Question 1

The time-dependent Schrödinger equation can be used to determine the evolution of a quantum state after some time t. It is written as:

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=\hat{H}|\psi(0)\rangle
$$

where \hat{H} is the Hamiltonian of the system. In this question, we define \hat{H} to be:

$$
\hat{H}=b \hbar \hat{X}
$$

(a) Show that $\hat{X}^{2}=\mathbb{1}$.
(b) A quantum state $|\psi(0)\rangle$ at time $t=0$ is given by

$$
\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)
$$

What is $|\psi(t)\rangle$ if $b t=\frac{\pi}{2}$?
(c) Identify $|\psi(0)\rangle$ and $|\psi(t)\rangle$ on the Bloch sphere.
(d) If $b t=\frac{\pi}{2}$, what rotation will take $|\psi(0)\rangle$ to $|\psi(t)\rangle$? Specify the amount and axis of rotation.
(e) Now suppose that the initial state is

$$
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

How does this state evolve with time?
(f) For part (f), is there any measurement that can differentiate between $|\psi(0)\rangle$ and the state at some later time?

The three Pauli operators are defined below

$$
\begin{aligned}
\hat{X} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\hat{Y} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\hat{Z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Figure 1: Energy Level Diagram for Question 2

Question 2

If an electron is in the lower energy state, it is labeled as $|0\rangle$, and if it is in the higher (excited) state, it is labeled as $|1\rangle$. A pulse is applied that has the Hamiltonian

$$
\hbar V_{0}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Our electron starts in the lower energy state. The pulse switches on at time $t=0$ and ends at $\frac{T}{V_{0}}$.
What is the probability that the electron is found in the excited state at the end of the pulse?

Question 3

Show that a π rotation about the z-axis followed by a $\frac{\pi}{2}$ rotation about the y-axis generates a Hadamard gate.

Quiz 3 Group 1
QI.
a)

$$
\begin{aligned}
\hat{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \Rightarrow \hat{x}^{2} & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \hat{\jmath} \hat{\mathbb{1}} .
\end{aligned}
$$

Since acting $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ m any $\left[\begin{array}{l}a \\ b\end{array}\right]$ give lack $\left[\begin{array}{l}a \\ b\end{array}\right]$.
b)

$$
\begin{aligned}
& |\psi(0)\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle) \\
& \left.|\psi(t)\rangle=e^{-\frac{i}{\hbar}} \hat{H} t|\psi(0)\rangle=\frac{e^{-i b t \hat{X}}}{\sqrt{2}}(|0\rangle+i \|\rangle\right) .
\end{aligned}
$$

Now $e^{-i b t \hat{x}}=\cos (b t) 1-i \sin (b t) \hat{x}$
with bt $=\frac{\pi}{2}$, we are left with
$-i \hat{X}$ only. Acting tais on $|\psi(0)\rangle$ yields

$$
\frac{1}{\sqrt{2}}(-i|1\rangle+|0\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
$$

c)

14(0)7

$$
\begin{aligned}
& \theta=\frac{\pi}{2}, \phi=\frac{\pi}{2} \\
& \frac{|\psi(t)\rangle}{\theta=\frac{\pi}{2}}, \phi=\frac{3 \pi}{2}
\end{aligned}
$$

d) (π)

Axle $\rightarrow \pi$
Axis $\rightarrow x$. (antidockn'se).
e)

$$
\begin{aligned}
|\psi(0)\rangle & =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) . \\
|\varphi(t)\rangle & =(\cos (b t) \mathbb{1}-i \sin (b t) \hat{x}) \frac{1}{\sqrt{2}}[|0\rangle+|1\rangle] . \\
& =\frac{1}{\sqrt{2}}[(\cos (b t)-i \sin (b t))|0\rangle+(\cos (b t)-i \sin (b t)|1\rangle] \\
& =\frac{1}{\sqrt{2}} e^{-i b t}(|0\rangle+|1\rangle)=\frac{e^{-i b t}}{\sqrt{2}}(|0\rangle+|1\rangle)=|\psi(t)\rangle .
\end{aligned}
$$

f) No. Suppose we measure tiu probability gog setting spine state as tie outcome, $|n\rangle$.
for $\quad(\psi(0)\rangle=$

$$
\left.|<n| \frac{1}{\sqrt{2}}(10\rangle+|1\rangle\right)\left.\right|^{2}
$$

for $|\psi(t)\rangle=$

$$
\begin{aligned}
& \left\lvert\,\left.\langle n| \frac{e^{-i b t}}{\sqrt{2}}(|0\rangle+|1\rangle)\right|^{2}\right. \\
& \begin{array}{l}
=\left|e^{-i n t}\right|^{2} \underbrace{\left\lvert\,\left.\langle n| \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right|^{2}\right.}_{l} \\
=1 .
\end{array} \\
& =1 \text {. } \\
& \omega=\text { same as for }|\psi(6)\rangle \text {. }
\end{aligned}
$$

Q^{2}

$$
\begin{aligned}
\hat{H} & =\hbar V_{0}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\hbar V_{0} \hat{X} \\
|\psi(0)\rangle & =|0\rangle \\
|\psi(t)\rangle & =e^{-\frac{i}{\hbar}\left(\hbar V_{0} \hat{x}\right) t}|0\rangle \\
& =e^{-i V_{0} t \hat{x}}|0\rangle
\end{aligned}
$$

we are interestad at $t=\frac{T}{V_{0}}$.

$$
\begin{aligned}
& \left|\psi\left(\frac{T}{v_{0}}\right)\right\rangle=e^{-i T \hat{x}}|0\rangle \\
& =[\cos (T) \mathbb{1}-i \sin (T) \hat{x}]|0\rangle \\
& =\cos (T)-i \sin (T) \mid 17 . \\
& \operatorname{Prob}(11>)= \\
& |\langle 1 \mid \psi(t)\rangle|^{2}=|-i \sin (T)|^{2} \\
& =-i \sin (T))(i \sin (T)) \\
& =\sin ^{2}(T) \text {. }
\end{aligned}
$$

Q 3.

$$
\begin{aligned}
|0\rangle \rightarrow e^{(\pi)_{z}} e^{-i \pi} \hat{z}|0\rangle & =\left[\cos \left(\frac{\pi}{2}\right) \mathbb{1}-i \sin \left(\frac{\pi}{2}\right) \dot{z}\right]|0\rangle \\
& =-i|0\rangle \\
-i|0\rangle \xrightarrow{\left(\frac{\pi}{2}\right) y} e^{-\frac{i \pi}{4} \hat{y}}(-i|0\rangle) & \left.=\frac{-i}{\sqrt{2}}(1-i \hat{y})(10\rangle\right) \\
& =\frac{-i}{\sqrt{2}}[|0\rangle+|1\rangle] .
\end{aligned}
$$

$11\rangle \xrightarrow{(u)+} p i|\Phi\rangle$
Same steps is before
but note that $\hat{z}|0\rangle=10\rangle$ but

$$
\begin{aligned}
& i|1\rangle \stackrel{\left(\frac{\pi}{2}\right) y}{\longrightarrow} e^{\frac{-i \pi}{4}} \hat{y} \quad i|l\rangle \\
& \bar{z}|1\rangle=-|1\rangle \text {. } \\
& =\frac{i}{\sqrt{2}}[12\rangle 4 \frac{i}{\sqrt{2}}(1-i y)|\sigma 1\rangle \\
& =\frac{1}{\sqrt{2}}(10) \\
& =\frac{i}{\sqrt{2}}(|1\rangle-|0\rangle) \\
& =\frac{-i}{\sqrt{2}}(|0\rangle-|1\rangle) \text {. } \\
& \text { F) we could ref } \\
& \text { have said when } \\
& \text { - we sayhere it } \\
& \text { the phases for } 10 \geqslant 15 \\
& \text { were different? } \\
& \text { Since we pick up tum same global share }
\end{aligned}
$$ with 10\rangle छ 117 , wo our rotations will perform tie Hadamaed sate on any crbritraly state. It will sine tie correct state with a global phase multiplied. Rut this can he dropped.

+ Note that $-i=e^{i \frac{3 \pi}{2}}=e^{-i \frac{\pi}{2}}$.
\rightarrow Also any artoritrong state is $a / 0\rangle+b \mid 12$ and the Hadamaed site acts on each turn by furn.

