a superposition of states, let’s see what happens.

As shown in the figure, the incoming photon is in state |0⟩. This photon will
be either transmitted or reflected by BS1. After getting reflected by mirror
M1 or M2, it will enter BS2 where it will either be reflected or transmitted
again. The detector D1 detects state |0⟩ and the detector D2 detects the
state |1⟩. The complete mathematical description is as follows

|0⟩ BS1−−→ 1√
2
(|0⟩+ |1⟩)

BS2−−→ 1√
2

(
|0⟩+ |1⟩√

2
+

|0⟩ − |1⟩√
2

)
= |0⟩

Our final state is just |0⟩. Hence, D1 clicks with a 100% probability while
D2 detects nothing.

Quantum Superposition of Qubits

For a system with single beam splitter and two detectors, if the beam splitter
BS is a perfect 50 : 50 beam splitter, both the detectors click with a 50%
probability. Thus, this beam theory is like a random coin toss: you toss
the coin and there is 50% probability that a head will turn up and a 50%
probability that a tail shows up. It is a completely random device in this
sense. However, when we concatenate two of these devices together, instead
of a 50% probability of clicking of either of the detectors, we see that only
one of these detectors clicks, and this is something counter-intuitive.

This counter-intuitive result can be explained by the fact that inside the
apparatus, the quantum state is actually a superposition of two states: |0⟩
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and |1⟩ i.e. |ψ⟩ = |0⟩+ |1⟩√
2

. We have chosen these particular labels to show

the correspondence of qubits to the classical bits.

D

D2

1

Figure 5.5: Single photon with the super position state in interferometer.

Let a single photon entering the apparatus take its course without you
observing it (if you take a peek, you will spoil both the quantum superposition
and the surprise!). You might think that it is taking both paths simultaneously,
but we cannot make such a claim as we are not observing the path. Now,
these two states interfere on the second beam splitter, and an interference
pattern emerges such that one of these paths has the two destructively
interfering states and the other one has the constructively interfering states.
Therefore, only one of the detectors clicks. This is something strange: we
have a random device (a single beam splitter) that is giving us a random
outcome, but when we concatenate two of these random devices together,
our outcome is no longer random; it becomes definite as only one of the
detectors clicks.

Measuring the superposition

What if instead of being patient, we take a peek inside? What if we
measure that state? The answer is that there will be some probability for
|1⟩ occurring and some probability for |0⟩. But how do we calculate the
probabilities of these states?

It’s quite easy. If we have the state

|ψ⟩ = 1√
2
(|0⟩+ |1⟩)
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The coefficients that appear with |0⟩ and |1⟩ i.e. both
1√
2
in this case, are

called probability amplitudes. And the probability is the modulus square of
these amplitudes.

Probability that detector D1 clicks = P (D1) =

∣∣∣∣ 1√
2

∣∣∣∣2 = 1

2
(5.1)

Probability that detector D2 clicks = P (D2) =

∣∣∣∣ 1√
2

∣∣∣∣2 = 1

2
(5.2)

Let’s take a special kind of beam splitter (i.e. not the normal 50 : 50 beam
splitter), which creates a state

|ψ⟩ = 1√
3
|0⟩+

√
2

3
|1⟩ (5.3)

Now, the probability that D1 clicks is
1

3
and the probability that D2 clicks

is
2

3
. The total probability is 1, as it should be.

Suppose we have another beam splitter that gives the state

|ψ⟩ = 1√
3
|0⟩+ ι

√
2

3
|1⟩

The quantum state is still correct. Detectors D1 and D2 will click with the
same probability. i.e

P (D1) =

∣∣∣∣ 1√
3

∣∣∣∣2 = 1

3

and

P (D2) =

∣∣∣∣ι 2√
3

∣∣∣∣2 = 2

3

Now, suppose we have a qubit which is in a general state,

|ψ⟩ = α|0⟩+ β|1⟩ (5.4)

α and β both are complex numbers in general. There is, a constraint on this
state, |α|2 + |β|2 = 1 i.e. sum of probabilities should be equal to 1. This

constraint is called the normalization condition. Two vectors A⃗ and B⃗ are
said to be orthogonal if A⃗.B⃗ = 0 i.e. there is no overlap between the two
vectors. If we have two states |0⟩ and |1⟩ then ⟨0||1⟩ = 0. This is how we
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show the projection or overlap of the state |1⟩ on state |0⟩. Hence, |0⟩ and |1⟩
are both orthogonal. This product is called the inner product of two states
|0⟩ and |1⟩ in Dirac notation. If the two states are same, they will completely
overlap and their inner product can be written as ⟨0||0⟩ = ⟨1||1⟩ = 1.

Now consider a beam splitter i.e.

D

D2

1

Figure 5.6: Probability of the photon

We would like to find out the probability P (D1) that the detector D1 clicks.
Note that if we take the inner product of a general state qubit and take its
inner product with one of the orthogonal states, we will only be left with
the coefficient of that orthogonal state in the general state. Modulus square
of that coefficient, as we already know, is the probability of measurement of
that state. So, the probability that D1 clicks, can be written as

P (D1) = |⟨0|ψ⟩|2

= |⟨0|(α|0⟩+ β|1⟩)|2

= |α⟨0|0⟩+ β⟨0|1⟩|2

= |α× 1 + β × 0|2

= |α|2

Similarly, the probability that D2 clicks is

P (D2) = ⟨1|ψ⟩2

= |⟨1|(α|0⟩+ β|1⟩)|2

= |α⟨1|0⟩+ β⟨1|1⟩|2

= |α× 0 + β × 1|2

= |β|2

The quantum state Eq. (6.4) is a qubit in the superposition state. Note
that there is no superposition in the classical bits 0 or 1, i.e. we cannot
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have superposition in the classical world. The possibility of superposition is
something special to the quantum world. And this is what gives an edge to
quantum computing over classical computing.

5.2 Quantum Logic Gates

NOT gate is a logic gate that inverts the input. If we have two classical bits
0 and 1, it inverts 0 to 1 and 1 to 0.

NOT

0 1

Figure 5.7: NOT gate

Hence, NOT gate performs a transformation of information or, in other
words, processes the information.

input output
0 1
1 0

Table 5.1: Truth table of NOT gate

In a controlled-NOT (CNOT) gate, we have two inputs. It is defined such
that the second bit is inverted if the first bit is 1.

CNOT

Figure 5.8: CNOT gate

Thus, the action on the second bit is determined by the state of the first bit.
The truth table of CNOT gate is
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input 1 input 2 output 1 output 2
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 5.2: Truth table of CNOT gate

There are many other gates, such as OR, NOR, AND, and NAND. These
logic gates are the building blocks of the classical computer. All these gates
do some kind of transformation or processing of information in bits. And
if we need to build a quantum computer, we will need quantum analogs of
these classical gates for our qubits.

5.2.1 Bloch Sphere

Let’s now move to the quantum realm. We know that Eq.(6.4) is the
mathematical representation of a qubit. To make our lives easier, I would
like to draw a picture of a qubit. It is not an actual qubit but something that
you can associate with a qubit for better understanding. This representation
of a qubit is called the Bloch sphere.

I define a quantum state on the Bloch sphere as a vector from the center of
this sphere to any point on the surface of the sphere such a vector is known
as a Bloch vector. The sphere is of unit radius.

If the vector points along the northern hemisphere, this represents the state
|0⟩ and if the vector points to the southern hemisphere, this represents the
state |1⟩. This is the Bloch sphere representation of two orthogonal qubits.
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Figure 5.9: |0⟩ and |1⟩ on Bloch Sphere

The superposition state 1√
2
(|0⟩ + |1⟩) will point to the equatorial plane in

+y-direction. If we draw its orthogonal state 1√
2
(|0⟩−|1⟩), it will be 180◦ out

of phase as compared to the aforementioned state represented by a vector
pointing in the −x-directon. Similarly, we define the state 1√

2
(|0⟩+ i|1⟩) as

the vector pointing in +y direction and 1
2
(|0⟩ − ι|1⟩) as the vector pointing

in −y-direction shown in Fig. (6.10).

Figure 5.10: Quantum States on the Equatorial Plane

To find the overlap between 1√
2
(|0⟩ + |1⟩) and 1√

2
(|0⟩ + ι|1⟩), we can take
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their inner product.

1√
2
(⟨0|+ ⟨1|)][ 1√

2
(|0⟩ − |1⟩)] =

1

2
(⟨0|0⟩+ ⟨0|1⟩ − ⟨1|0⟩ − ⟨1|1⟩)

=
1

2
(1− 1)

= 0

This shows that the two states don’t overlap i.e. they are orthogonal.

But how will we define some arbitrary state from the Bloch sphere, that is
not in some specific direction, and lies at a random point on the sphere?
Let’s draw a Bloch vector for such a state.

Figure 5.11: Representation of an arbitrary quantum state on the Bloch sphere

This general quantum state and its orientation can be determined from two
angles. One of them is the angle θ that it makes with the z − axis, this
is called the polar angle. It can vary from 0◦ to 180◦. Polar angle is 0◦ at
north pole and 180◦ at the south pole. The other angle made by the quantum
state is called Azimuthal angle ϕ. It is the angle between the x− axis and
the projection of the Bloch vector on the xy − plane. Mathematically, the
universal representation of a quantum state on an arbitrary point on the
Bloch sphere is defined as

|ψ⟩ = cos(
θ

2
)|0⟩+ sin(

θ

2
)eiϕ|1⟩ (5.5)

We can insert different values of θ and ϕ in this equation and obtain the
corresponding quantum states.
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If our quantum state is along the x − axis i.e. at the equatorial plane, the
polar angle θ = 90◦ and Azimuthal angle ϕ = 0◦, and the corresponding
quantum state is |ψ1⟩ = 1√

2
|0⟩+ 1√

2
|1⟩

If we have the state vector in the positive y-axis, the corresponding quantum
state representation will be |ψ2⟩ = 1√

2
|0⟩+ 1√

2
eι

π
2 |1⟩ = 1√

2
|0⟩+ ι|1⟩

5.2.2 Q-NOT Gate

Q-NOT

Figure 5.12: Q-NOT gate

Now that we have the physical representation of a qubit in our minds, let’s
see how can we manipulate our qubit. For that, we will be needing quantum
gates. Let us make a quantum NOT gate. Luckily, the Bloch sphere contains
all the information to achieve this task. Any single-qubit operation can be
described as a transformation of the Bloch vector.

The truth table of Q-NOT gate is

input output
|0⟩ |1⟩
|1⟩ |0⟩

Table 5.3: Truth table of Q-NOT gate

This defines the operation or transformation of a Q-NOT gate. If I input
the state 1√

3
|0⟩+ 2√

3
|1⟩; then my output will be 1√

3
|1⟩+ 2√

3
|0⟩ according to

the above table.

To put it simply, the logic gates in a quantum computer rotate the quantum
states on the Bloch sphere. Q-NOT gate rotates a state by 180◦ about
x − axis. The direction of rotation on the Bloch sphere is also important;
if my axis of rotation is x − axis then the quantum state must be rotated
clockwise.

If we have a quantum state |ψin⟩ pointing along the +y-direction |ψ1⟩ =
1√
2
(|0⟩ + ι|1⟩), and we pass this state through a Q-NOT gate, the output
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will be |ψout⟩ = 1/
√
2(ι|0⟩ + |1⟩). But we know that when we rotate our

vector pointing along the +y-direction by 180◦, we get to the state pointing
in −y direction, and the state of this Bloch vector is represented as |κ⟩ =
1√
2
(|0⟩ − ι|1⟩.

180
o

Figure 5.13: NOT gate Implementation on |ψ⟩ = 1√
2
(|0⟩ ± ι|1⟩)

The output state that we get from the Q-NOT gate is seemingly different
from the state represented on the Bloch sphere. But allow me to prove that
both these states are, in fact, equal.

|ψout⟩ =
1√
2
(ι|0⟩+ |1⟩)

= ι

(
1√
2
(|0⟩ − ι|1⟩)

)
= ι|κ⟩
= e

ιπ
2 |κ⟩

Where the factor e
ιπ
2 is the phase factor and π

2
is called the global phase. If

we have two states |ψ⟩ and eiθ|ψ⟩ then both these states are the same. We
cannot differentiate between them. To prove this, let us have a beam splitter
and let the input beam in state |ψ⟩ come in. The BS splits the beam to two
outputs |0⟩ and |1⟩. The probability that the state |0⟩ is detected by D1 is

P(D1) = |⟨0|ψ⟩|2

Similarly, the probability of the state |1⟩ detected by D2 is

P (D2) = |⟨1|ψ⟩|2
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Figure 5.14: Beam splitter

If the incoming beam was in state eiϕ|ψ⟩ instead, the probability of detection
by detectors D1 and D2 will be. For D1

P (D1) = |⟨0|eιθψ⟩|2

= |eιθ⟨0|ψ⟩|2

= eιθe−ιθ|⟨0|ψ⟩|2

= |⟨0|ψ⟩|2

The final probability is the same as the above probability. Similarly, for D2,

P (D2) = |⟨1|eιθψ⟩|2

= |eιθ⟨1|ψ⟩|2

= eιθe−ιθ|⟨1|ψ⟩|2

= |⟨1|ψ⟩|2

These probabilities are exactly the same as the probabilities we got for |ψ⟩.
Hence, these states are physically indistinguishable.

5.2.3 Hadamard gate

It’s time to define a quantum gate that generates superpositions from orthogonal
states. Consider the quantum circuit shown in the figure below. A wire
carries a qubit |0⟩ or |1⟩ and we have a device that creates a superposition.

  H   H

Figure 5.15: Hadamard gate
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This device is a quantum gate called the Hadamard gate and the transformation
is called the Hadamard transformation. The action of the Hadamard gate
is to convert an orthogonal state to a superposition state and vice versa.
Truth table for the Hadamard gate is:

input output
|0⟩ 1√

2
(|0⟩+ |1⟩)

|1⟩ 1√
2
(|0⟩ − |1⟩)

Table 5.4: Truth table of Hadamard gate

You might remember that the 50:50 BS created the same superposition
states. Yes! Our 50:50 BS was an implementation of the Hadamard gate.

Let’s implement this circuit using our 50 : 50 beam splitters.

D

D2

1

Figure 5.16: Hadamard gates demonstrated using 50:50 Beam Splitters

In this figure, a photon of state |0⟩ comes into the BS1 and will be either
transmitted or reflected with a 50% probability each. And if we decide
to not make any measurements after BS1, the region between the two
beam splitters will contain the superposition state 1√

2
(|0⟩ + |1⟩. When this

superposition state reaches BS2, it will act on it as if it was acting on |0⟩
and |1⟩ states independently. But the output will be the state |0⟩ only.
Mathematically it can be shown like this:

|0⟩ H−→ 1√
2
(|0⟩+ |1⟩) H−→ 1√

2
(
1√
2
(|0⟩+ |1⟩) + 1√

2
(|0⟩ − |1⟩)) (5.6)
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By simplifying the terms, we can easily see that the output state |ψout⟩ = |0⟩.

5.2.4 Phase Gate

Let’s take two Hadamard gates and place another quantum gate in between
these gates. Let’s call it the Phase Gate (P ).

  H   P   H

Figure 5.17: Phase gate in between two Hadamard gates

The truth table of the phase gate can be written as follows

input output
|0⟩ |0⟩
|1⟩ eiϕ|1⟩

Table 5.5: Truth table of phase gate

What happens if my input state is |0⟩ and it passes through the above
circuit?

|0⟩ H−→ 1√
2
(|0⟩+ |1⟩) P−→ 1√

2
(|0⟩+ eιϕ|1⟩) H−→ 1√

2

(
1√
2
|0⟩+ 1√

2
|1⟩+ 1√

2
eιϕ|0⟩ − 1√

2
eιϕ|1⟩

)

The output quantum state can be written as

|ψout⟩ =
1

2

(
(1 + eiϕ)|0⟩+ (1− eiϕ)|1⟩

)
Let’s physically implement the above system. To change the phase of the
photon we place some medium after |1⟩ output of BS1.
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Figure 5.18: Phasor medium in path 1

This medium is known as the phasor medium ]gives a phase to the photon
due to its certain refractive index. When the photon enters, it slow down and
a phase difference is introduced. This phase difference can be implemented
by glass or other such material. We can calculate the probabilities that the
detectors D1 and D2 click.

For detector D1

P (D1) = |⟨0||ψout⟩|2

=
1

4
|1 + eiϕ|2⟨0||1⟩

=
1

4
(1 + e−iϕ)(1 + eiϕ)

=
1

4
(2 + eiϕ + e−iϕ)

=
1

4
(2 + 2 cosϕ)

=
1

2
(1 + cosϕ)

= cos2
ϕ

2

Similarly the probability that detector D2 clicks is

P (D2) = sin2 ϕ

2

Plot for P (D1) and P (D2) against ϕ will be
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Figure 5.19: Probabilities of detection

If we put the phase element after |0⟩ output of BS1 as shown in figure below.

D

D2

1

Figure 5.20: Phaser medium in path 2

The truth table changes to

input output
|0⟩ eiϕ|0⟩
|1⟩ |1⟩

Table 5.6: Truth table of phase gate

The phase of the state |0⟩ changes with the factor eιϕ, but our calculations
remain the same. It doesn’t matter where the phase element is placed.
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5.3 Implementations of Qubit

There are many quantum mechanical systems and the path of a photon after
passing through a beam splitter is only one of them. This means that there
must be more ways to implement a qubit. Let’s spend some time exploring
some of these systems.

5.3.1 Polarization of light waves

First up in our list is another property of a light wave, its polarization. We
know that light waves comprise of a varying electric field. The strength of
the electric field changes constantly in an oscillatory fashion. This electric
field lies in a plane as shown in the diagram.

E

B

t

Figure 5.21: Normal wave inside a medium

The plane in which the electric field is polarized is called the plane of
polarization. If the direction of the electric field is vertical, the electric field
is vertically polarized. Similarly, it is horizontally polarized if the direction of
the electric field is horizontal. We define the vertical polarization of photons
as state |0⟩ and the horizontal polarization of photons as state |1⟩. This
way, we have used the polarization of the photon to physically implement
the qubit. The same Bloch sphere representation is used, i.e |0⟩ on the north
pole and |1⟩ on the south pole.

We also need a measuring instrument to detect this qubit. Consider a normal
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wave inside a medium and it passes through an object with a vertical slit in
it. If we oscillate the rope vertically, it will pass through the slit, but the slit
is horizontal, it will be blocked. This is how the detector for polarization
works. Such a detector is called a polarizer. If the axis of the polarizer is
vertical, the output will be vertically polarized light and if the polarizer axis
is horizontal, the output will be horizontally polarized light.

Figure 5.22: Polarization through vertical and horizontal slits

Consider a single photon coming into a vertical polarizer P and reaching the
detector. The detector is very sensitive and is able to detect a single photon
(hence the name single photon detector).

If my input state is |0⟩, which corresponds to a vertically polarized photon,
the probability that the detector clicks is |⟨0||0⟩|2 = 1. Similarly, if my
input state is |1⟩, which corresponds to the horizontally polarized photon,
the probability that the detector clicks is |⟨1||0⟩|2 = 0. Now, if my input state
is 1√

2
(|0⟩ + |1⟩) then the probability that the detector clicks is | 1√

2
⟨0|(|0⟩ +

|1⟩)|2 = 1
2
Similarly if my input state is 1√

2
(|0⟩ + i|1⟩) then the probability

is | 1√
2
⟨0|(|0⟩+ i|1⟩)|2 = 1

2

I would now like to introduce to you, the polarizing beam splitter PBS.
These beam splitters are also called horizontal-vertical beam splitters.
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Figure 5.23: Polarizing Beam Splitter

This beam splitter has two output channels. One of these channels is |0⟩ and
the other one is |1⟩. When a photon comes in, based upon the polarization
of this photon, one of the two channels will be populated. The channels are
terminated by detectors D1 and D2. If my input state is |0⟩, detector D1

can detect it with a 100% probability, and if my input state is |1⟩, detector
D2 will detect it with 100% probability

Let’s perform an experiment a bit and block the |0⟩ output channel. A
photon of polarization state |0⟩ comes into a polarizing beam splitter PBS1

and I don’t observe the photon. Instead, I place another beam splitter
PBS2 in place of the detector D1. I have two detectors D1 and D2 after
PBS2 which will detect the output photons of polarization state |0⟩ and |1⟩
respectively.

What is the probability that the photon is detected by D1 and D2? The
answer is 0 because the output from PBS1 has been wasted. Similarly, if
the input photon has the state |1⟩ then the probability of its detection by
D1 is 0 and by D2 is 1.
Now suppose my input state is 1√

2
(|0⟩+ |1⟩). In this case, the probability of

the detection of the photon by D1 and D2 is P (D1) = 0 and P (D2) = 1

D

D2

1

Figure 5.24: One PBS followed by another.

Let’s modify this experiment a bit. Let’s have the same polarizing beam
splitter 1 and 2, having output channels |0⟩ and |1⟩. In between these, we
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place another kind of beam splitter that has two output channels 1√
2
(|0⟩+|1⟩)

and 1√
2
(|0⟩ − |1⟩).

D

D2

1

Figure 5.25: Superposition making BS between two PBS

Channel 1 allows +45◦ photon and channel 2 allows −45◦ photon through it.
Let us pass a photon |1⟩ through these beam splitters. It will pass through
channel 2 of PBS1 because my state is a horizontally polarized state. Now
the photon will enter the second beam splitter. Since we can write the state
|1⟩ as

|1⟩ = 1√
2

(
1√
2
(|0⟩+ |1⟩) + 1√

2
(|0⟩ − |1⟩)

)
the photon will pass through both of the channels with a 50% probability. I
dump the state |0⟩+|1⟩

2
, and pass the other channel’s output through PBS2.

PBS2 will now receive the state 1√
2
(|0⟩−|1⟩) and split it into two parts again;

half |1⟩ and half |0⟩. Finally, the probability of detection of the photon by
the detectors D1 and D2 is P (D1) =

1
4
and P (D2) =

1
4

Previously, if a photon in state |1⟩ was supplied to the system, there was 0
probability of detection on D1. Now, although the new polarizer wasted 50%
of photons, it created a new state which is the superposition of horizontally
and vertically polarized states. As a result, detector D1 clicks with a
non-zero probability.

5.3.2 Spin of an Electron

An electron has certain properties, like mass and charge. One such property
is of great interest to us as we can use it to make qubits: The spin of
electrons. We all know that spin is the rotation or revolution of a body
about some axis is called spin, like the spin of earth about its axis. In
quantum mechanics, however, spin is not the rotation of electrons.
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Before we can further look into the spin of an electron, I shall like to review
some electromagnetism. Suppose I have an object of charge q which moves
around in a circle with speed v. Due to the motion of the charge, a current
will flow in the circle.

v

q

r

Figure 5.26: Charged particle moving in a circle.

If the radius of the circle is r, the current can be calculated as

I =
dq

dt
=

vq

2πr
(5.7)

where the time period of the charge for one complete revolution is 2πr
v
.

A moving charge produces a magnetic field B in the direction that can be
found from the right-hand rule. In our case, the moving charge produces a
magnetic field that points out of the page. Our system starts acting like a
magnetic dipole, and attains a dipole moment.

Dipole moment is represented by µ and has the units of ampere square-meter
(A.m2).

NS

Figure 5.27: Magnetic Dipole
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µ depends on the current I and the area A of the circle in which charge is
revolving.

µ⃗ = Iπr2 (5.8)

By putting the value of the I in the equation above, we have

µ⃗ = Iπr2

=
qvπr2

2πr

=
qvr

2

=
q

2m
(mvr)

µ⃗ =
q

2m
L⃗ (5.9)

Bohr’s Atomic model and Spin of an Electron

According to Bohr’s atomic model, the electrons are revolving around the
nucleus with an angular momentum called orbital angular momentum L⃗.
As L⃗ is a mechanical quantity and µ⃗ is a magnetic quantity, Eq. (6.9)
shows the relation between a mechanical quantity and a magnetic quantity
of the charged particle. L⃗ depends on the orbital in which the electron
is present. Orbitals with higher energy have electrons with higher orbital
angular momentum. Since we only have four orbitals, we only have four
quantized values of orbital angular angular momentum. Angular momentum
is given by the formula

L⃗ =
√
l(l + 1)ℏ (5.10)

The factor q
2m

is constant because the charge on an electron (1.6×10−19) and
mass of electron (9.11× 10−31) are constant quantities. Magnetic moment µ⃗
is just the product of this constant and the quantized quantity vecL, hence
µ⃗ is also quantized. All these values are summarized in the table below.

Orbital s p d f
l 0 1 2 3

L =
√
l(l + 1)ℏ 0

√
2ℏ

√
6ℏ 2

√
3ℏ

µ = q
2m
L 0 q√

2m
ℏ q

m

√
3
2
ℏ q

m

√
3ℏ

Table 5.7: Orbital angular momentum and magnetic moments of different orbitals
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Stern-Gerlach Experiment

If we have a stream of particles coming, how we can distinguish the magnetic
moment of the different particles? Suppose that we have a magnetic field B⃗
pointing upwards and two magnetic moments µ⃗1 and µ⃗2 which are parallel
and anti-parallel to the field B⃗.

S

N

1 2

Figure 5.28: Uniform magnetic field

If we put a dipole inside a magnetic field, the magnetic field tends to align
the dipole inside the magnetic field. The energy of the dipole parallel to the
magnetic field is lower, while the energy of the dipole anti-parallel to the
magnetic field is higher. Inside the magnetic field, it is

E = −µ⃗.B⃗ (5.11)

The force acting on the dipole inside the magnetic field is F⃗ = −∇⃗E Where
∇⃗E is called the gradient of the energy and the component of the force are

Fx = − d

dx
(µ⃗.B⃗)

Fy = − d

dy
(µ⃗.B⃗)

Fz = − d

dz
(µ⃗.B⃗)

It means that the variation in the magnetic field gives the force acting on
the magnetic dipole.

Let’s now perform an experiment. Consider the north pole and south pole
of two magnets facing each other. The magnets are of non-uniform shape as
shown in figure below. The magnetic field lines start from the north pole and
bunch together in the south pole which produces a non-uniform magnetic
field. There is a field gradient from north to south poles. The magnetic field
can be written as

B⃗ = Bx̂i +By ĵ +Bzk̂ (5.12)
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Figure 5.29: Non-uniform magnetic field

Let’s suppose that the magnetic field in this experiment is oriented along
the z-axis. Thus, the field is stronger in the bottom and weaker on top i.e.
the field is changing along the z-axis. We must, however, remember that
this assumption is purely theoretical and is not physically achievable. In
this case, the magnetic field can be written as B⃗ = Bzk̂ and force on the
dipole as Fz = −µz

dBz

dz

This experiment was originally performed by two scientists, Stern and Gerlach
in 1932. For this experiment they used Silver atoms in which the electrons
exist in the s-orbital. They produced a non-uniform field like the one
shown above, baked the Silver in an oven at high temperature (T ). Raising
the temperature increased the energy of the Silver atoms and they started
popping out of the oven in the form of an atomic beam. The beam passed
through the non-uniform magnetic field.

S

N

High Temp

Figure 5.30: Stern-Gerlach experiment.

At the right end, a screen was placed to observe the orientation of the beam
that passed through the non-uniform magnetic field. Silver atom did not
have any magnetic moment because L = 0 for s orbital, and the atoms should
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not interact with magnetic field. However, Stern and Gerlach observed that
the beam transmitted in two distinct paths and created distinct spots on the
screen. This implied that the magnetic moment µz can take up two values,
a positive one and a negative one µz = ±µ.

This accidental theory led to the discovery of another property of the particle:
the spin. Spin was theoretically predicted by Dirac and the experiment by
Stern and Gerlach proved its existence. This experiment proved that apart
from orbital angular momentum, there is another moment associated with
the particle, called spin angular momentum of the particle. It is the property
of a particle and gives the same magnetic moment with an additional factor
g i.e

µ⃗ = g q
2m
S⃗

Where g is called Lande G-factor and q
2m

is called gyro-magnetic ratio. As

particles have both orbital angular momentum L⃗ and spin angular momentum
S⃗, the total dipole moment µ⃗ can be written as

µ⃗ =
q

2m
(L⃗+ gS⃗) (5.13)

In our case, the orbital angular momentum of the silver atom is zero L⃗ = 0
and it only possesses spin angular momentum. Hence, the dipole moment is
purely spin dipole moment.

µ⃗ = g q
2m
S⃗

But we are only concerned with the z-component of the magnetic moment
µz = g q

2m
Sz.

Since µz is quantized, the spin is quantized and is a pure quantum mechanical
property of a particle. From the experiment, it was found that µz has two
values. This implies that Sz has two values. Hence, this system is a two-level
system and the spin magnetic moment has two values that make a qubit.
Therefore, the spin on an electron is another possible materialization of a
qubit.

Sz takes two possible values for an electron Sz = ±ℏ
2
. Factor 1

2
is the spin

of the electron. Hence, the electron is a spin-half particle with g ≈ 2. The
magnetic moment of the electron is therefore

µz = ± q
2m

ℏ

µz is quantized and there are only two possibilities of µz. These two possibilities
act like |0⟩ and |1⟩. If the direction of the magnetic moment is along the
magnetic field, it is represented by |0⟩ if direction of magnetic moment is
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against the magnetic field, it is represented by |1⟩. In this case, |0⟩ represents
the spin-up (| ↑⟩) and |1⟩ represents the spin-down (| ↓⟩). Both states are
orthogonal and represented by the Bloch sphere at the north pole and south
pole.

Originally these spins are randomly aligned. If we do not have a magnetic
field, the magnetic moment is aligned randomly in all possible directions.
The magnetic field in the Stern-Gerlach experiment orients the moments
along the ±z − axis and creates two paths. One of these paths is |0⟩ = | ↑⟩
and the other is |1⟩ = | ↓⟩. In this way, we have encoded the quantum
information within the quantum state.

It is also possible to create a superposition if these states. As an example,
let’s create a state which lies around the x-axis on the Bloch sphere. To
measure the spin of electrons, we use a special detector called the Mott
detector.

D

D2

1

SG

SG

SG

z

z

x

Figure 5.31: State around x− axis.

First, we take the above-shown apparatus and block the output channel
of |0⟩ state. Then we pass the output state of the |1⟩ channel through
another Stern-Gerlach apparatus which is now oriented along the x-axis.
The direction of the magnetic field in this apparatus is thus rotated by
90◦. To detect the spin states, we will use another Stern-Gerlach apparatus
oriented along the z-axis.

Now that our apparatus is all set, let’s pass some particles with randomly
orientated spins through it. The first Stern-Gerlach apparatus will split these
particles into two paths. |0⟩ is blocked and |1⟩ passes through the second
Stern-Gerlach apparatus. One of the outputs of this second SG-apparatus
is 1√

2
(|0⟩+ |1⟩) and the other is 1√

2
(|0⟩ − |1⟩).

Hence, both channels are populated. If I block 1√
2
(|0⟩+ |1⟩), the probability

of electron in the blocked state is
∣∣∣⟨1|( 1√

2
(|0⟩+ |1⟩)

)∣∣∣2 = 1
2
|⟨1||1⟩|2 = 1

2
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And the probability in the transmitted state is
∣∣∣⟨1|( 1√

2
(|0⟩ − |1⟩)

)∣∣∣2 =
1
2
|⟨1||1⟩|2 = 1

2

The SG-apparatus creates a new state which is a superposition of two spins.

As the last SG-apparatus is oriented along the z − axis, both the output
states should be populated with 1

2
probability. Note that the 1

2
probability

indicates that there is some uncertainty about the projection along z−axis.
If the last SG-apparatus was along the x− axis, there would have been no
uncertainty about the final state of the electron and only one of the channels
would have been populated. In principle, we can only measure one of the
two orientations at a time. If we measure the x-state, we will be uncertain
about z-projection. Similarly, if we measure z-state, we will not be certain
about x-projection anymore. Hence, we cannot be sure about x-orientation
and z-orientation at the same time.

5.3.3 Other Implementations

We can have many more implementations of a qubit. Some of these are
briefly discussed here.

Spin of a Proton

The proton also has a spin associated with it and it also acts as a tiny,
magnetic dipole. If we pass this dipole through a magnetic field B⃗, and
it aligns parallel the field, we say that it is in state |0⟩, and if it aligns
anti-parallel to the field we say that it is in state |1⟩. Between these two
orthogonal states, there will be infinitely many superposition states.

Energy Levels of Electron Inside an Atom

Figure 5.32: Direction of magnetic dipoles in magnetic field.
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A qubit can also be implemented using quantized energy levels of electrons
inside an atom. We can refer to the ground state as |0⟩ and the excited state
as |1⟩. We can create a superposition of these states too. If we put energy
into this system and this energy exactly matches the energy gap between
two energy levels i.e. ∆E = ℏf , then this energy can move the electron
from the ground state to the excited state. In this way, we can implement
different operations on qubits and construct gates for this qubit system.

Superconductor Qubit

} Josephson
Superconductor

Insulator

Figure 5.33: Direction of magnetic dipoles in magnetic field.

This device shown in the diagram above is known as a SQUID (Superconducting
Quantum Interference Device). A SQUID is a ring of superconductor through
which a portion is cut out and filled with an insulator. In the region with the
insulator, we have got a superconductor-insulator-superconductor junction.
This kind of junction is called a Josephson1

There are two ways of implementing qubits using SQUIDs. One way is to
consider the flux passing through the SQUID. If a current passes through
the superconductor, a magnetic field B⃗ is produced. The product of this
magnetic field B⃗ with the area A of the SQUID gives us the magnetic flux
ϕ, which will be a quantized value. Presence of flux will be denoted by |0⟩
and absence of flux will be denoted by |1⟩

The other way is to consider the induced current passing through the SQUID
in presence of a changing magnetic field. If the current is in anticlockwise
direction, we say that the state is |0⟩, and |1⟩ if the direction of induced
current is clockwise.

1Josephson won Nobel prize in 1973 for his work on SQUIDs.
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5.4 Quantum Computer

Let’s now make a practically useful quantum computer. The key point is that
there are many physical implementations of the qubit. To build a quantum
computer, we need to choose one particular technology first. We need to
identify the quantum states of the qubit used in that technology. If we have
to encode information, we will need to make quantum gates because we have
to manipulate the states somehow. With all of these recipes in place, we
can now build a quantum computer.

We need to have at least two qubits and a correlation between them. We
want them to interact with one another so that they can do something useful.
We need an ascendant machine that is beyond the classical computers.

5.4.1 Quantum Entanglement

So far, we have seen quantum circuits containing a single qubit and they
were independent of what other qubits do or what their state is. Quantum
entanglement is the phenomenon in which the state of one qubit depends on
the state of some other qubit. Let’s start by considering two qubits. One
of them goes through the first channel while the other one goes through the
second channel. Suppose both of them are in state |0⟩. The quantum state
in the shaded region will be written as |0⟩ ⊗ |0⟩, or in short |0⟩ ⊗ |0⟩.
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Figure 5.34: Qubits to study quantum entanglement.

|ψ1⟩ = |0⟩|0⟩ represents the initial state of the two-qubit system.1 Let’s
now put a Hadamard gate at the first channel and leave the second state

1Note that this is not the multiplication of two states.
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unchanged. The Hadamard gate creates a superposition of the qubit, and
the state |0⟩ is converted to state |0⟩+|1⟩√

2
. Now the quantum state in the

second shaded region is

|ψ2⟩ =

(
|0⟩+ |1⟩√

2

)
|0⟩

=
1√
2
(|0⟩|0⟩+ |1⟩|0⟩)

Let’s measure the outputs of both channels. For this, we’ll connect each
channel with a measuring device. This device has two output channels |0⟩
and |1⟩. Thus, if we place detectors at the outputs of this measuring device,
we can measure the probabilities of states |0⟩ and |1⟩.

If the first qubit passes through the device, both the detectors will click with
a 50% probability. In the second device, only the detector D3, which detects
|0⟩, will click with a 100% probability. Detectors D1 and D3 detect the same
state with different probability, and there is no correlation between them.
Such a qubit can not be used to build our quantum computer.

Let’s now replace this experiment with another one, in which we have a
Hadamard gate in the path of both the qubits. The rest of the experiment
remains unchanged. This time, all the detectors will click with the same
probability.
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Figure 5.35: Hadamard gate in the path of both the qubits

But there is still no interaction between the qubits. So, we will have to come
up with some other design.
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Let’s modify our first experiment again. This time, we will place a CNOT
gate in the path of the second qubit. This CNOT gate will be controlled by
the output of the Hadamard gate of the first qubit. Let’s see what happens
now.

CNOT

  H

Figure 5.36: Quantum entanglement

Consider two qubits to be in state |0⟩ initially. The Hadamard gate changes

the state of the first qubit to |0⟩+|1⟩√
2

. This controls the NOT gate on the

second qubit. When the state of the first qubit is |1⟩, the state of the second
qubit will be inverted; the state remains unchanged otherwise.

The quantum state in the first shaded region is

|ψ1⟩ =

(
|0⟩+ |1⟩√

2

)
|0⟩

=
1√
2
(|0⟩|0⟩+ |1⟩|0⟩

The state |1⟩ of the Hadamard gate inverts the state of the second qubit,
and the state of the second shaded region becomes

|ψ2⟩
1√
2
(|0⟩|0⟩+ |1⟩|1⟩)

In this experiment, the state of the second qubit depends on the first qubit.
Hence, we have finally achieved quantum entanglement.

Since you have accompanied me in obtaining quantum entanglement, I must
now explain how we have just achieved is one of the weirdest phenomena.
Before I continue, let me introduce you to Alice and Bob. They want to
verify quantum entanglement with us, and we could always use some help.
Alice decides to observe the first qubit and Bob decides to observe the second
one. If we place detectors at the output channels of both the qubits, both
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D1 and D2 will click with a 50% probability. Similarly, D3 and D4 will also
click with a 50% probability. This means that Alice and Bob are observing
completely random events.

Alice decides to take her qubit and go to Pluto, far away from Bob. They
both measure their qubits and note the results. As one measurement is not
enough to verify the results, they take numerous measurements. Alice then
decides to come back, and they compare the results. Alice’s string of the
random measurements is 001011000110101.... When Bob shows his string
to Alice and they compare their results, they find that Bob’s string exactly
matches with Alice’s string i.e 001011000110101.... This correlation does
not make much sense, as both of them measured random events. Actually,
once Alice and Bob made measurements, the states collapsed to |0⟩|0⟩ with
a probability 1

2
and into state |1⟩|1⟩ with the same probability. If Alice

measures |0⟩, Bob also measures |0⟩. So, their final result is perfectly
correlated, which verifies quantum entanglement. The two qubits are exact
copies of each other.

What if our initial state of the two-qubit system was |1⟩|0⟩ instead of |0⟩|0⟩?
Let’s check. To prepare this state, we start off with qubits in state |0⟩|0⟩
and pass the first qubit through a quantum NOT gate. Our state is now
|1⟩|0⟩ which is separable and the qubits are not co-related.

CNOT

  H  NOT

D2

D1

D4

D3

Figure 5.37: Quantum circuit

After the application of the Hadamard gate, the state becomes

(
|0⟩ − |1⟩√

2

)
|0⟩ =

(
|0⟩|0⟩ − |1⟩|0⟩

2

)
This state is again separable. However, after the C-NOT gate is applied,
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the state becomes
(

|0⟩|0⟩−|1⟩|1⟩
2

)
which is not separable. In this case, the final

state is entangled.

|0⟩|0⟩ Q−NOT−−−−−→ |1⟩(|0⟩) H−→
(

|0⟩−|1⟩√
2

)
|0⟩ CNOT−−−−→ |0⟩|0⟩−|1⟩|1⟩√

2

5.4.2 Quantum Teleportation

All the data in the world whether classical or quantum is of no use if it can
not be transferred or communicated. Quantum information transfer is called
quantum teleportation and unlike classical data transfer, it is not the transfer
of the particle from one spatial location to another. Quantum teleportation
is the transfer of the quantum state from one particle to another particle
which are spatially separated at a distance from one another.

Let’s build a proper quantum circuit that can achieve quantum teleportation.
This circuit will build upon the entanglement circuit from the previous
section. For this new circuit, we will add another qubit. We now have three
qubits in total, and the new qubit is in an unknown state |ψ⟩ = α|0⟩+β|1⟩.
Our goal in this section is to create a replica of this state |ψ⟩ at some other
location.

CNOT

  H

Figure 5.38: Entangled Qubit

In order to teleport the state |ψ⟩, we will first need two qubits in an entangled
state. If our initial qubits are |0⟩|0⟩, our entangled state will be 1√

2
(|00⟩ +
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|11⟩). The state of our three-level system at region 1 will be

|ψ1⟩ =
1√
2
(α|0⟩+ β|1⟩)(|00⟩+ |11⟩)

=
1√
2
(α|000⟩+ α|011⟩+ β|100⟩+ β|111⟩)

Alice and Bob join us again! This time, Bob takes one of the two entangled
qubits and moves to a far-off planet. Alice has the other qubit of the
entangled pair and the unknown qubit that we want to transfer. Let’s
name the unknown qubit’s channel as channel 1 and Alice’s entangled half’s
channel as channel 2.

CNOT

  H

Figure 5.39: Quantum teleportation circuit

Alice applies a controlled not gate with qubit 1 (unknown qubit) as control
and qubit 2 (entangled qubit) as target qubit CNOT12. So the state of our
three-qubit system in region 2 will be

|ψ2⟩ =
1√
2
(α|000⟩+ α|011⟩+ β|110⟩+ β|101⟩) (5.14)

She then applies Hadamard gate on qubit 1(H1) and the state in region 3
will be

|ψ3⟩ =
1√
2
√
2
(α(|0⟩+ |1⟩)|00⟩+ α(|0⟩+ |1⟩)|11⟩+ β(|0⟩ − |1⟩)|10⟩+ β(|0⟩ − |2⟩)|01⟩)

=
1

2
(α|000⟩+ α|100⟩+ α|011⟩+ α|111⟩+ β|010⟩ − β|110⟩+ β|001⟩ − β|101⟩)
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If we separate Bob’s qubit channel along with the unknown probability
amplitudes, we can write |ψ3⟩ as

|ψ3⟩ =
1

2
(|00⟩(α|0⟩+β|1⟩)+|01⟩(α|1⟩+β|0⟩)+|10⟩(α|0⟩−β|1⟩)+|11⟩(α|1⟩+β|0⟩))

Now Alice makes measurements on her qubits i.e. the first two qubits in our
diagrams. There are four possibilities of measurements shown by the table
below

Qubit 1 Qubit 2
0 0
0 1
1 0
1 1

Table 5.8: Alice’s measurements

Note that all these possibilities are shown in the final form of |ψ3⟩. From
this form, we can decipher what state would Bob’s qubit will be in based on
what Alice measured. Let’s tabulate this as well

Alice’s measurement Bob’s qubit’s state
|00⟩ α|0⟩+ β|1⟩
|10⟩ β|0⟩+ α|1⟩
|01⟩ α|0⟩ − β|1⟩
|11⟩ β|0⟩ − α|1⟩

Table 5.9: Alice’s measurements and Bob’s qubit

Now that we know what qubit state Bob has, we just need to convert it
to the state that we want to send to him i.e. α|0⟩ + β|1⟩. Alice sends
her measurement results to Bob via a classical channel and based on these
results, Bob applies gates to his qubit and converts it into the required state.
If Alice’s first qubit’s measurement was 1, then Bob applies the Phase gate
of πrad and if she got a 1 on the second qubit, then Bob applies a NOT
gate to his qubit. For ease, we will turn this into a table too.
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Alice measured Bob applies
|00⟩ Nothing
|10⟩ NOT
|01⟩ Phase
|11⟩ NOT and Phase

Table 5.10: Bob’s operations

One thing to note here is that in all this process, we have not created a
clone of our qubit. Our original qubit state had to be destroyed in order
to teleport it to Bob. This is due to the no-cloning theorem of quantum
mechanics, which simply says that it is impossible to make a copy of a
quantum state.

5.5 Quantum Algorithm

In previous sections, we saw how a quantum computer works and built some
hardware for it. Now it’s time to put that hardware to good use by giving
it an algorithm to solve. This specific example that we will explore is from
the early days of quantum information processing, it is called the Deutsch
algorithm2. This algorithm will help us understand the advantage that a
quantum computer has over a classical computer.

Let me first define the problem at hand. Binary functions can be of four
types based on how they act on an input. These four types have been
elaborated in the table below

Type 1 Type 2 Type 3 Type 4
0 7→ 0 0 7→ 1 0 7→ 0 0 7→ 1
1 7→ 0 1 7→ 1 1 7→ 1 1 7→ 0

The first two types are called constant functions as the output stays the
same no matter what the input is, while the remaining two types are called
balanced functions as the output will have an equal number of ones and
zeros.

Our task now is to check whether a given binary function is constant or
balanced. If we want to check it classically, we will have to run the function

2proposed by David Deutsch and Richard Jozsa in 1992
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twice with different inputs and see if the outputs are the same or different.
Deutch algorithm, on the other hand, checks it in a single go!

XOR Gate

To implement Duetch algorithm, we will need a XOR logic gate. So let’s
have a look at the functioning of the XOR gate before moving ahead. XOR
between two values can be shown by the symbol ⊕ e.g. a ⊕ b. Classical
symbol and truth table for the XOR gate are shown below.

Inputs Output
0 0 0
0 1 1
1 0 1
1 1 0

Figure 5.40: XOR Gate

Notice that if we have 0 on the first input, its XOR with the second input
will give the value of the second input itself. While if we have 1 on the first
input, the output will be the NOT of the second input.

Deutch Algorithm

Now we have a function f(x), and we want to find out if it is a balanced or
constant function. Let me show you the circuit diagram first, and then we
will inspect it step by step.
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50%

50%

  H

D2

D1

Uf

Figure 5.41: Circuit for Deutch Algorithm

In this diagram, Uf represents a controlled function like CNOT. Its task is
to calculate f(x) at the value of the first input qubit and XOR the result
with the second input.

|00⟩
Uf7−→ |0⟩|0⊕ f(0)⟩

|01⟩
Uf7−→ |0⟩|1⊕ f(0)⟩

|10⟩
Uf7−→ |1⟩|0⊕ f(1)⟩

|11⟩
Uf7−→ |1⟩|1⊕ f(1)⟩

Notice that the first qubit remains unchanged. In general, it can be written
as

|ab⟩
Uf7−→ |a⟩|a⊕ f(b)⟩

We always start with |0⟩ as the input qubit and |1⟩ as an ancillary qubit.
After the application of Hadamard gate, state |ψ1⟩ at region 1 will be

|01⟩ H7−→ |ψ1⟩ =

(
|0⟩+ |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
=

1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩)

State |ψ2⟩ at region 2 after the application of Uf will be
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Uf7−→ |ψ2⟩ =
1

2
(|0⟩|0⊕ f(0)⟩ − |0⟩|1⊕ f(0)⟩+ |1⟩|0⊕ f(1)⟩ − |1⟩|1⊕ f(1)⟩)

But we know that XOR of 0 with anything is that thing itself, so |ψ2⟩ can
be written as

|ψ2⟩ =
1

2
(|0⟩|f(0)⟩ − |0⟩|1⊕ f(0)⟩+ |1⟩|f(1)⟩ − |1⟩|1⊕ f(1)⟩)

We can write it in a compact form. First, we will consider the terms that
depend on f(0).

|0⟩|f(0)⟩ − |0⟩|1⊕ f(0)⟩

Function f(x) is a binary function and can only have 0 or 1 as output. Let’s
consider first scenario where f(0) = 0. The two terms then become

= |0⟩|0⟩ − |0⟩|1⟩
= |0⟩(|0⟩ − |1⟩)

The second scenario would be f(0) = 1 and the first two terms would become

= |0⟩|1⟩ − |0⟩|0⟩
= |0⟩(|1⟩ − |0⟩)
= −|0⟩(|0⟩ − |1⟩)

We see that the results of the two scenarios differ by only a negative sign.
So, we can write the two scenarios in a general form

(−1)f(0)|0⟩(|0⟩ − |1⟩)

Using the same analogy, we can write the terms containing f(1) as

(−1)f(1)|1⟩(|0⟩ − |1⟩)

State |ψ2⟩ can then be written as

|ψ2⟩ =
1√
2

(
(−1)f(0)|0⟩

(
|0⟩ − |1⟩√

2

)
+ (−1)f(1)|1⟩

(
|0⟩ − |1⟩√

2

))
=

(
(−1)f(0)|0⟩+ (−1)f(1)|1⟩√

2

)(
|0⟩ − |1⟩√

2

)
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The terms in first parenthesis of the above equation represent the state of
first qubit and the terms in second parenthesis represent the state of second
qubit. We dump the second qubit as we do not need it anymore and shift
our focus to the second qubit only.

If our function was a constant function (f(0) = f(1)), the state of the first

qubit at region 2 will be ±
(

|0⟩+|1⟩√
2

)
. On the other hand, if the function was

a balanced function (f(0) ̸= f(1)), state of first qubit at region 2 will be

±
(

|0⟩−|1⟩√
2

)
. We can ignore the ± as it is just a phase. So our first qubit’s

state is either
(

|0⟩+|1⟩√
2

)
(constant case) or

(
|0⟩−|1⟩√

2

)
(balanced case) at region

2. When we apply Hadamard gate on our first qubit, the state changes
to |0⟩ in case of constant function and to |1⟩ in case of balanced function.
Now we can easily measure this state and determine the property of our
function. Notice that this took us only one shot to determine the nature
of the function i.e. we only gave 0 as input and did not have to run the
function for input 1. The fun part is that this circuit can easily be modified
for n qubits.

Uf
  H

M
e
a
su
re
m
e
n
t

Figure 5.42: Circuit for Deutch Algorithm

Using this circuit we find the nature of function in just one try while
classically, it would have taken us 2n−1 + 1 experiments to determine it.
This is one example where we can harvest the power of quantum computers.

5.6 Error Correction

So far, we have seen how to build simple quantum computers and designed
an algorithm for them as well. But is it all so simple? Is it this easy to
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implement it in real life? No! Everything is prone to errors and so are our
quantum circuits. In this section, we will explore three different types of
errors and how to get rid of them.

5.6.1 Decoherence Free Subspace

Decoherence means the loss of information from a quantum system due to
interaction with the environment.

Let’s first observe a portion of a quantum circuit, a subspace, that is prone
to decoherence. We need to implement logical 0 and 1 in the form of qubits
|0⟩L and |1⟩L. The problem with this subspace of ours is that if we use |0⟩
and |1⟩ as our logical 0 and 1, it induces decoherence in our subspace by
adding a phase to |1⟩ and leaving |0⟩ as it is.

|0⟩ decoherence−−−−−−−→ |0⟩

|1⟩ decoherence−−−−−−→ eiϕ|1⟩

This means that if we want to start from the state α|0⟩ + β|1⟩, this state
will change due to decoherence in the following fashion.

α|0⟩+ β|1⟩ −→ α|0⟩+ eiϕβ|1⟩

Both these states are distinct from each other. Our goal now is to chose
our logical 0 and 1 qubit states in such a way that our subspace does not
feel the effect of this decoherence. This means that the state we get after
passing through the system is equivalent to state that we initially had. A
decoherence-free subspace.

Here is one such set of logical qubit states.

|0⟩L =
1√
2
(|01⟩+ i|10⟩) (5.15)

and (5.16)

|1⟩L =
1√
2
(|01⟩ − i|10⟩) (5.17)

Notice that we have used two qubits instead of one to simulate a logical 0 or
1 state; it’s completely fine to do it this way. Now we apply the decoherence
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model to these particular states. If we have a |1⟩ on the second or first qubit,
we will pick up a phase.

|0⟩L
decoherence−−−−−−−→ 1√

2
(eiϕ|0⟩|1⟩+ ieiϕ|1⟩|0⟩)

and

|1⟩L
decoherence−−−−−−−→ 1√

2
(eiϕ|0⟩|1⟩ − ieiϕ|1⟩|0⟩)

The evolution of our overall state will be

α|0⟩L + β|1⟩L
decoherence−−−−−−−→ eiϕ(α|0⟩L + β|1⟩L) (5.18)

The quantum state is only picking up a global phase when we encode the
information into a bigger space. This global phase does not matter and no
information is lost. This type of encoding does not see decoherence; this is
uniform decoherence of phase and is called phase decoherence.

5.6.2 Robust Quantum Computation

The robust way to deal with errors is to design the gates and circuits in such
a way that they compensate for the errors on a hardware level. Let’s consider
an example. We have a state |0⟩ and we want to apply π rad rotation about
y − axis on it i.e. a NOT gate. However, the way we perform this rotation
(like passing it through a magnetic field for a small amount of time), we
always get some error in the amount of rotation. So there is some error in
the term π in every experiment and it is never exactly π, but π(1− ϵ). We
are falling short by a factor of ϵ and the rotation is incomplete.
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Figure 5.43: Incomplete rotation

To solve this problem, we will implement our rotation in such a way, that
we bypass this error. We begin by rotating the state by π

2
instead of π, but

because we have an error we do not reach the exact half and stay in the
upper hemisphere. Next up, we apply a π rotation about the x−axis. This
way, we switch to the lower hemisphere and are ahead of the exact half, by
the distance that we were short of it previously. Now we again rotate about
y − axis by π

2
and complete the π rotation that we intended to do.

Figure 5.44: Complete rotation

Uy(
π
2
)Ux(π)Uy(

π
2
)|0⟩ = |ϕ⟩
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This works for some particular initial states. If you want to implement a
general quantum NOT gate that is robust against errors, you need to perform
rotations like this.

U60(π)U300(π)U60(π)|0⟩ = |ϕ⟩

5.6.3 Quantum Error Correction

During the transmission of an arbitrary qubit such as α|0⟩+ β|1⟩, different
kinds of errors might occur. One possibility is that the bit flips, i.e. |0⟩
becomes |1⟩, and |1⟩ becomes |0⟩. Quantum error correction deals with these
bit flips. In this method, we will encode our logical states |0⟩L and |1⟩L as
|000⟩ and |111⟩ respectively. We give these states to Alice and ask her to
send them to Bob. The problem is that when Bob receives these states, there
is a possibility that one of the bits would have flipped on its way. It could be
unchanged (α|000⟩+β|111⟩), or one of the qubits could have flipped and the
state is (α|100⟩ + β|011⟩), (α|010⟩ + β|101⟩), or (α|001⟩ + β|110⟩). To deal
with it, Bob takes two ancillary qubits. He first carries out controlled-NOT
operation from the first and second received qubits to the first ancillary
qubit, then from the first and third received qubits to the second ancillary
qubit.

CNOT CNOT

CNOT CNOT

1

3

2

4

Figure 5.45: Quantum error correcting circuit

Let’s see what will happen if the first qubit had flipped on its way.
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(α|100⟩+ β|011⟩)⊗ |00⟩ CNOT1−−−−→ α|100⟩|10⟩+ β|011⟩|00⟩
CNOT2−−−−→ α|100⟩|10⟩+ β|011⟩|10⟩
CNOT3−−−−→ α|100⟩|10⟩+ β|011⟩|11⟩
CNOT4−−−−→ α|100⟩|10⟩+ β|011⟩|10⟩
= (α|100⟩+ β|011⟩)|10⟩

Bob measures the ancillary qubits and if he gets |10⟩, that the first qubit
had flipped. Similarly, |01⟩ would mean that the second qubit had flipped,
|11⟩ means that the third qubit had flipped, and |00⟩ means that the state
is in its original form. If we know what bit has flipped, its problem solved!
Now we just need to apply NOT gate to the flipped qubit and get it back
to its original state.
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Appendix A

Linear Algebra
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