Name : \qquad
Roll Number:

Question 1

(a) The GHZ state is an entangled quantum state for 3 qubits and its state is:

$$
\left|\Psi_{G H Z}\right\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

Find the probability that each of the three qubits are in the diagonal state, where the diagonal state is defined as:

$$
|D\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

[3]
(b) Given the state:

$$
\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|H\rangle|V\rangle-|V\rangle|H\rangle)
$$

Find the probability that the first qubit is in the $|L\rangle$ state and the second qubit is in the $|R\rangle$ state, where

$$
\begin{aligned}
& |L\rangle=\frac{1}{\sqrt{2}}(|H\rangle+i|V\rangle) \\
& |R\rangle=\frac{1}{\sqrt{2}}(|H\rangle-i|V\rangle)
\end{aligned}
$$

[3]

Question 2

Consider the three-qubit quantum circuit shown overleaf.
The circuit consists of a Hadamard gate (H gate), a SWAP gate, and a controlled-NOT (controlled N gate). The action of each gate is described below.
(i) Hadamard Gate (H gate): This is a single qubit gate.

$$
\begin{aligned}
& |0\rangle \xrightarrow{\mathrm{H}} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& |1\rangle \xrightarrow{\mathrm{H}} \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
\end{aligned}
$$

Figure 1: Quantum Circuit for Question 2
(ii) SWAP gate: This is a two-qubit gate. If the input state is $|X\rangle \otimes|Y\rangle$, the output is $|Y\rangle \otimes|X\rangle$. This gate is represented by the wires crossing over in the circuit shown.
(iii) Controlled NOT gate (controlled N gate): This acts on two qubits. If the control qubit is in the state $|1\rangle$, the qubit with the N gate on it is flipped. If the control qubit is in $|0\rangle$, nothing happens to the qubit with the N gate on it. In either case, nothing happens to the control qubit.

To represent states of the three-qubit system, we will use the convention that in the composite state $|\alpha\rangle \otimes|\beta\rangle \otimes|\gamma\rangle$, the first ket $(|\alpha\rangle)$ is of the first qubit, the second ket $(|\beta\rangle)$ is of the second qubit, and the third ket $(|\gamma\rangle)$ is of the third qubit.
(a) Write the matrix representing the two-qubit SWAP gate. [3.5]
(b) The input state into the circuit is $|0\rangle|0\rangle|0\rangle$. Find the state at the end of the circuit.
(c) Is the state you found in part (b) entangled? [1.5]
(d) We do a measurement on the final three-qubit state. Find the probability that the third qubit is found in the state $|0\rangle$ and the first two qubits are found in orthogonal basis states (as in, if the first qubit is found in $|0\rangle$, the second should be in $|1\rangle$ or vice versa). [2]
Hint: Getting either $|010\rangle$ or $|100\rangle$ as the output will satisfy the condition set in this part.

Solution 1

(a) We need to find the overlap with the state:

$$
\begin{aligned}
|D\rangle \otimes|D\rangle \otimes|D\rangle & =\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& =\frac{1}{2 \sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

Furthermore,

$$
\left|\Psi_{G H Z}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

We can find the probability as follows:

$$
\begin{aligned}
& \left|\left\langle D D D \mid \Psi_{G H Z}\right\rangle\right|^{2} \\
& =\left|\frac{1}{2 \sqrt{2}}\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right|^{2} \\
& =\frac{1}{4} .
\end{aligned}
$$

(b) We need to projection on

$$
\begin{gathered}
|L\rangle \otimes|R\rangle=\frac{1}{2}(|H\rangle+i|V\rangle) \otimes(|H\rangle-i|V\rangle) \\
=\frac{1}{2}(|H H\rangle-i|H V\rangle+i|V H\rangle+|V V\rangle) \\
\text { Prob. }=\mid\left.\langle L|\langle R|\left(\left|\Psi^{-}\right\rangle\right)\right|^{2} \\
=\left(\frac{1}{2 \sqrt{2}}\right)^{2}|(i+i)|^{2} \\
=\frac{1}{2}
\end{gathered}
$$

Solution 2

(a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(b) $|000\rangle \xrightarrow{H_{3}}|00\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{\sqrt{2}}(|000\rangle+|001\rangle)$.
$\frac{1}{\sqrt{2}}(|000\rangle+|001\rangle) \xrightarrow{\text { SWAP }_{2,3}} \frac{1}{\sqrt{2}}(|000\rangle+|010\rangle)$.
$\frac{1}{\sqrt{2}}(|000\rangle+|010\rangle) \xrightarrow{\mathrm{CNOT}_{2,1}} \frac{1}{\sqrt{2}}(|000\rangle+|110\rangle)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \otimes|0\rangle=\left|\psi_{\text {out }}\right\rangle$.
(c) Partially, yes. The first and second qubits are entangled with each other, while being separable from the third.
(d) $\mathrm{P}(|010\rangle)=\left|\left\langle 010 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\frac{1}{2}|\langle 010 \mid 000\rangle+\langle 010 \mid 110\rangle|^{2}=0$.
$\mathrm{P}(|100\rangle)=\left|\left\langle 100 \mid \psi_{\text {out }}\right\rangle\right|^{2}=\frac{1}{2}|\langle 100 \mid 000\rangle+\langle 100 \mid 110\rangle|^{2}=0$.
$\mathrm{P}(|010\rangle)+\mathrm{P}(|100\rangle)=0$.

