
Section 1 Homework 3 PHY 104

Question 1

Identify the photon polarization states |H⟩, |V ⟩, |L⟩, |R⟩, |D⟩, |A⟩ and |D⟩−|A⟩√
2

on a Bloch
sphere, where

|D⟩ = 1√
2

(
|H⟩+ |V ⟩

)
|A⟩ = 1√

2

(
|H⟩ − |V ⟩

)
|L⟩ = 1√

2

(
|H⟩+ i |V ⟩

)
|R⟩ = 1√

2

(
|H⟩ − i |V ⟩

)
.

An arbitrary polarisation state of a photon can be represented on the Bloch sphere as

cos

(
θ

2

)
|H⟩+ sin

(
θ

2

)
eiϕ |V ⟩ .

(|H⟩ takes the place of |0⟩, and |V ⟩ takes the place of |1⟩ from our discussions in class).

Question 2
Given a qubit in the |0⟩ state, living on the Bloch sphere. Write down the resultant state
if we do a 2π rotation about the x-axis. What is the resultant state if we do a 4π rotation
instead?

Question 3
In this question we will investigate how rotations performed on the qubits living on a Bloch
sphere can help us achieve the operations defined by various gates.

(a) Show that a π
2

rotation about the y-axis is not a Hadamard gate. For this you will
need to choose a basis state and apply the standard operation of the Hadamard gate
defined below:

|0⟩ = |0⟩+ |1⟩√
2

|1⟩ = |0⟩ − |1⟩√
2

.

Hint: You need to work with |+z⟩ and |−z⟩ basis defined on the Bloch sphere.
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(b) Show that a π rotation about the y-axis is not a Not gate. The operation of the Not
gate is defined as follows:

|0⟩ = |1⟩
|1⟩ = |0⟩ .

(c) Show that a
(
π
2
)y followed by (π)x rotation achieves a Hadamard gate. The alphabets

in the subscripts represent the axis of rotation.

(d) Show that a π rotation about the ex+ez√
2

achieves a Hadamard gate.

Question 4
We have a qubit in the state |0⟩, and we wish to put it in the state |1⟩. One way to do so is
to subject our qubit to a π rotation about the y-axis.

(a) Show that such a rotation does what we intend.

Manipulation of real-world qubits isn’t so straightforward. Suppose subjecting our
qubit to a θ rotation about any axis actually rotates our qubit by θ(1 − ϵ) radians
about the same. All we know about ϵ is that 0 < ϵ ≪ 1 such that ϵ5 and all higher
powers can be ignored.

(b) How well does our original idea do now? To calculate this, calculate the modulus square
of the overlap of |1⟩ with the output from the rotation.

(c) Consider now a sequence of rotations. First, subject the qubit in |0⟩ to a π
2

rotation
about the y-axis. Then, subject the resultant state to a π rotation about the x-axis.
Finally, subject it to a π

2
rotation about the y-axis. Calculate how well this sequence

does in achieving |1⟩, as done in part b.

(d) Which method performs better?

Hint: Think Taylor Series!

Question 5
Suppose we have a qubit in |0⟩.

(a) We subject it to a π
2

rotation about the y-axis. We then rotate it by the same angle
about the z-axis. Finally, we subject it to a rotation about the x-axis by the same
angle. What is the final state of the qubit? Try this just by looking at the Bloch sphere
and also by explicit calculation.

2



Section 1 Homework 3 PHY 104

(b) Again, consider a a qubit in |0⟩. We subject it to a π
2

rotation about the y-axis. We
then rotate it by π

4
about the z-axis. Finally, we subject it to a rotation about the

x-axis by π
2
. What is the final state of the qubit? Try this just by looking at the Bloch

sphere, and also by explicit calculation.

Do you notice something odd about the final states, especially when you compare it
with what you expected just by looking at the Bloch sphere?

Question 6
We now try to prove that

eiθÂ = cos(θ)1+ i sin(θ)Â

for Â such that Â2 = 1 and θ ∈ R.

(a) We define eB̂ by the power series

∞∑
n=0

B̂n

n!
= 1+ B̂ +

B̂2

2!
+
B̂3

3!
+
B̂4

4!
+ · · ·

Write out the first few (at least the first four) terms of the expansion for eiθÂ.

(b) Write out the first few (at least the first two) terms of the Maclaurin series for cos(θ)
and sin(θ).

(c) Compare parts a and b to conclude that (at least to the order considered), the claim
we want to prove is true.

Hint: you must use that Â2 = 1!

(d) Use what we learned in Homework 1, Question 8 to show that the result holds even if
we consider all terms in the expansions.

(e) Food for thought: what does it mean to have an infinite sum of operators, as we have in
part a? Can we define some notion of convergence of such sums? Such considerations
tell us why a Hilbert Space (what we have been calling a quantum space) is not just
any vector space with an inner product; it must meet other conditions, too! These
questions fall much beyond the scope of this course, but you are welcome to explore
them.

Question 7
In class, we said that the solution to

iℏ
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩
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is
|ψ(t)⟩ = e−

i
ℏ Ĥt |ψ(0)⟩ .

Here Ĥ is the Hamiltonian, |ψ(0)⟩ is the initial state of the system, and |ψ(t)⟩ is the state of
system at time t.

Show that our form of |ψ(t)⟩ satisfies the differential equation. For this question, you
may treat Ĥ as a number (of course, this is not true! If you wish, try this problem without
this assumption. You might hit a snag when trying to figure out d

dt
e−

i
ℏ Ĥt. Try using the limit

definition here. This is an extra exercise, and falls outside the scope of this course).

Question 8
Consider a spin-1/2 particle in a constant magnetic field in the x-direction. The Hamiltonian
is

Ĥ = bℏX̂.

(a) Write the matrix for Ĥ.

(b) If the system is initially in the state |0⟩+|1⟩√
2

, find its state at time t. Do any measurement
probabilities change with time?

(c) Repeat part b with initial state |0⟩. Do the probabilities of measuring |0⟩ and |1⟩
change with time? If so, find them (as functions of time).
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