PHY104 - Midterm Exam

Each question carries the same mark. There are 13 questions.
Fill in the multiple-choice answer sheet with a pencil.
You can only pick one option per question
Your Variant Code: 20. Write this on your multiple-choice answer sheet.
For this exam, we use the following conventions.

$$
\begin{aligned}
|D\rangle & =\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
|A\rangle & =\frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
|L\rangle & =\frac{|0\rangle+i|1\rangle}{\sqrt{2}} \\
|R\rangle & =\frac{|0\rangle-i|1\rangle}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{gathered}
|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b} . \\
|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) .
\end{gathered}
$$

For three qubit states, the state $a|000\rangle+b|001\rangle+c|010\rangle+d|011\rangle+e|100\rangle+f|101\rangle+$ $g|110\rangle+h|111\rangle$ can be written as a column vector with entries in the same order as they are written out.

1. Which of the following states is not entangled?
A. $\frac{1}{\sqrt{2}}(|000\rangle+i|111\rangle)$
B. $\frac{1}{\sqrt{2}}(|0000\rangle-|1111\rangle)$
C. $\frac{1}{\sqrt{3}}|00\rangle+\sqrt{\frac{2}{3}}|01\rangle$
D. $\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$
2. A photon in the polarizer state $|\varphi\rangle=|H\rangle$ sees two polarizers whose optic axes are at α and β, respectively, to the horizontal. The polarizers create a new quantum state whose polarization is parallel to the optic axes of polarizer. Detector D detects the presence of photons (in any polarisation). What is the probability that D clicks?

A. $\cos ^{2}(\alpha) \cos ^{2}(\beta)$
B. 0
C. $\cos ^{2}(\alpha) \cos ^{2}(\beta+\alpha)$
D. $\cos (\alpha) \cos (\beta)$
E. $\cos ^{2}(\alpha) \cos ^{2}(\beta-\alpha)$
3. Alice has a qubit in the state $a|0\rangle+b|1\rangle$. She would like to convert this to $a|0\rangle+i b|1\rangle$. She should apply which of the following gates?
A. $\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
B. $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$
C. $\left(\begin{array}{ll}0 & 0 \\ 0 & i\end{array}\right)$
D. $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
4. A Bell state $\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$ is measured. The first qubit is measured along the basis $\{|0\rangle,|1\rangle\}$. While the second qubit is measured along the basis $\{|D\rangle,|A\rangle\}$. What is the probability that the output state is $|0\rangle|D\rangle$?
A. 0.5
B. 0.25
C. 0
D. 0.25 i
E. 1
5. Electrons are fired onto a screen, one by one. An electron sees a slit S0 followed by a pair of slits S1 and S2. The electron then falls onto a screen.

Which of the following statements about this experiment is correct?
A. The electron is in a superposition of states between A and B.
B. The electron splits between A and B.
C. The electron's quantum state is undefined between A and B.
D. We know which slit the electron has passed through.
E. The single electron falls at many locations on the screen in one go.
6. The first qubit in the entangled state

$$
\frac{|01\rangle+|10\rangle}{\sqrt{2}}
$$

is measured.
If the outcome is $|0\rangle$, what can be said about the second qubit's measurement (in the same basis)?
A. The output could be $|0\rangle$ or $|1\rangle$ with equal probability.
B. The output will most definitely be $|0\rangle$.
C. The output is $|1\rangle$ with probability of $\frac{1}{2}$.
D. The output is $|0\rangle$ with probability of $\frac{1}{2}$.
E. The output will most definitely be $|1\rangle$.
7. A quantum state is $|\varphi\rangle=a|0\rangle+e^{i \phi} b|1\rangle$. The state is fed into an analyzer which has two output detectors corresponding to $|0\rangle$ and $|1\rangle$ outputs. The $|1\rangle$ detector clicks $\frac{1}{3}$ times, for identically prepared input states. Which of the following statements can be true?
A. $a=1-\frac{1}{3}, b=\sqrt{\frac{1}{3}}$
B. $a=\left(1-\frac{1}{3}\right), b=\frac{1}{3}$
C. $a=\sqrt{\frac{2}{3}}, b=\sqrt{\frac{1}{3}}$
D. $a=\frac{2}{3}, b=\frac{1}{3}$
E. $a=\sqrt{1-\left(\frac{1}{3}\right)^{2}}, b=\left(\frac{1}{3}\right)^{2}$
8. In the quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, what do the numbers a, b represent?
A. They are merely used to normalize the state.
B. Their sum must be one.
C. They carry no meaning on their own.
D. The probabilities of detecting the state in $|0\rangle$ and $|1\rangle$, respectively.
E. Their modulus squares give the probabilities of detecting the state in $|0\rangle$ and $|1\rangle$, respectively.
9. A pair of photons is produced in the state $\frac{1}{\sqrt{3}}|H H\rangle+\sqrt{\frac{2}{3}}|V V\rangle$. One photon goes to Bob. He measures along the $|H\rangle$ or $|V\rangle$ axis. Which of the following statements for Bob is true?
A. $\mathrm{P}(|H\rangle)=\frac{1}{\sqrt{3}}$ and $\mathrm{P}(|V\rangle)=\sqrt{\frac{2}{3}}$.
B. $\mathrm{P}(|H\rangle)=1 / 2$ and $\mathrm{P}(|V\rangle)=1 / 2$.
C. $\mathrm{P}(|H\rangle)=1$ and $\mathrm{P}(|V\rangle)=0$.
D. $\mathrm{P}(|H\rangle)=1 / 3$ and $\mathrm{P}(|V\rangle)=2 / 3$.
E. $\mathrm{P}(|H\rangle)=0$ and $\mathrm{P}(|V\rangle)=1$.
10. A qutrit is a three-level quantum system. Its (orthonormal) basis vectors are $|a\rangle,|b\rangle$, and $|c\rangle$. Which of the following is not a legitimate qutrit state?
A. $\frac{|a\rangle+|b\rangle+|c\rangle}{\sqrt{2}}$
B. $\frac{|a\rangle+|b\rangle+|c\rangle}{\sqrt{3}}$
C. $\frac{1}{2}|a\rangle+\sqrt{\frac{3}{8}}|b\rangle+\sqrt{\frac{3}{8}}|c\rangle$
D. $\frac{1}{2}|a\rangle+\sqrt{\frac{3}{8}}|b\rangle+e^{i \frac{\pi}{3}} \sqrt{\frac{3}{8}}|c\rangle$
E. All of the given states are legitimate.
11. Electrons in some quantum state are passed through a Stern-Gerlach setup with magnets aligned in the z-direction. Two beams are produced in $|+z\rangle$ and $|-z\rangle$ states. The $|-z\rangle$ electrons are blocked, and the remaining are passed through magnets aligned in the x-direction. Again, only electrons found in the state $|+x\rangle$ survive, and the remaining are blocked. The electrons that survive are again input to magnets aligned in the z-direction as shown. The output from the last magnets is not shown. Which of the following is correct?

A. At the end, all the electrons are found in the state $|+z\rangle$.
B. At the end, some electrons are found in the state $|+z\rangle$ and some in $|-z\rangle$.
C. At the end, all the electrons are found in the state $|-z\rangle$.
D. At the end, none of the electrons are found in $|+z\rangle$ or $|-z\rangle$ states.
E. None of the statements above are correct.
12. Consider the given arrangement of $50: 50$ beamsplitters ($B 1$ and $B 2$) and a perfect mirror (M).

$|H\rangle$ is input to B 1 . What are the probabilities that the detectors click?
A. $\mathrm{P}(\mathrm{D} 1)=1 / 2, \mathrm{P}(\mathrm{D} 2)=1 / 2, \mathrm{P}(\mathrm{D} 3)=0$
B. $\mathrm{P}(\mathrm{D} 1)=1 / 4, \mathrm{P}(\mathrm{D} 2)=1 / 4, \mathrm{P}(\mathrm{D} 3)=1 / 2$
C. $\mathrm{P}(\mathrm{D} 1)=0, \mathrm{P}(\mathrm{D} 2)=0, \mathrm{P}(\mathrm{D} 3)=1$
D. $\mathrm{P}(\mathrm{D} 1)=1 / 3, \mathrm{P}(\mathrm{D} 2)=1 / 3, \mathrm{P}(\mathrm{D} 3)=1 / 3$
E. $\mathrm{P}(\mathrm{D} 1)=1 / 4, \mathrm{P}(\mathrm{D} 2)=1 / 2, \mathrm{P}(\mathrm{D} 3)=1 / 4$
13. A photon is trapped in a ring, which is bounded by three perfect mirrors a, b, and c that merely change the photon's direction. A polarisation analyser has two output ports, a $|V\rangle$ for transmission and $|H\rangle$ for reflection. If we input $a|H\rangle+b|V\rangle$ into the analyser, it outputs a photon in the state $|H\rangle$ port with probability $|a|^{2}$ and in the $|V\rangle$ port with probability $|b|^{2}$. A photon with polarization $|H\rangle$ is injected into the ring just to the right of mirror a as shown in the figure. It sees a polarization rotator that rotates $|H\rangle$ towards $|V\rangle$ by an angle α. What is the probability that the photon emerges from the $|V\rangle$ channel of the beam splitter after fully completing \mathbf{N} cycles? The photon traverses the following trajectory in one cycle of the given quantum circuit:

$$
a \mapsto \text { rotator } \mapsto \text { Polarisation Analyser } \mapsto \mathrm{b} \mapsto \mathrm{c} \mapsto \mathrm{a}
$$

A. $\sin ^{2}(\alpha) \cos ^{2}(\alpha)$
B. $\sin ^{2}(\alpha)$
C. $\sin ^{2 N}(\alpha) \cos ^{2 N}(\alpha)$
D. $\sin ^{2}(\alpha) \cos ^{2 N}(\alpha)$
E. $\sin ^{2 N}(\alpha) \cos ^{2}(\alpha)$

Mid Solution
Question 1
(C)

$$
\text { State, } \begin{aligned}
& \frac{1}{\sqrt{3}}|00\rangle+\sqrt{\frac{2}{3}}|01\rangle \\
\rightarrow & 10\rangle \otimes\left(\frac{1}{\sqrt{3}}|0\rangle+\sqrt{\frac{2}{3}}|1\rangle\right)
\end{aligned}
$$

separable stater and no urrelation belacen the first and second quit.

Question 2
(E) $0 \mid\left.(\cos \alpha\langle H|+\sin \alpha\langle v|)|H\rangle\right|^{2}$

$$
=\cos ^{2} \alpha
$$

Probability through the first polarized.
(2)

$$
\begin{aligned}
& |(\cos \alpha\langle H|+\sin \alpha\langle v|)(\cos \beta|H\rangle+\sin \beta|v\rangle)|^{2} \\
& =|\cos \alpha \cos \beta+\sin \alpha \sin \beta|^{2}
\end{aligned}
$$

Using trig. identity

$$
\begin{aligned}
& =|\cos (\alpha-\beta)|^{2} \\
& =\cos ^{2}(\alpha-\beta)
\end{aligned}
$$

Total probability is given by $=\cos ^{2} \alpha \cos ^{2}(\alpha-\beta)$

Question 3 (A)
We want to add a phase ' i ' to the stand quit only.
The matrix for that is a 2×2 matrix given by

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

Let's verify

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)\binom{a}{b}=\binom{a}{i b}
$$

Question 4 (B)

$$
\begin{aligned}
|0\rangle|0\rangle & \rightarrow|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& \left.=\frac{1}{\sqrt{2}}(100\rangle+|01\rangle\right) \\
P & =\left|\frac{1}{\sqrt{2}}(\langle 00|+\langle 01|) \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)\right|^{2} \\
& =\left|\frac{1}{2}\right|^{2}=0.25
\end{aligned}
$$

Question 5*
(A) A superposition of state is created.

Question 6* (E)
If the first quit is measured is 107 then the second quit must be in $|1\rangle$ state

$$
\left.{\underset{1}{ }{ }^{*}}_{\mid 01}\right|_{2^{n d}}
$$

Question 7 (C)

$$
\begin{array}{rl}
|\varphi\rangle=a|0\rangle+e^{\langle d \delta} b|1\rangle & \text { Therefore } \\
|\langle 1 \mid \phi\rangle|^{2}=\frac{1}{3}=|b|^{2} & |\langle 0 \mid \phi\rangle|^{2}=\frac{2}{3}=|a|^{2} \\
\frac{1}{\sqrt{3}}=b & a=\sqrt{\frac{2}{3}}
\end{array}
$$

Question 8
(E) a and stab in modulus square gives is the probabilities of detecting, 10$\rangle^{\text {the }}$ state and 11$)_{\text {, respectively. }}$
Question 9
(D)

Here we make an assumption, if Bob detects $|H\rangle$ then the other quit should also be in $|H\rangle$ state and so on. Hence, we are talking about the probability of detecting $|H H\rangle$.

Question 10 A
Lets check for each case a we wand $|a|^{2} t|b|^{2}|c|^{2} \pm 1$
A. $\left|\frac{1}{\sqrt{2}}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2} \neq A$

Nat a legitimate state.
Use similar method to verify for other states.

Question 11
(A) \rightarrow Done in class

After passing $1+27$ throng $S G_{x}$ we create a new quantum state and so we canst say that it's still in

$$
\begin{aligned}
& |H\rangle \xrightarrow{B_{1}} \frac{1}{\sqrt{2}}(|H\rangle+|V\rangle) \\
& \left.P\left(D_{3}\right)=\left\lvert\,\langle H| \frac{1}{\sqrt{2}}(H\rangle+|V\rangle\right.\right)\left.\right|^{2}=\frac{1}{2} .
\end{aligned}
$$

with $\frac{1}{2}$ probability $|V\rangle$ gees \downarrow, the mirror

$$
\begin{aligned}
& |V\rangle \xrightarrow{\text { mirror }}|H\rangle \\
& |H\rangle \rightarrow \frac{1}{\sqrt{2}}(|H\rangle+|V\rangle) \quad n \\
& P\left(D_{1}\right)=\frac{1}{2} \\
& P\left(D_{2}\right)=\frac{1}{4}
\end{aligned}
$$

Question 12

Rotator $|H\rangle \rightarrow \sin \alpha|V\rangle+\cos \alpha|H\rangle$

$$
\sin \alpha|V\rangle+\cos d H\rangle \xrightarrow{p, A}
$$

Reflection probability is given by

$$
\begin{aligned}
& \left|\langle H | \left(\sin \alpha|V\rangle+\left.\cos \alpha|H\rangle\right|^{2}\right.\right. \\
& =\operatorname{css}^{2} \alpha
\end{aligned}
$$

Transmission "

$$
\begin{aligned}
& \mid\left.\langle v|(\sin \alpha|v\rangle+\cos \alpha|H\rangle)\right|^{2} \\
& \quad=\sin ^{2} \alpha
\end{aligned}
$$

Now $|H\rangle$ will be reflected by the three mirrors and again enter Ratutor and P.A. The cycle repeats.

$$
\begin{aligned}
& \left(\cos ^{2} \alpha\right)^{N} \% \sin ^{2} \alpha \\
& =\left(\cos ^{2} \mid \alpha \cdot \sin ^{2} \alpha\right)
\end{aligned}
$$

Cycle repeats N times and the probability is given by $\left(\cos ^{2} \alpha\right)^{N}=\cos ^{2 N} \alpha$

After N cycles, prob of gettive IV) is $\underbrace{\left(\sin ^{2} \alpha \cdot \cos ^{2 N} \alpha\right)}$

