PHY104 - Midterm Exam

Each question carries the same mark. There are 13 questions.
Fill in the multiple-choice answer sheet with a pencil.
You can only pick one option per question
Your Variant Code: 10. Write this on your multiple-choice answer sheet.
For this exam, we use the following conventions.

$$
\begin{aligned}
|D\rangle & =\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
|A\rangle & =\frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
|L\rangle & =\frac{|0\rangle+i|1\rangle}{\sqrt{2}} \\
|R\rangle & =\frac{|0\rangle-i|1\rangle}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{gathered}
|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b} . \\
|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) .
\end{gathered}
$$

For three qubit states, the state $a|000\rangle+b|001\rangle+c|010\rangle+d|011\rangle+e|100\rangle+f|101\rangle+$ $g|110\rangle+h|111\rangle$ can be written as a column vector with entries in the same order as they are written out.

1. Which of the following circuits converts an entangled state

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

to $|00\rangle$?

2. In which of the following states are the first and second qubit entangled?
A. $\frac{1}{\sqrt{2}}(|011\rangle+|000\rangle)$
B. $\frac{1}{\sqrt{2}}(|010\rangle+|011\rangle)$
C. $\frac{1}{\sqrt{2}}(|000\rangle+|101\rangle)$
D. $\frac{1}{\sqrt{2}}(|001\rangle+|010\rangle)$
E. None of the options are correct
3. If $|\psi\rangle$ is a normalized state given by

$$
|\psi\rangle=a|010\rangle+\frac{1}{2}|011\rangle-\frac{1}{2 \sqrt{2}}|100\rangle-\frac{1}{2 \sqrt{2}}|101\rangle .
$$

The value of a could be:
A. 0
B. $\frac{e^{i \phi}}{2}$
C. $\frac{e^{i \phi}}{\sqrt{2}}$
D. $\frac{e^{-i \phi}}{2}$
E. $\frac{1}{2}$
4. We have a superposition of the two Bell states $|\psi\rangle=\frac{\left|\Phi^{+}\right\rangle+\left|\Phi^{-}\right\rangle}{\sqrt{2}}$, where

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|H H\rangle+|V V\rangle) \\
& \text { and } \\
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|H H\rangle-|V V\rangle) .
\end{aligned}
$$

Identify the correct statement from the following:
A. Such a state $|\psi\rangle$ is physically unrealizable.
B. $|\psi\rangle$ is a separable (non-entangled) state.
C. $|\psi\rangle$ is a fully entangled state.
D. $|\psi\rangle$ is a partially entangled state.
E. None of the statements are correct.
5. I have an input quantum state $|\psi\rangle$ that is either $|0\rangle$ or $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$. The state $|\psi\rangle$ is fed into a $50: 50$ beam splitter that has two output ports $|0\rangle$ and $|1\rangle$ as shown in the figure. Which of the following statements is true?

A. If D_{1} clicks, the state will most definitely be $|0\rangle$.
B. If D_{1} clicks, the state will most definitely be $\frac{|0\rangle+|1\rangle}{2}$.
C. If D_{2} clicks, the state will most definitely be $\frac{|0\rangle+|1\rangle}{2}$.
D. If D_{2} clicks, the state may still be $|0\rangle$, with some small probability.
E. If D_{2} clicks, the state will most definitely be $|0\rangle$.
6. A state $|\psi\rangle=a|0\rangle+b|1\rangle$ (where $a \neq b, a \neq 0, b \neq 0$) is measured in the $\{|0\rangle,|1\rangle\}$ basis. This means that it passes through analyzing device that has $|0\rangle$ and $|1\rangle$ channels and detectors connected to them as shown in the figure. The detectors D_{1} and D_{2} have probabilities P_{1} and P_{2}, respectively, to click.

Another experiment is performed in which $|\psi\rangle$ is replaced by another input state, which now yields a different value of P_{2}.

Which of the following could be this new state?
A. $-a|0\rangle-b|1\rangle$
B. $a|0\rangle+e^{i \phi} b|1\rangle, \phi \neq 0, \pi$
C. $-a|0\rangle+b|1\rangle$
D. $a|0\rangle-b|1\rangle$
E. $b|0\rangle+a|1\rangle$

7. Which of the following states is orthogonal to $\cos (\beta)|0\rangle+e^{i \phi} \sin (\beta)|1\rangle$?
A. $-\sin (\beta)|0\rangle+e^{i \phi} \cos (\beta)|1\rangle$
B. $\cos (\beta)|0\rangle+e^{-i \phi} \sin (\beta)|1\rangle$
C. $\sin (\beta)|0\rangle+e^{-i \phi} \cos (\beta)|1\rangle$
D. $\cos (\beta)|0\rangle-e^{-i \phi} \sin (\beta)|1\rangle$
E. $-\cos (\beta)|0\rangle+e^{i \phi} \sin (\beta)|1\rangle$
8. A phase gate $\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$ acts on $|\mathrm{L}\rangle$. The output state is
A. $|\mathrm{V}\rangle$
B. $|\mathrm{D}\rangle$
C. $|\mathrm{A}\rangle$
D. $|R\rangle$
E. $|H\rangle$
9. The diagram shows a controlled-NOT gate. The first qubit in the tensor product is on the top quantum wire, and the second is on the bottom wire. The gate is represented by which of the following matrices?

A. $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
B. $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
C. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
D. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
E. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
10. Which of these sets do not form a basis for a qubit's quantum space?
A. $|D\rangle,|L\rangle$
B. $\cos (\theta)|0\rangle+\sin (\theta)|1\rangle,-\sin (\theta)|0\rangle+\cos (\theta)|1\rangle$
C. $|R\rangle,|L\rangle$
D. $|0\rangle,|1\rangle$
E. $|D\rangle,|A\rangle$
11. A pair of photons is produced in the entangled state $\frac{|H H\rangle+|V V\rangle}{\sqrt{2}}$. One photon goes to Bob. He measures along the $|H\rangle$ or $|V\rangle$ axis. Which of the following statements for Bob is true?
A. $\mathrm{P}(|H\rangle)=1$ and $\mathrm{P}(|V\rangle)=0$.
B. $\mathrm{P}(|H\rangle)=1 / 2$ and $\mathrm{P}(|V\rangle)=1 / 2$.
C. $\mathrm{P}(|H\rangle)=0$ and $\mathrm{P}(|V\rangle)=1$.
D. $\mathrm{P}(|H\rangle)=1 / 4$ and $\mathrm{P}(|V\rangle)=3 / 4$.
E. $\mathrm{P}(|H\rangle)=3$ and $\mathrm{P}(|V\rangle)=0$.
12. A Fredkin gate swaps the second and third qubits if the first qubit is in the state $|1\rangle$. It is diagrammatically shown in the figure. Its unitary matrix can be written as:

A. $\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
B. $\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
C. $\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$
D. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
13. A photon in the polarizer state $|\varphi\rangle=|H\rangle$ sees two polarizers whose optic axes are at α and β, respectively, to the horizontal. The polarizers create a new quantum state whose polarization is parallel to the optic axes of polarizer. Detector D detects the presence of photons (in any polarisation). What is the probability that D clicks?

A. $\cos ^{2}(\alpha) \cos ^{2}(\beta)$
B. $\cos (\alpha) \cos (\beta)$
C. 0
D. $\cos ^{2}(\alpha) \cos ^{2}(\beta+\alpha)$
E. $\cos ^{2}(\alpha) \cos ^{2}(\beta-\alpha)$
(Variant 11, 12, 13 have the same questions witch the order of questions $\dot{\varepsilon}$ answers permuted).

1) A

$$
\frac{100\rangle \mp 11\rangle}{\sqrt{2}}
$$

$$
\left.\left.=\frac{1}{\sqrt{2}}(10\rangle+11\right\rangle\right)(x-10\rangle
$$

The easiest way is see this is 1 look for the circuit that reverses $100>\rightarrow \frac{1007+(11)}{\sqrt{2}}$ This was discussed in tie problem set.
2) E. None of the above.

$$
\begin{array}{rl}
A \rightarrow \frac{1}{\sqrt{2}}|0\rangle \otimes \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
B \rightarrow|0\rangle \otimes|1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& \left.\rightarrow \frac{1}{\sqrt{2}}\left(10_{A} O_{B} O_{C}\right\rangle+\left|1_{A} 0_{B} 1_{C}\right\rangle\right) \\
= & \frac{1}{\sqrt{2}}\left(\left|O_{B}\right\rangle \otimes\left|O_{A} O_{C}\right\rangle+\left|O_{B}\right\rangle\left|1_{A}\right\rangle \mid 1_{C} C\right. \\
= & 1 \\
& \left.\left.\sqrt{2}\left(\left|O_{B}\right\rangle \otimes\left(10_{A} O_{C}\right\rangle+\left|1_{A}\right|_{C}\right\rangle\right)\right) . \\
D & 1 \\
& \sqrt{2}(|0\rangle \otimes(|01\rangle+|10\rangle)) .
\end{array}
$$

3.

$$
\begin{aligned}
& |a|^{2}+\left|\frac{1}{2}\right|^{2}+\left|\frac{-1}{2 \sqrt{2}}\right|^{2}+\left|\frac{-1}{2 \sqrt{2}}\right|^{2}=1 \\
& |a|^{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=1 \\
& |a|^{2}+\frac{1}{2}=1 \\
& |a|^{2}=\frac{1}{2} \quad \text { C. works. } c=\frac{e^{i \phi}}{\sqrt{2}}
\end{aligned}
$$

since

$$
\begin{aligned}
\left|\frac{e^{i \phi}}{\sqrt{2}}\right|^{2} & =\frac{e^{i \phi}}{\sqrt{2}} \cdot \frac{e^{-i \phi}}{\sqrt{2}} \\
& =\frac{1}{2}
\end{aligned}
$$

4.B. $|\psi\rangle$ is seperable.

Since 14$\left.\left.\rangle=1 \phi^{+}\right\rangle+1 \phi^{-}\right\rangle$

$$
\begin{aligned}
& =\frac{1}{\left(\left.\sqrt{2}\right|^{2}\right.}(|H H\rangle+|V / V\rangle+|H H\rangle-|/ V\rangle) \\
& =\frac{2}{2}(|H H\rangle) \\
& =|H H\rangle
\end{aligned}
$$

5. if input $|0\rangle$:

$$
\left.10>\rightarrow \frac{1}{\sqrt{2}}(10\rangle+|1\rangle\right) .
$$

D) clicks wite \quad Prob $=\frac{1}{2}$

$$
P\left(D_{2}\right)=\frac{1}{2}
$$

if input $\frac{107+117}{\sqrt{2}}$:

$$
\begin{aligned}
& \frac{107+11>}{\sqrt{2}} \xrightarrow{B \cdot S} 107 \\
& P\left(D_{1}\right)=1
\end{aligned}
$$

D_{2} only clicks if input $=|0\rangle$ so E.
b. $1 \psi\rangle=a|0\rangle+b|1\rangle$.
D_{2} (ha clicks if 11).
so $P\left(\mathrm{O}_{2}\right)$ in itu given state $=|b|^{2}$.
Option $E=b|0>+a| 17$ work.
since $P\left(P_{2}\right)$ then is $|a|^{2}$.
7. Option A works.

$$
\frac{\left(-\sin \beta<0 \mid+e^{-i \phi} \cos \beta \cdot(1)\right)\left(\cos \beta|0\rangle+C^{i \phi} \sin (\beta) 11\right)}{2-\sin \beta \cos \beta+\cos \beta \sin \beta=0 .}
$$

8. Using the matrix, we see that Pharesolé

$$
10 \longrightarrow|0\rangle
$$

So $|L\rangle=\frac{1}{\sqrt{2}}(107+i 117)$

$$
\begin{aligned}
& \stackrel{\text { Phase }}{\text { Sale }} \underset{\sqrt{2}}{ }(10\rangle+i(i 11\rangle)) \\
& =\frac{1}{\sqrt{2}}(107-117)
\end{aligned}
$$

$\sin c \quad i^{2}=-1$ (by def.)

- So $|A\rangle$ is the ouppet. option C

So option C.
10. $|D|,|L\rangle$ do not form an ortwornormel basis.

$$
\begin{aligned}
& |D\rangle=\frac{107+11\rangle}{\sqrt{2}} ;|L\rangle=\frac{|07+i| 1\rangle}{\sqrt{2}} \\
& \langle D \mid L\rangle=\frac{1}{2}(1+i) \neq 0 .
\end{aligned}
$$

11. In $\frac{|H| P\rangle+|V V\rangle}{}$, it doer noF maltu Which photön soesto bob θ So let take The first quibit soer to Bobo. Then, Bob measuring $|H\rangle$ means the full fystan's output siole is citum 1 HH\rangle or $|甘 \mathrm{~V}\rangle$. The probalility of seatiop. $|H H\rangle$ output is

$$
\begin{aligned}
& \quad \operatorname{cHH} \left\lvert\,\left(\frac{1}{\sqrt{2}}(|H H\rangle+|v v\rangle)\right)^{2}\right. \\
& =\frac{1}{\sqrt{2}}\left(\langle H+| H \rightarrow+\left.\langle H H \mid w\rangle\right|^{2}\right. \\
& =\left|\frac{1}{\sqrt{2}}(+10)\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}
\end{aligned}
$$

The prob for $A|H V\rangle$ comes ont $=0$. So $P(1 H 2)$ for $B 0 b=\frac{1}{2}+0=\frac{1}{\alpha}$
Doing a similas exercise for $|V\rangle$, we again set $\frac{1}{2}$
So
11. option C works.
12.

$$
\begin{aligned}
& 1000>\rightarrow 10007 \\
& 1001>\longrightarrow 10017 \\
& 10107 \longrightarrow 1010\rangle \\
& 10117 \longrightarrow 10117 \\
& 11007 \longrightarrow 11007 \\
& \left.\begin{array}{l}
11017 \longrightarrow 1107 \\
11107 \longrightarrow 11017 \\
11117 \longrightarrow 1117
\end{array}\right\} \text { only happens. }
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{cccccccc}|000\rangle & 1001\rangle & 1010\rangle & |011\rangle & 1100\rangle & |101\rangle & |110\rangle & 11112 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

So uption B.
(13) $|H\rangle \xrightarrow{\alpha} \cos \alpha|H\rangle+\sin \alpha|V\rangle$

- This happens wità probability

01 $\mid\left.(\cos \alpha\langle H|+\sin \alpha\langle v|)|H\rangle\right|^{2}$

$$
=\cos ^{2} \alpha
$$

(I'n tie remain $1-\cos ^{2} \alpha$ probabilif, \rightarrow tui Inceming thoton is absorbed J).
\rightarrow The
\Rightarrow Now $\cos \alpha|t\rangle+\sin x|V\rangle$ soe throyh the $\Rightarrow \quad \beta$ polanijer.

$$
\Rightarrow-\operatorname{co\alpha }|H \tau+\sin \alpha| v\rangle \longrightarrow \cos \beta H\rangle+\sin \beta|V\rangle
$$

This procen happens istou probabiliç:

$$
\begin{aligned}
& \left.f(\cos \beta\langle H|+\sin \beta\langle V|)(\cos \alpha|H\rangle+\sin \alpha|v\rangle)\right|^{2} \\
& =\left(\cos \beta \cos \alpha+\left.\sin \beta \sin \alpha\right|^{2}\right. \\
& =\left.\cos (\alpha-\beta)\right|^{2} \\
& =\cos ^{2}(\alpha-\beta)
\end{aligned}
$$

The probubilicy of a phatro making
it If tie dectecin is

$$
\cos ^{2} \alpha \cos ^{2}(\alpha-\beta)
$$

So optin E.
(Note $\cos (\alpha-\beta)=\cos (\beta-\alpha)$ You can sec दिiि by stanांप at

$$
\cos (\alpha \pm \beta)=\operatorname{sios}(\alpha) \cos (\beta) \mp \sin \alpha \sin \beta) .
$$

