Question 1

The time-dependent Schrödinger equation can be used to determine the evolution of a quantum state after some time t. It is written as:

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=\hat{H}|\psi(0)\rangle
$$

where \hat{H} is the Hamiltonian of the system. In this question, we define \hat{H} to be:

$$
\hat{H}=b \hbar \hat{Y} .
$$

(a) Show that $\hat{Y}^{2}=\mathbb{1}$.
(b) A quantum state $|\psi(0)\rangle$ at time $t=0$ is given by

$$
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

What is $|\psi(t)\rangle$ if $b t=\frac{\pi}{2}$?
(c) Identify $|\psi(0)\rangle$ and $|\psi(t)\rangle$ on the Bloch sphere.
(d) If $b t=\frac{\pi}{2}$, what rotation will take $|\psi(0)\rangle$ to $|\psi(t)\rangle$? Specify the amount and axis of rotation.
(e) Now suppose that the initial state is

$$
\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)
$$

How does this state evolve with time?
(f) For part (f), is there any measurement that can differentiate between $|\psi(0)\rangle$ and the state at some later time?

The three Pauli operators are defined below

$$
\begin{aligned}
\hat{X} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\hat{Y} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\hat{Z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Question 2

We define an operator $\hat{U}=e^{-i \theta \frac{\hat{Y}}{2}}$ where $\theta=\frac{\pi}{2 N}$. Let $N=10$.
(a) Our initial state is $|0\rangle$. We act \hat{U} on this state N times, in succession. Find the final state.
(b) Our initial state is again $|0\rangle$. We act \hat{U} on it and then perform a measurement along the $|0\rangle$ direction. Performing a "measurement along the $|0\rangle$ direction" on the state $a|0\rangle+b|1\rangle$ yields $|0\rangle$ with probability $|a|^{2}$.
We carry out this process - acting \hat{U} and then measuring along the $|0\rangle$ direction N times. What is the probability that we have $|0\rangle$ at the end of the process?

Question 3

Write down one matrix that rotates the state $|0\rangle$ from $\mathbf{1}$ to $\mathbf{2}$ to $\mathbf{3}$ and back to $\mathbf{1}$. This trajectory is shown on the Bloch sphere.

Qui 3
(Vamiant 2)

$$
\begin{aligned}
& \text { (2) } \hat{Y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \hat{Y}^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\hat{1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left.|\psi(0)\rangle=\frac{1}{\sqrt{2}}(10\rangle+\mid 12\right) \\
& |\psi(t)\rangle=e^{-\frac{i}{\hbar} \hat{H} t}|\psi(0)\rangle=e^{-i \Delta t \hat{Y}}|\psi(0)\rangle \\
& \rightarrow \text { Givengy bt }=\frac{\pi}{2} \quad \hat{u}=e^{-i \frac{\pi}{2} \hat{Y}}=\cos \left(\frac{\pi}{\partial}\right)^{i}-i \sin \left(\frac{\pi}{0}\right)^{\hat{Y}} \\
& \left|\psi_{(t)}\right\rangle=-i \hat{\gamma} \frac{1}{\sqrt{2}}\binom{1}{0}-i \hat{\gamma} \frac{1}{\sqrt{2}}\binom{0}{1} \\
& \begin{aligned}
\hat{Y}|0\rangle=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\binom{0}{i} \quad \hat{Y}\binom{0}{1} & =\binom{-i}{0} \\
& =-i|0\rangle
\end{aligned} \\
& =i|1\rangle
\end{aligned}
$$

$$
\left.\left.|\psi(t)\rangle=\frac{1}{\sqrt{2}}|1\rangle-\frac{1}{\sqrt{2}}|0\rangle=-\frac{1}{\sqrt{2}}(10\rangle-11\right\rangle\right)
$$

(c) A general state on the Bloch Sphere is given by

$$
\left.\cos \left(\frac{\theta}{2}|1\rangle\right\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|1\rangle=\frac{1}{\sqrt{2}}(|1\rangle-10\rangle\right)
$$

* $\theta=\frac{\pi}{2}$ for $\cos \left(\frac{\theta}{2}\right)=\frac{1}{\sqrt{2}}$ and $e^{i \phi}=-1$
$U \operatorname{sing} \theta=\frac{\pi}{\alpha}$ and $\phi=\pi$ and ignoring the global phase our state lies on the $x-y$ plane.

(d) Ax is $\rightarrow Y$ anticlockwise. Angle of rotation is π.
(e) Given sect the renitary time evolution operator

$$
\begin{aligned}
|\psi(t)\rangle=-i \hat{Y}|\psi(0)\rangle= & \left.i \hat{Y} \frac{1}{\sqrt{2}}(10\rangle+i|1\rangle\right) \\
& 1 /(-12\rangle /+i|0\rangle\rangle
\end{aligned}
$$

$$
=\frac{1}{\sqrt{2}}((-127 /+i 10\rangle)
$$

Next page...

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle) \\
= & -\frac{i}{\sqrt{2}}(\hat{Y}|0\rangle+i \hat{Y}|1\rangle) \\
= & -\frac{i}{\sqrt{2}}(i|1\rangle+i(-i|0\rangle)) \\
= & \frac{-i}{\sqrt{2}}(i|1\rangle+|0\rangle) \\
= & \frac{-i}{\sqrt{2}}(|0\rangle+i|1\rangle) \quad \text { a global phase of }
\end{aligned}
$$

The state remains the same.
(f) There is no meaurement that can till apart the two states since only a global phase is picked p.

Question 2
(a)

$$
\begin{aligned}
& \hat{u}=e^{-i \theta \hat{Y}} \quad \text { where } \theta=\frac{\pi}{2 N}=\frac{\pi}{20} . \\
& \hat{u}=e^{-i \frac{\pi}{40}} \hat{\gamma} \\
& (\hat{u})^{10}=e^{-i \frac{\pi}{40}} \hat{\gamma}
\end{aligned}
$$

Let's firt do $e^{-i} \frac{x}{40} \hat{Y} \cdot e^{-i \frac{x}{40} \hat{y}} \quad$ sath $-\dot{Y}_{b} \hat{C} C=$

$$
\begin{aligned}
e^{-i \frac{\pi}{40} \hat{Y}} & =e^{-i \frac{\pi}{20}(\hat{y}+\hat{Y})} \\
& =e^{-i \frac{\pi}{40}(Y+Y+Y+Y \ldots)} \\
& =e^{-i \frac{\pi}{4}}
\end{aligned}
$$

$$
\begin{aligned}
e^{-i \frac{\pi}{4} \hat{Y}}=\left(\frac{1}{\sqrt{2}} \hat{\mathbb{Z}}-\frac{i}{\sqrt{2}}\right)|0\rangle & =\frac{1}{\sqrt{2}}|0\rangle\left(\frac{i}{\sqrt{2}}(i|1\rangle)\right. \\
0 & =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
\end{aligned}
$$

(b)

$$
\begin{aligned}
e^{-i \frac{\pi}{40}} \hat{\gamma} & \left.=\left\{\cos \left(\frac{\pi}{40}\right)^{\hat{\psi}}-i \sin \left(\frac{\pi}{40}\right) \hat{y}\right\} 10\right\rangle \\
& \left.\left.=\cos \left(\frac{\pi}{40}\right) 10\right\rangle-i \sin \left(\frac{\pi}{40}\right)(i 11\rangle\right) \\
& =\cos \left(\frac{\pi}{40}|10\rangle+\sin \left(\frac{\pi}{40}\right)|1\rangle\right.
\end{aligned}
$$

Measirienme $\rightarrow P(0)=\mid\left.\langle 0|\left\{\right.$ us $\left.\left(\pi_{0}\right)^{10\rangle}+\sin \left(\bar{t}_{0}\right)|1\rangle\right\}\right|^{2}$ $=\cos ^{2}\left(\frac{1}{10}\right) \leftarrow$ Probability ofter $1 \frac{\text { measurument }}{\text { meawnuret }}$
\rightarrow State callapses to 107 and we apply zhitary opecator again. We do this 10 times and the final state is afume
107 ?

The final state is 107 with probability.

$$
\begin{gathered}
\cos ^{2}\left(\frac{\pi}{40}\right) \cdot \cos ^{2}\left(\frac{\pi}{40}\right) \cdots \cdot \cos ^{2}\left(\frac{\pi}{40}\right) \\
{\left[\cos ^{2}\left(\frac{\pi}{40}\right)\right]^{10}=\cos ^{20}\left(\frac{\pi}{40}\right)}
\end{gathered}
$$

Question 3
$1-2 \quad 10\rangle \rightarrow \frac{10\rangle+117}{\sqrt{2}}+U_{y}\left(\frac{\pi}{2}\right)$ will achieve this state.
Unitary operator for the rotation $\Rightarrow e^{-i \frac{\theta}{2} \hat{Y}}=e^{-i \frac{\pi}{4} \hat{Y}}$

$$
=\left(\frac{\mid-i}{\sqrt{2}}\right)\left(\frac{|0\rangle+i|1\rangle}{\sqrt{2}}\right)
$$

We achieve the gits with a phase factor of $e^{-\frac{i \pi}{4}}$.

$$
\begin{aligned}
& e^{i \frac{\pi}{4}} \hat{y}|0\rangle=\left(\cos \left(\frac{\theta}{4}\right) \hat{\mathbb{L}}-i \sin \left(\frac{0}{4}\right) \hat{Y}\right)^{107} \\
& =\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}(i|1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle+|i\rangle) \\
& \partial \rightarrow 3 \quad \frac{10\rangle+|1\rangle}{\sqrt{2}} \quad u_{2}\left(\frac{\pi}{\gamma}\right)=e^{-i \frac{\pi}{4} \hat{z}} \\
& e^{-i \frac{\pi}{4} \hat{z}}\left(\frac{107+|1\rangle}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}(00\rangle \frac{i-\hat{y}^{2}}{\sqrt{z}}\left(\frac{1}{\sqrt{2}} \hat{\|}-\frac{i}{\sqrt{2}} \hat{z}\right)\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \\
& \left.=\frac{1}{2}(|0\rangle+|1\rangle-i|0\rangle+i 11\rangle\right) \\
& =\left(\frac{1-i}{\sqrt{2}}\right) \frac{10\rangle}{\sqrt{2}}+\frac{11\rangle}{\sqrt{2}}\left(\frac{1+i}{\sqrt{2}}\right) \\
& =\left(\frac{1-i}{\sqrt{2}}\right) \frac{107}{\sqrt{2}}+\frac{i|1\rangle}{\sqrt{2}}\left(\frac{-i+1}{\sqrt{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\because 3 \rightarrow 1 \frac{|0\rangle+i|1\rangle}{\sqrt{2}} \rightarrow 10\right\rangle \quad \text { Thas } n \text { quibe sonnel } \\
& u_{x}\left(\frac{\pi}{2}\right) \\
& u_{x}\left(\frac{\pi}{2}\right)=e^{-i \frac{\pi}{4} \hat{\lambda}}=\left(\frac{1}{\sqrt{2}} \hat{\hat{i}}-\frac{i \hat{\lambda}}{\sqrt{2}}\right) \\
& u \times\left(\frac{\pi}{3}\right)\left(\frac{107+i|1\rangle}{\sqrt{2}}\right)=\left(\frac{1}{\sqrt{2}} \hat{u}-i \frac{\hat{x}}{\sqrt{2}}\right)(107+i|1\rangle) \\
& =\frac{1}{2}(|0\rangle+i|1\rangle-i|1\rangle+|0\rangle) \\
& =|0\rangle \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now let's write the matrix. } \\
& \hat{U}_{y}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}} \hat{\sharp}-\frac{i}{\sqrt{2}} \hat{Y}=\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right)-\frac{i}{\sqrt{2}}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & +1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& \hat{\mathcal{U}}_{2}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}} \hat{\mathbb{U}}-\frac{i}{\sqrt{2}} \hat{z}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\frac{i}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1-i & 0 \\
0 & 1+i
\end{array}\right) \\
& \hat{U}_{\times}(\pi / 2)=\frac{1}{\sqrt{2}} \hat{1}-\frac{i}{\sqrt{2}} \hat{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0
\end{array}\right)-\frac{i}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right) \\
& \hat{u}_{x} \hat{\imath}_{2} \hat{u}_{y}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right)\left(\begin{array}{cc}
1-i & 0 \\
0 & 1+i
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \cdot \leftarrow_{\text {Simplisy }} \text { Ans } .
\end{aligned}
$$

