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Question 3

(a) |ψ⟩ ⊗ |ϕ⟩ =


ac

ad

bc

bd

. Note that we could have arrived at this by doing the following.

Figure 1: A method to carry out the direct product

(b)
[
(ac)∗, (ad)∗, (bc)∗, (bd)∗

]

ac

ad

bc

bd

 = |ac|2 + |ad|2 + |bc|2 + |bd|2. You can get the same by

doing the following. Note that while taking the inner product for composite states, we

compute the inner product within each subsystem and then multiply the results. For

example, here note that |ψ⟩ comes from qubit A and |ϕ⟩ from qubit B.

(⟨ψ| ⊗ ⟨ϕ|)(|ψ⟩ ⊗ |ϕ⟩) = ⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩

(c) One way to proceed is to figure out the output state for each of the four basis states

|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |0⟩ , |1⟩ |1⟩. But since we know the matrix for each of the two gates, we

can also perform the tensor product as shown below. Here the first matrix represents

the first qubit’s gate. The second matrix, denoted by B2, represents the second qubit’s
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gate. Note that, in this case, both are 2x2 matrices. The tensor product yields a 4x4

matrix. This larger matrix can be constructed out of 4 2x2 matrices as shown.

Figure 2: A method to carry out the direct product

In our particular example, this works out as shown below.

 1√
2

i√
2

i√
2

− 1√
2

⊗

 1√
2

i√
2

i√
2

− 1√
2

 =
1

2


1 i i −1

i 1 −1 i

i −1 1 i

−1 i i 1


Note that before we can write our kets down as column vectors, we have to pick a

convention for which basis is represented by which slot. For 2 dimensional systems, we

have been using the convention shown below.

|ψ⟩ = a |0⟩+ b |1⟩ =

a
b

.
If we want matrix multiplication to work, this convention also dictates how we write

down the matrix for operators. Suppose some operator O acts as defined below.

|0⟩ O−→ v |0⟩+ w |1⟩

|1⟩ O−→ x |0⟩+ y |1⟩ .
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Its matrix in this basis is shown below.v x

w y

 .
The first column is the output vector when |0⟩ is the input. The positions of v, w

are dictated by our convention for column vectors. Similarly, the first column is the

output for |0⟩ and the second column is the output for |1⟩ since our column vectors

talk about |0⟩ first and then |1⟩. This reasoning extends to the 4-dimensional examples

done above.

(d) The gate acts as stated below.

|0⟩ ⊗ |0⟩ −→ |0⟩ ⊗ 1√
2
(|0⟩+ |1⟩) = 1√

2
(|0⟩ |0⟩+ |0⟩ |1⟩)

|0⟩ ⊗ |1⟩ −→ |0⟩ ⊗ 1√
2
(|0⟩ − |1⟩) = 1√

2
(|0⟩ |0⟩ − |0⟩ |1⟩)

|1⟩ ⊗ |0⟩ −→ |1⟩ ⊗ |0⟩

|1⟩ ⊗ |1⟩ −→ |1⟩ ⊗ |1⟩

The matrix then becomes 
1√
2

1√
2

0 0

1√
2

− 1√
2

0 0

0 0 1 0

0 0 0 1

 .

(e) The input state is |0⟩ ⊗ 1√
2
(|0⟩+ |1⟩) = 1√

2
(|0⟩ |0⟩+ |0⟩ |1⟩). The corresponding column

vector is

1√
2


1

1

0

0

.
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The output state can now be found.

1√
2


1√
2

1√
2

0 0

1√
2

− 1√
2

0 0

0 0 1 0

0 0 0 1




1

1

0

0

 =


1

0

0

0

.

Question 6

(a) We will use the convention that

|H⟩ =

1
0

, |V ⟩ =

0
1

.

So our matrix becomes

cos(θ) −sin(θ)

sin(θ) cos(θ)

 .
(b)

cos(ϕ1) −sin(ϕ1)

sin(ϕ1) cos(ϕ1)

cos(ϕ0) −sin(ϕ0)

sin(ϕ0) cos(ϕ0)

 =

cos(ϕ0 + ϕ1) −sin(ϕ0 + ϕ1)

sin(ϕ0 + ϕ1) cos(ϕ0 + ϕ1)

.

Note that the order of multiplication does not matter in this particular case.

To derive the matrix above, we used the following trigonometric identities.

sin(ϕ0 + ϕ1) = sin(ϕ0)cos(ϕ1) + cos(ϕ0)sin(ϕ1),

cos(ϕ0 + ϕ1) = cos(ϕ0)cos(ϕ1)− sin(ϕ0)sin(ϕ1).

(c)

cos(2ϕ) −sin(2ϕ)

sin(2ϕ) cos(2ϕ)


(d) Suppose N=3. We can combine the matrix in part c with the matrix in part a using

our result in part b to get

cos(3ϕ) −sin(3ϕ)

sin(3ϕ) cos(3ϕ)

. We can repeat this exercise then for

N=4 and so on.
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A way to formalize the foregoing is to suppose that our claim works for N-1 gates. So

for N-1 gates, our matrix is

cos((N − 1)ϕ) −sin((N − 1)ϕ)

sin((N − 1)ϕ) cos((N − 1)ϕ)

. Using our result in

part b, we can easily show that the matrix for N gates is

cos(Nϕ) −sin(Nϕ)

sin(Nϕ) cos(Nϕ)

. So

if we know our result works for N=2 gates, this discussion mandates it is also true for

N=3. Then the N=3 result mandates that the result hold for N=4 and so on. This

method is known as induction.

(e) The combined action of the N gates can be represented by one gate with rotation angle

= N( π
2N

) = π
2
. So |H⟩ is transformed into |V ⟩. Since our detector detects |H⟩, it never

clicks: the probability of clicking is zero.

(f) After the first rotation gate, our photon is in the state cos
(

π
2N

)
|H⟩+ sin

(
π
2N

)
|V ⟩. The

photon allows |H⟩ to pass through. This happens with the probability

| ⟨H| (cos
( π

2N

)
|H⟩+sin

( π

2N

)
|V ⟩)|2 = |cos

( π

2N

)
⟨H|H⟩+sin

( π

2N

)
⟨H|V ⟩ |2 = cos2

( π

2N

)
.

The state right before entering the second rotation gate is |H⟩.

(g) Since there are N such instances and we would like the state to make it through every

time, the probability of |H⟩ surviving (and hence the detector clicking) is

cos2
( π

2N

)
cos2

( π

2N

)
· · · cos2

( π

2N

)
= cos2N

( π

2N

)
.

(h) cos2N(θ) ≈ 1− 2Nθ2. Plugging in θ = π
2N

yields 1− π2

2N
. As N → ∞, the second term

dies out and our probability approaches 1.

Question 7

(a) The combined quantum space with three qubits is 8-dimensional. The basis states are

now |0⟩ |0⟩ |0⟩ , |0⟩ |0⟩ |1⟩ , |0⟩ |1⟩ |0⟩ , |0⟩ |1⟩ |1⟩ , |1⟩ |0⟩ |0⟩ , |1⟩ |0⟩ |1⟩ , |1⟩ |1⟩ |0⟩ , |1⟩ |1⟩ |1⟩ .
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Only the last two states are affected by the Toffoli gate.

|1⟩ |1⟩ |0⟩ Toffoli−−−→ |1⟩ |1⟩ |1⟩

|1⟩ |1⟩ |1⟩ Toffoli−−−→ |1⟩ |1⟩ |0⟩ .

Using the convention that

|0⟩ =

1
0

, |1⟩ =
0
1

,
our matrix for this gate becomes

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



.

Question 8

(a) The Hadamard gate acts on the first qubit to give the state 1√
2
(|0⟩ + |1⟩) ⊗ |0⟩ =

1√
2
(|0⟩ |0⟩ + |1⟩ |0⟩). This state then passes through the controlled-NOT gate to give

1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩).

(b) The last gate the state passed through is the controlled-NOT gate. Let’s try to reverse

that first. By a “reverse” gate, we mean a gate that can start with the output state of

the controlled-NOT gate and map it back to its input.
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The action of the controlled-NOT gate is defined below.

|0⟩ |0⟩ controlled-NOT−−−−−−−−→ |0⟩ |0⟩

|0⟩ |1⟩ controlled-NOT−−−−−−−−→ |0⟩ |1⟩

|1⟩ |0⟩ controlled-NOT−−−−−−−−→ |1⟩ |1⟩

|1⟩ |1⟩ controlled-NOT−−−−−−−−→ |1⟩ |0⟩ .

We can reverse this action by flipping the state of the second qubit if the first qubit is in

the state |1⟩. But this is just the controlled-NOT gate: to reverse this controlled-NOT

gate, we use another controlled-NOT gate!

The next step (the order of the gates matters!!) is to reverse the Hadamard gate

which acts on the first qubit. You can verify (or guess based on our experience with

balanced Mach-Zehnder Interferometers) that a Hadamard gate can be reversed by

another Hadamard gate. We can fill in the box now.

Figure 3: Completed circuit for Question 8.b.

We can also look at this more abstractly. Let’s call our initial state |ψ⟩. The ma-

trix for the H gate is represented by UH . The state after passing through it is then

UH |ψ⟩. The matrix for the controlled-NOT is represented by UN . The state after

passing through it is UNUH |ψ⟩. To get back to |ψ⟩ , we first undo UN with its in-

verse U−1
N . This gets us U−1

N UNUH |ψ⟩ = UH |ψ⟩. We then reverse UH with U−1
H to get

U−1
H U−1

N UNUH |ψ⟩ = U−1
H UH |ψ⟩ = |ψ⟩ . Using the preceding discussion about how these

reversal gates behave, you should be able to make a truth table for them, and then find
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the matrices for U−1
H and U−1

N . By comparing these with UH and UN respectively, you

should be able to, once again, conclude that U−1
H = UH and U−1

N = UN .

Additional (and more technical note):

There is another way to find the matrices U−1
H and U−1

N . Let’s first note that both UH

and UN are unitary. This means that they do not change the “size” of any vector

they act on. By “size” of some vector |ψ⟩, we mean ⟨ψ|ψ⟩ . Let’s verify my claim.

UN acts on |ψin⟩ to give |ψout⟩ = UN |ψin⟩. The corresponding bra vector is given

by ⟨ψout| = ⟨ψin|U †
N . U †

N is the adjoint of UN . So the size of the output vector is

⟨ψout|ψout⟩ = ⟨ψin|U †
NUN |ψin⟩. If U †

NUN = 1, ⟨ψout|ψout⟩ = ⟨ψin|ψin⟩. So to check if a

given matrix is unitary, we check that U †
NUN = 1. Check this for UN and UH . To do

so, you will need the matrix for their adjoints. The method to find that is spelled out

below. a b

c d

†

=

a∗ b∗

c∗ d∗

T

=

a∗ c∗

b∗ d∗


Once you conclude that both are unitary, you immediately know their inverses! This

is since U †
NUN = 1 implies that U−1

N = U †
N . Ditto for UH .

In the preceding discussion, 1 is the identity matrix. The special thing about 1 is

that 1 |ψ⟩ = |ψ⟩ for any |ψ⟩. The 2-dimensional identity matrix is

1 0

0 1


(c) Our discussion in the preceding part paid no heed to which state is being input. We

found gates that reverse the entire action of the gates earlier in the circuit. Our circuit

then can recoup any input state.
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