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Assignment 4: Uncertainty principle, Bohr’s model, Sommerfeld’s quantization

1. The energy level diagram of an artificial atom is shown here.
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(a) Sketch the emission spectrum expected from a gas comprising of these artificial

atoms. Identify the wavelengths.

(b) In a real experiment, the spectral lines are observed to be broad rather than

sharp. What are the possible causes of this broadening? Can the experimenter change

his apparatus or experimental conditions to sharpen these lines?

(c) What happens when a gamma ray photon strikes the atom?

(d) The experimental spectrum indicates that the lines are not of the same bright-

ness. Why is this so?

(e) If the number of discrete levels is N , how many lines do you expect?

2. The ionization energy of hydrogen (1H) is 13.6 eV. What is the ionization energy of

tritium (3H)?

3. A hydrogen atom in the ground state absorbs a 30.0 eV photon. What is the speed of

the librated electron? Is this speed quantized?

4. Consider a body rotating freely about a fixed axis. Apply the Wilson-Sommerfeld

quantization rules, and show that the possible values of the total energy are predicted

to be,

E =
n2 ~2

2I
n = 0, 1, 2, 3, . . . , (1)

where I is the moment of inertia.

5. What is the angular momentum of a photon emitted when an electron in a Bohr atom

makes a transition from n = 3 to n = 1?
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Assignment 4: Uncertainty principle, Bohr’s model, Sommerfeld’s quantization

This description applies to the following questions.

As a consequence of the Heisenberg uncertainty principle the more closely an electron

is confined to a region of space the higher its kinetic energy will be. In an atom

the electrons are confined by the Coulomb potential of the nucleus. The competition

between the confining nature of the potential and the liberating tendency of the un-

certainty principle gives rise to various quantum mechanical effects. Some of these

microscopic effects have repercussions in the way this universe is structured.

6. (a) Use the uncertainty principle to estimate the kinetic energy of an electron

confined within a given radius r in a hydrogen atom. Assume that ∆p ∼ p and

∆r ∼ r (as in the previous assignment).

(b) Hence estimate the size of the hydrogen atom in its ground state by minimizing

it total energy as a function of the orbital radius of the electron.

(c) Compare the size obtained in this way with the value obtained from a Bohr

theory calculation.

7. When atoms are subjected to a high enough pressure they become ionized. This will

happen, for example, at the center of a sufficiently massive gravitating body.

(a) In order to ionize an atom a certain minimum energy must be supplied to

it, 13.6 eV, in the case of hydrogen. Estimate the reduction in atomic radius re-

quired to ionize a hydrogen atom.

(b) What pressure P is needed to bring this about? (Hint: P = −∂E/∂V where E

is energy and V is the volume.)

(c) A planet is defined as a body in which the atoms resist the compressive force of

gravity. Estimate the maximum mass and size of a planet composed of hydrogen. (You

will need to estimate the pressure required at the center of the planet to support a

column of mass against its weight.)

This turns out to be of the order of the mass of Jupiter. Thus, Jupiter is not only the

largest planet composed of hydrogen in the solar system but anywhere in the universe!
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PH-102 Solution Set # 4 October, 5, 2009

Uncertainty principle, Bohr’s model, Sommerfeld’s quantization

Answer 1.

(a)

The emission of photons from the excited atoms will have specific wavelengths which

corresponds to the energy difference between the higher and lower energy levels. In this

particular case, the only discrete transitions that will occur are between the levels,

n = 2 −→ n = 0

n = 2 −→ n = 1

n = 1 −→ n = 0 .

n

n

=

=1

2

n= 0

vacuum

λ
1

λ
2

λ
3

Hence the resulting spectrum will consist of three discrete spectral lines corresponding to

the above mentioned transitions. We can identify the wavelengths by using the expression,

∆E = hf

=
hc

λ

λ =
hc

∆E
·
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Therefore, the wavelengths will be,

λ1 =
hc

E2 − E0

=
1243 eVnm

−2.2− (−10) eV

=
1243 eVnm

7.8 eV

λ1 = 159 nm (UV).

λ2 =
hc

E2 − E1

=
1243 eVnm

−2.2− (−7.3)

=
1243 eVnm

5.1 eV

λ2 = 243 nm (UV).

λ3 =
hc

E1 − E0

=
1243 eVnm

−7.3− (−10)

=
1243 eVnm

2.7 eV

λ3 = 460 nm (blue).

λ
λλλ

f

1 2 3 λmax

BlueUV UV

Now, there will be a maximum wavelength which corresponds to the energy difference be-
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tween vacuum and the immediate lower state (n = 2).

E = (0− (−2.2)) = hf

=
hc

λmax

λmax =
hc

2.2 eV
=

1243 eVnm

2.2 eV

λmax = 565 nm

Below this particular value of the wavelength, the resulting spectrum will be continuous. A

continuous spectrum is formed by electrons jumping from free space, which is a continuum,

into one of the quantized levels. Therefore, the overall spectrum will be three discrete lines

superposed on a continuous spectrum. The spectral lines and the continuous spectrum are

indicated by pink and blue in the corresponding figure.

(b)

The spectral lines are observed to be broad rather than sharp because of several reasons. The

first major factor which accounts for this observation is Doppler broadening.The thermal

movement of atoms shifts the apparent frequency of each emitted photon. Since there is a

distribution of speeds both towards and away from the observer in any gas sample, the net

effect will be to broaden the observed line. For non-relativistic velocities, Doppler’s shift in

frequency is given by,

f = f0

(
1± v

c

)
,

where f0 is the rest frequency, f is the observed frequency and v is the velocity of the atom

with respect to the observer. This broadening mainly depends upon the frequency of the line

and the temperature, pressure or density of the gas. As soon as we increase the temperature,

the distribution of velocities becomes larger and consequently, the spectral lines broaden.

One must cool the gas to make the lines sharper.

The second mechanism is called natural broadening and is a direct consequence of the

uncertainty principle. The life time of electrons (average time they stay in excited states,

∆t) is finite. The uncertainty relationship,

∆E ≥ ~
2∆t

implies a spread in the energies or wavelengths. Clearly, this mechanism is not in the

experimenter’s control and is a manifestation of the fundamental dictates of the uncertainty
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principle.

(c)

Gamma rays have wavelengths typically in the range of pico meter (pm) and consequently

energies of the order of MeV. When they strike an atom, the electrons will absorb energy.

Since the energy of incident photon is very high and the energy difference between n = 0

and vacuum is just 10 eV, therefore, gamma rays will always ionize the atom, freeing the

electrons into vacuum.

(d)

The brightness of the spectral lines depends upon the number of photons contributing to the

emission lines. The number of photons emitted depends upon the number of electrons that

jump from the higher to lower energy levels. However, all levels are not equally populated

to start off with. The lower energy levels are more populated as compared to others. This

can also be seen from Boltzmann’s distribution, P (E) = exp (−E/kT )
kT

. Higher the energy

of the level, lower will be the probability of finding electrons in that level. This uneven

distribution of electrons results in lines of varying brightness.

(e)

The following table shows the relationship between the number of levels and the spectral

lines for the smallest values of N .

spectral linesNo. of levels

10

12

3 3

5

64

One can also derive an exact formula for arbitrary N .
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Number of spectral lines =
N−1∑

k=1

(N − k)

=
N−1∑

k=1

N −
N−1∑

k=1

k

= N(N − 1) − (N − 1)

2

(
2(1) + ((N − 1)− 1)1

)

= N(N − 1) − (N − 1)

2
(2 + N − 2)

= N(N − 1) − (N − 1)

2
(N)

= (N − 1)

(
N − N

2

)

=
1

2
N (N − 1).

One can check the validity of this general result by plugging in the value of N and comparing

it with the results presented in the Table.

Answer 2.

The Rydberg constant R∞ assumes that the nucleus has infinite mass. For realistic atoms,

this constant is corrected by using a reduced mass µ = meM/(me + M) for the electron, M

being the mass of the nucleus. The corrected effective constant is then given by R∞µ/me.
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(The details are in Section 4.7 of the book.) Since the ionization energy is proportional to

this constant, we get,

ionization energy of hydrogen

ionization energy of tritium
=

1 + me

mp+2mn

1 + me

mp

≈ 0.9996,

indicating that the ionization energy of tritium is about 1.0004 times the ionization energy

of normal hydrogen.

Answer 3

The energy of the incident photon is 30 eV. The energy of liberated electron will be equal

to the difference between the incident photon energy and the ionization energy of hydrogen

atom. Therefore, we can write the energy of liberated electrons as,

E = (30− 13.6) eV =
1

2
mv2.

All of this energy appears as kinetic energy because the electron is free and has no potential

energy. So,

v =

√
2(16.4) eV

m

=

√
2 (16.4) 1.6× 10−19 Kgm2/s2

9.11× 10−31 Kg

=
√

5.76× 1012 m2/sec2

= 2.4× 106 m/sec .

This speed will not be quantized because now, the electron is free, not bounded by the

nucleus. Its energy can increase in arbitrarily small steps.

Answer 4

We know that Sommerfeld propose the quantization condition,

∮
pq dq = nh ,

where pq is the radial momentum canonically conjugate to the coordinate q and
∮

represents

integration over full orbital period. For a body rotating freely about a fixed axis, the

angular momentum (L) will be canonically conjugate to the angular displacement (θ). Over
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one complete period, θ varies from 0 to 2π helping us in fixing the limits of integration.

Therefore,

∫ 2π

0

L dθ = nh

∫ 2π

0

Iω dθ = nh

2πI ω = nh

ω =
nh

2πI

ω =
n~
I

,

where I is the moment of inertia.

The total energy of the body will be,

E =
1

2
I ω2

=
1

2
I

(
n~
I

)2

=
1

2
I

n2~2

I2

E =
n2~2

2I
. n = 0, 1, 2, 3, . . . ,

These are the possible values of total energy. We see that the energy is quantized.

Answer 5

According to Bohr’s quantization rule, the orbital angular momentum of an atomic electron

moving under the influence of the Coulomb force is,

L = n ~ .

When an electron in a Bohr atom makes a transition from n = 3 to n = 1, the change in

angular momentum will be given by,

L = (3− 1)~ = 2~ ,

This is the momentum carried away by the photon. The particles whose angular momentum

is an integral multiple of plank’s constant ~ are called bosons.

Answer 6

(a)
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It is given that ∆p ∼ p and ∆r ∼ r. When we consider small radii, the electron is present

very close to the nucleus. Pushing the electron any closer to the nucleus results in increased

energies. The electron may even gain enough energy to fly away from the nucleus. This

is when the atom will ionize and hence the useful rule, “it is impossible to squish atoms”.

Close to the nucleus, we are “rubbing shoulders” with the uncertainty principle.

According to this principle, the momentum of an electron confined within a given radius

r is approximately given by p ∼ ~/r. (One could also use p ∼ ~/(2 r) without affecting the

overall implications of the result. Remember that the uncertainty principle is an inequality !)

Therefore, when confined to a radius r, the kinetic energy will be of the order,

K.E =
p2

2m
=

~2

2mr2
.

Attempting to bring the nucleus any closer to the nucleus may result in extremely large

kinetic energies, shooting the electron away.

(b)

In the closest approach of the electron to the nucleus, the total energy of the hydrogen atom

is,

Total Energy = E = K.E + P.E

=
~2

2mr2
− Ze2

4πεor
·

The energy is minimum when dE/dr = 0,

dE

dr
=

~2

2m

d

dr
(

1

r2
)− Ze2

4πεo

d

dr
(
1

r
)

=
~2

2m
(
−2

r3
)− Ze2

4πεo

(
−1

r2
)

=
−~2

mr3
+

Ze2

4πεor2
·

Setting this equal to zero,

−~2

mr3
min

+
Ze2

4πεor2
min

= 0

Ze2

4πεor2
min

=
~2

mr3
min

rmin =
4πεo~2

mZe2
·

= 0.53 Å,
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-10

10

20

30

r min

E min

Radius

Energy (eV)

The uncertainty principle prevents the electron

from approaching the nucleus at short distances

This is the radius, rmin, when the energy is minimum. The nucleus attracts the electron,

so the electron prefers to exist close to the nucleus, but at the same time, the uncertainty

principle does not let it come too close!

(c)

The value of the radius calculated above is in excellent agreement with the radius of the

smallest orbit (n = 1) calculated from Bohr’s model.

Answer 7

Using the information provided in Question 6: ∆p ∼ p and ∆r ∼ r , and using the uncer-

tainty principle, the momentum of an electron confined within a radius r is approximately

p ∼ ~/r. The total energy is,

Total Energy = E = K.E + P.E

=
~2

2mr2
− e2

4πεor
. (1)

Ionization occurs when the energy of the electron approached zero, the energy of the vacuum

state. We calculate the radius rion when E = 0.

~2

2mr2
− e2

4πεor
= 0

~2

2mr2
=

4πεor

e2

rion =
2πεo~2

me2
= 0.24 Å.

The radius rion is smaller than the rmin calculated from the previous question, as we expect.
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Excessive pressure inside a planet can push the electron to this radius. At this point, the

atoms will ionize and the planet will not be stable.

(b)

The pressure is given as,

P = −∂E

∂V

= −∂E

∂r

dr

dV
using the chain rule.

Furthermore, we have,

V =
4

3
π r3

dV = 4πr2dr

dr

dV
=

1

4πr2
.

Differentiating the energy expression from (1),

∂E

∂r
=

~2

2m

(−2

r3

)
− 1

4πεo

e2

(−1

r2

)

=
−~2

mr3
+

e2

4πεor2
.

We now substitute the value of the radius, r = rion,

∂E

∂r

∣∣∣∣
r=rion

=
−~2

m

(
1

rion

)3

+
e2

4πεo

(
1

rion

)2

= −3.9× 107Jm−1,

resulting in the ionizing pressure,

Pion = −∂E

∂r

1

4πr2
ion

= 5.2× 1013 Pa.

(c)

We assume a spherical planet of radius R and mass M . We determine these parameters that

result in ionizing pressures at the centre of the planet. First of all, we assume a constant

density ρ of the planet throughout the interior. (You can appreciate that this is a very flaky

assumption as one expects the density to be different in different parts of the planet, but
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P
ion

R

let’s live with this assumption for the time being.) An estimate of the density is the proton

mass divided by the volume of the atom,

ρ =
mp

4
3
πr3

ion

= 2.8× 104 kgm−3. (2)

The pressure exerted by a fluid of length R at its base is given by ρgR. However, the

value of g on this planet is unknown, but from Newton’s law of gravitation, we know that

g = GM/R2. Therefore,

Pion = ρ g R =
ρG M

R
(3)

=⇒ R =
ρGM

Pion

= 3.5× 10−20 M m. (4)

Now the density ρ can also be equated to the mass of the planet divided by its volume,

ρ = 2.8× 104 kgm−3 =
M

4
3
πR3

(5)

=⇒ M =
4

3
πρR3. (6)

Inserting the value of M into (4) and then back substituting results in,

M = 4× 1026 kg,

R = 1.6× 107 m.

The measured mass and radius of Jupiter are 1.9× 1027 kg and 7× 107 m (values taken from

Wikipedia).
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Assignment 6: Potential Steps, Barriers and Wells

1. Sketch a possible solution to the Schrodinger equation for each of the potential energy

functions shown in the diagram. In each case, show several cycles of the wavefunction.

EEE

FIG. 1: Figure for Question 1.

2. An electron is trapped inside a one-dimensional well of width 0.132 nm. The electron

is in the n = 10 state. (a) What is the energy of the electron? (b) What is the

uncertainty in its momentum? (c) What is the uncertainty in its position? (d) How

do these results change as n →∞? Is this consistent with classical behaviour?

3. Consider a beam of electrons passing through a cell containing atoms of the rare gas

krypton. The krypton atoms present a potential well of depth V0 as shown in the

figure.

(a) Show that the transmissivity T of the electrons is given by,

1

T
= 1 +

1

4

V 2
0

E(E + V0)
sin2 (k2a), (1)

where k2 is the wavenumber inside the well.

E

x

V=0

V = -V
o

x=ax=0

FIG. 2: Figure for Question 3.
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(b) The reflection of the electrons exhibits the lowest-energy minimum at 0.9 eV.

Assuming that the diameter of the krypton atom is approximately one Bohr’s

radius, calculate the depth of the well.

4. In the phenomenon of cold emission, electrons are drawn from a metal when placed

inside an electric field ε. The electrons are present in the conduction band within the

metal and range up to energies Ef called the Fermi energy. The potential barrier,

depicted in the accompanying figure, presents a triangular slope. The metal-vacuum

interface is at x = 0.

(a) Why is the potential energy sloping downwards in the region of the vacuum,

x > 0? What is the field inside the metal, x < 0?

(b) Suppose the tunneling probability is given by T ≈ exp (−2

√
2m(V (x)−E)

~ ). What

is the probability that a Fermi electron can tunnel through the barrier?

(c) A gold tip (work function w = 4.5 eV) is used in a cold field emission electron

microscope. Calculate the electric field ε required to allow a tunneling probability

of 10−4.

V=0

V(x)

x=0 x=w/eε

w

E
f

Metal Vacuum

ε

FIG. 3: Figure for Question 4.
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PH-102 Solution Set # 6 November, 24, 2009

Potential Steps, Barriers and Wells

Answer 1.

E EE

Oscillatory

Non-Oscillatory

Answer 2.

(a)

As the potential energy of the particle is zero within the well, its total quantized energy

equals its kinetic energy,

E =
π2~2n2

2ma2
(1)

E = 2.1 MeV .

(b)

The momentum of the electron can have only two values inside the well. i.e.,

p = ±
√

2mE .
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Solution set 6: Potentials Steps, Barriers and Wells

Therefore, the uncertainty in momentum will be of the order of p and we can say, ∆p ≈ p.

(c)

To findout the uncertainty in position, we use the uncertainty principle,

∆p∆x ≈ ~

∆x ≈ ~
∆p

∆x ≈ ~
p

≈ h

2πp

∆x ≈ λ

2π

i.e., the uncertainty in the position is of electron is of the order of wavelength of electron.

λ

n=10

Since the momentum inside the well is given by,

p =
√

2mE

Substituting the value of E from equation (1), we get,

p =
√

2m
π~n√
2m a

p =
π~n
a

The uncertainty in position will become,

∆x ≈ ~a
π~a

∆x ≈ a

πn

∆x ≈ 0.132 nm

3.14× 10

∆x ≈ 4.2× 10−12 m .
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(d) Since,

∆p = p =
π~n
a

= 2.5× 10−23 Kgm/sec

∆x =
a

πn
= 4.2× 10−12 m .

When n →∞, we can conclude that,

∆p →∞, such that, ∆x → 0 .

Which means that the we can precisely find the position of the particle at any location,

which is consistent with classical results. High n states correspond to the classical scenario.

From equation (1), it is clear that high n leads to large energies correspond to the ground

state energy. This is what classically observed.

Answer 3.

(a)

The general solution of the Schrodinger wave equation in the three regions is given by,

ψ(x) =





ψ1(x) = Ae(ik1x) + B e(−ik1x) x ≤ 0

ψ2(x) = C e(ik2x) + D e(−ik2x) 0 < x < a

ψ3(x) = E e(ik2x) x ≥ a

Where k1 =
√

2mE
~ and k2 =

√
2m(E−(−Vo))

~ . In order to findout the transmissivity T of the

electron, we use the appropriate boundary conditions.

At x = 0,

ψ1(x = 0) = ψ2(x = 0)

dψ2(x = 0)

dx
=

dψ2(x = 0)

dx
·

At x = a, we have,

ψ2(x = a) = ψ3(x = a)

dψ2(x = a)

dx
=

dψ3(x = a)

dx
·
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Using the definition of wavefunction, we get the following equations,

A + B = C + D (2)

ik1(A−B) = ik2(C −D) (3)

Ceik2a + De−ik2a = Eeik1a (4)

ik2(Ceik2a −De−ik2a) = ik1(Eeik1a) . (5)

Equation (3) can also be written as,

A−B =
k2

k1

(C −D) . (6)

Adding equation (2) and (6), we get,

2A = (C + D) +
k2

k1

(C −D). (7)

Similarly, equation (5) can be written as,

Ceik2a −De−ik2a =
k1

k2

Eeik1a. (8)

Adding equation (3) and (8), we get

2Ceik2a = Eeik1a{1 +
k1

k2

}

C =
E

2
{1 +

k1

k2

} ei(k1−k2)a,

subtracting equation (3) and (8) yields,

2De−ik2a = Eeik1a{1− k1

k2

}

D =
E

2
{1− k1

k2

} ei(k1−k2)a .
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Solution set 6: Potentials Steps, Barriers and Wells

substitute values of C and D in equation (7), we get,

2A =

(
E

2
{1 +

k1

k2

} ei(k1−k2)a +
E

2
{1− k1

k2

} ei(k1−k2)a

)

+
k2

k1

(
E

2
{1 +

k1

k2

} ei(k1−k2)a − E

2
{1− k1

k2

} ei(k1−k2)a

)

=
E

2

(
1 +

k1

k2

)
ei(k1−k2)a

(
1 +

k2

k1

)
+

E

2

(
1− k1

k2

)
ei(k1−k2)a

(
1− k2

k1

)

=
E

2
ei(k1−k2)a

(
1 +

k1

k2

) (
1 +

k2

k1

)
+

E

2
ei(k1−k2)a

(
1− k1

k2

) (
1− k2

k1

)

=
E

2
ei(k1−k2)a

(k1 + k2

k2

) (k1 + k2

k1

)
+

E

2
ei(k1−k2)a

(k2 − k1

k2

) (k1 − k2

k1

)

=
E

2k1k2

(k1 + k2)
2 ei(k1−k2)a − E

2k1k2

(k1 − k2)
2 ei(k1−k2)a

2A =
E

2k1k2

(
(k1 + k2)

2 ei(k1−k2)a − (k1 − k2)
2 ei(k1−k2)a

)

E

A
=

4k1k2 e−ik1a

(k1 + k2)2 e−ik2a − (k1 − k2)2 e−ik2a
·

This denominator can further be simplified as,

= (k1 + k2)
2 e−ik2a − (k1 − k2)

2 e−ik2a

= (k2
1 + k2

2 + 2k1k2) e−ik2a − (k2
1 + k2

2 − 2k1k2) eik2a

= (k2
1 + k2

2) e−ik2a − (k2
1 + k2

2) eik2a + 2k1k2 e−ik2a + 2k1k2 eik2a

= 2× 2k1k2

(
eik2a + e−ik2a

2

)
− 2i(k2

1 + k2
2)

(
eik2a − e−ik2a

2i

)

= 4k1k2 cos(k2a)− 2i(k2
1 + k2

2) sin(k2a) .

Therefore,

E

A
=

4k1k2 e−ik1a

4k1k2 cos(k2a)− 2i(k2
1 + k2

2) sin(k2a)
·

E∗

A∗ =
4k1k2 eik1a

4k1k2 cos(k2a) + 2i(k2
1 + k2

2) sin(k2a)
·

Transmissivity is given by,

T =
E∗E
A∗A

=
4k1k2 e−ik1a

4k1k2 cos(k2a)− 2i(k2
1 + k2

2) sin(k2a)
× 4k1k2 eik1a

4k1k2 cos(k2a) + 2i(k2
1 + k2

2) sin(k2a)

T =
16k2

1k
2
2

16k2
1k

2
2 cos2(k2a) + 4(k2

1 + k2
2)

2 sin2(k2a)
·
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The denominator can further be simplified as,

= 16k2
1k

2
2 cos2(k2a) + 4(k2

1 + k2
2)

2 sin2(k2a)

= 16k2
1k

2
2 cos2(k2a) + 4(k4

1 + k4
2 + 2k2

1k
2
2) sin2(k2a)

= 16k2
1k

2
2

(
cos2(k2a) + sin2(k2a)

)
+ 4(k4

1 + k4
2) sin2(k2a)

= 16k2
1k

2
2 + 4(k4

1 + k4
2) sin2(k2a) .

Transmission coefficient becomes,

T =
16k2

1k
2
2

16k2
1k

2
2 + 4(k4

1 + k4
2) sin2(k2a)

=
1

1 + 1
4

(
k4
1+k4

2

k2
1k2

2

)
sin2(k2a)

T =
1

1 + 1
4

(
k2
1−k2

2

k2
1k2

2

)2

sin2(k2a)

·

Since, k1 =
√

2mE
~ and k2 =

√
2m(E+Vo)

~ , substituting values into the denominator,

k2
1 − k2

2

k2
1k

2
2

=
2mE
~2 − 2m(E+Vo)

~2
√

2mE
~

√
2m(E+Vo)

~

=
2mE−2m(E+V0)

~2√
2m
√

2m
~2

√
E(E + V0)

=
−2mV0

~2
× ~2

2m
√

E(E + V0)

=
−V0√

E(E + V0)
·

Therefore, transmissivity is,

T =
1

1 + 1
4

(
−V0√

E(E+V0)

)2

sin2(k2a)

=
1

1 + 1
4

(
V 2
0

E(E+V0)

)
sin2(k2a)

1

T
= 1 +

1

4

(
V 2

0

E(E + V0)

)
sin2(k2a) ,

where k2 is the wavenumber inside the well. This is our desired result.

(b)
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Since the reflection of the electrons exhibits the lowest-energy minimum at 0.9 eV, we assume

that at this energy, R = 0 and T = 1. Therefore,

1 = 1 +
1

4

(
V 2

0

E(E + V0)

)
sin2(k2a)

0 =
1

4

(
V 2

0

E(E + V0)

)
sin2(k2a)

Since V 2
0 6= 0, sin2(k2a) = 0, requiring,

k2a = nπ

k2 =
nπ

a

Assuming that the first maxima occurs at n = 1,

k2 =
π

a√
2m(E + V0)

~
=

π

a

2m(E + V0) =
π2~2

a2

V0 =
π2~2

2ma2
− E

Assuming a to be the Bohr’s radius, a ' 0.5Å, substitute values,

V0 =
(3.14)2 (1.054× 10−34)2

2(9.11× 10−31) (0.5× 10−10)2
− 0.9× 1.6× 10−19

V0 = 150 eV .

This will be the depth of the well, which will ensure perfect tunneling (transmission) of the

electrons through the Kr atoms. It is as good as the complete absence of Kr atoms!

Answer 4.

(a)

The electric field is in the direction of decreasing x (to the left ), so,

e ε =
−dV

dx

V = −e εx ,

i.e., the potential energy increases as x decreases. That’s why in the region of vacuum,the

potential energy is sloping downward.
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Solution set 6: Potentials Steps, Barriers and Wells

Furthur, inside the metal, the charges are at rest and the potential is uniform over there,

therefore, the electric field inside the metal is equal to zero.

(b)

To calculate the probability that a (Fermi) electron can tunnel through the barrier, we divide

the region from x = 0 to x = w/e ε into small parts and integrate over the whole region.

Given is

T ≈ exp

(−2

~

√
2m(V (x)− Ef ) a

)
.

The potential is given by,(use the equation of line, slope is m = −w
w/e ε

= −eε) and intercept

c = w + Ef ,

y = mx + c

V (x) = −e εx + w + Ef

V (x)− Ef = w − e εx .

Transmission coefficient becomes,

T ≈ exp

(−2

~
√

2m(w − eε x) a

)
.

The tunneling probability will be equal to the product of transmission coefficient in each

part, resulting in integration within the powers of exponential,

P ≈ exp

(−2

~

∫ w/eε

x=0

√
2m(w − e εx) a dx

)
.

Let,

u = w − e ε x

du = −e ε dx

dx =
−1

e ε
dx,

when x = 0, u = w, and

when x = w/e ε, u = 0 .
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Solution set 6: Potentials Steps, Barriers and Wells

Hence, the integration reduces to,

P ≈ exp

(
+2

e ε ~

∫ 0

u=w

√
2mu a du

)

≈ exp

(
+2a

√
2m

eε ~

∫ 0

u=w

√
u du

)

≈ exp

(
+2a

√
2m

eε ~
2

3
u3/2

∣∣∣∣
0

w

)

≈ exp

(
+4a

√
2m

3e ε ~
(0− w3/2)

)

P ≈ exp

(−4 a
√

2m

3e ε ~
w3/2

)
.

Hence the Fermi electron can tunnel through the barrier with this probability.

(d)

The Work function w of the gold tip is given by,

w = 4.5 eV

= 4.5× 1.6× 10−19

w = 7.2× 10−19J .

The electric field ε required to achieve P ≈ 10−4 is calculated as,

P ≈ exp

(−4 a
√

2m

3e ε ~
w3/2

)

ln (P ) ≈
(−4 a

√
2m

3e ε ~
w3/2

)

ε ≈
(−4 a

√
2m

3e ln (P ) ~
w3/2

)

≈
(

(−4× 0.53× 10−10)
√

2× 9.11× 10−31

3(1.6× 10−19) (−4) ln(10) (1.054× 10−34)
(7.2× 10−19)3/2

)

ε ≈ 0.38 V/m .
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Recitation on infinite well

1. An electron is confined in an infinite well of 30 cm width.

(a) What is the ground-state energy?

(b) In this state, what is the probability that the electron would be found within 10

cm of the left-hand wall?

(c) If the electron instead has an energy of 1.0 eV, what is the probability that it

would be found within 10 cm of the left-hand wall?

(d) For the 1-eV electron, what is the distance between nodes and the minimum

possible fractional decrease in energy?

2. A 50 eV electron is trapped in a finite well. How “far” (in eV) is it from being free

if the penetration length of its wave function into the classically forbidden region is 1

nm?
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Tutorial on Applications of Schrodinger equation

1. Figures (a) through (f) show various kinds of potential steps and obstacles to an

electron injected from the left, with energy E. V (x) is shown by solid lines and E

by dashed lines. Two or three regions (I, II and III) are also identified. In each case,

discuss the following.

(i) Fields (wavefunctions) in each region—their mathematical form and sketches of

their real parts.

(ii) Identify the discontinuities from where reflection of the single electron can take

place.

The figures are shown overleaf.
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x=0 x=L

V(x)

I

II

III
Vo

E

V=0
(a)

E>Vo
(b)

E<Vo

I

II

Vo

I

II

Vo(c)

E>Vo

II
I

(d)

V(x)

I
II

III
Vo

L

E<Vo

E<Vo

(e)

(f)
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Recitation and individual homework 4

Quantum Leakage

In the recitation we will provide outlines to the solution, while you

will complete the homework working alone. You will be graded on

a coarse scale, with 0, 5, 10 or 15 marks. Solution will be provided

after the deadline, Monday 6 May, 10 am. I find it important

you do this assignment on your own to obtain a good working

knowledge of Schrodinger mechanics.

x=0 x=L
V(x)

E
Electron

Fig. (a)

I

II

IIIVo

Consider the potential energy barrier of length L and height V0 as shown above. An electron

is injected from the left. It has energy E < V0.

(a) Write down the wavefunctions in regions I, II and III. These wavefunctions should include

physically plausible terms. The Schrodinger equation (space part) is,

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x).

(b) Write down the boundary conditions at x = 0 and x = L.

(c) If a single electron is injected, will it be reflected from the wall at x = 0? Can it penetrate

through the obstacle and be found at x > L?

(d) Can the electron be “really”—I mean physically be found inside the region II? Use the

uncertainty principle to answer this question.

(e) Find the probability T that the incident electron from the far left is transmitted into

region III.
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(f) Now consider the Fig.(b) with, E < V0, E > W0, and V0 > W0.

I

II

III

x=0 x=L

E

Fig. (b)

Wo

Vo

Using your result for part (e), find the transmission probability into region III.

(g) If the barrier in figure (a) is to act like a 50:50 beamsplitter, what are the required

conditions on E, V0 and L?
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Recitation on aspects of uncertainty principle

This description applies to the following questions.

As a consequence of the Heisenberg uncertainty principle the more closely an electron is

confined to a region of space the higher its kinetic energy will be. In an atom the electrons

are confined by the Coulomb potential of the nucleus. The competition between the confining

nature of the potential and the liberating tendency of the uncertainty principle gives rise to

various quantum mechanical effects. Some of these microscopic effects have repercussions in

the way this universe is structured.

1. (a) Use the uncertainty principle to estimate the kinetic energy of an electron confined

within a given radius r in a hydrogen atom. Assume that ∆p ∼ p and ∆r ∼ r (as in

the previous assignment).

(b) Hence estimate the size of the hydrogen atom in its ground state by minimizing

it total energy as a function of the orbital radius of the electron.

(c) Compare the size obtained in this way with the value obtained from a Bohr theory

calculation.

Answer 1:

(a) It is given that ∆p ∼ p and ∆r ∼ r. When we consider small radii, the electron

is present very close to the nucleus. Pushing the electron any closer to the nucleus

results in increased energies. The electron may even gain enough energy to fly away

from the nucleus. This is when the atom will ionize and hence the useful rule, “it is

impossible to squish atoms”. Close to the nucleus, we are “rubbing shoulders” with

the uncertainty principle.

According to this principle, the momentum of an electron confined within a given

radius r is approximately given by p ∼ ~/r. (One could also use p ∼ ~/(2r) without

affecting the overall implications of the result. Remember that the uncertainty prin-

ciple is an inequality !) Therefore, when confined to a radius r, the kinetic energy will

be of the order,

K.E =
p2

2m
=

~2

2mr2
.
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Attempting to bring the nucleus any closer to the nucleus may result in extremely

large kinetic energies, shooting the electron away.

(b) In the closest approach of the electron to the nucleus, the total energy of the

hydrogen atom is,

Total Energy = E = K.E + P.E

=
~2

2mr2
− Ze2

4πϵor
·

The energy is minimum when dE/dr = 0,

dE

dr
=

~2

2m

d

dr
(
1

r2
)− Ze2

4πϵo

d

dr
(
1

r
)

=
~2

2m
(
−2

r3
)− Ze2

4πϵo
(
−1

r2
)

=
−~2

mr3
+

Ze2

4πϵor2
·

Setting this equal to zero,

−~2

mr3min

+
Ze2

4πϵor2min

= 0

Ze2

4πϵor2min

=
~2

mr3min

rmin =
4πϵo~2

mZe2
·

= 0.53 Å,

-10

10

20

30

Energy (eV)

Radius

The uncertainty principle prevents the electron 

from approaching the nucleus at short distances

r min

E min
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This is the radius, rmin, when the energy is minimum. The nucleus attracts the

electron, so the electron prefers to exist close to the nucleus, but at the same time,

the uncertainty principle does not let it come too close!

(c) The value of the radius calculated above is in excellent agreement with the radius

of the smallest orbit (n = 1) calculated from Bohr’s model.

2. When atoms are subjected to a high enough pressure they become ionized. This will

happen, for example, at the center of a sufficiently massive gravitating body.

(a) In order to ionize an atom a certain minimum energy must be supplied to it, 13.6

eV, in the case of hydrogen. Estimate the reduction in atomic radius required to

ionize a hydrogen atom.

(b) What pressure P is needed to bring this about? (Hint: P = −dE/dV , where E is

energy and V is the volume.)

(c) A planet is defined as a body in which the atoms resist the compressive force of

gravity. Estimate the maximum mass and size of a planet composed of hydrogen. (You

will need to estimate the pressure required at the center of the planet to support a

column of mass against its weight.)

This turns out to be of the order of the mass of Jupiter. Thus, Jupiter is not only the

largest planet composed of hydrogen in the solar system but anywhere in the universe!

Answer 2:

(a) Using the information provided in Question 1: ∆p ∼ p and ∆r ∼ r , and using

the uncertainty principle, the momentum of an electron confined within a radius r is

approximately p ∼ ~/r. The total energy is,

Total Energy = E = K.E + P.E

=
~2

2mr2
− e2

4πϵor
. (1)

Ionization occurs when the energy of the electron approached zero, the energy of the

vacuum state. We calculate the radius rion when E = 0.

~2

2mr2
− e2

4πϵor
= 0

~2

2mr2
=

4πϵor

e2

rion =
2πϵo~2

me2
= 0.24 Å.
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The radius rion is smaller than the rmin calculated from the previous question, as we

expect. Excessive pressure inside a planet can push the electron to this radius. At

this point, the atoms will ionize and the planet will not be stable.

(b) The pressure is given as,

P = −dE
dV

= −dE
dr

dr

dV
using the chain rule.

Furthermore, we have,

V =
4

3
π r3

dV = 4πr2dr

dr

dV
=

1

4πr2
.

Differentiating the energy expression from (1),

dE

dr
=

~2

2m

(
−2

r3

)
− 1

4πϵo
e2
(
−1

r2

)
=

−~2

mr3
+

e2

4πϵor2
.

We now substitute the value of the radius, r = rion,

dE

dr

∣∣∣∣
r=rion

=
−~2

m

(
1

rion

)3

+
e2

4πϵo

(
1

rion

)2

= −3.9× 107Jm−1,

resulting in the ionizing pressure,

Pion = −dE
dr

1

4πr2ion
= 5.2× 1013 Pa.

(c)

Pion

R
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We assume a spherical planet of radius R and mass M . We determine the parameters

that result in ionizing pressures at the centre of the planet. First of all, we assume a

constant density ρ of the planet throughout the interior. An estimate of the density

is the proton mass divided by the volume of the atom,

ρ =
mp

4
3
πr3ion

= 2.8× 104 kgm−3. (2)

The pressure exerted by a fluid of length R at its base is given by ρgR. However, the

value of g on this planet is unknown, but from Newton’s law of gravitation, we know

that g = GM/R2. Therefore,

Pion = ρ g R =
ρGM

R
(3)

⇒ R =
ρGM

Pion

= 3.5× 10−20M m. (4)

Now the density ρ can also be equated to the mass of the planet divided by its volume,

ρ = 2.8× 104 kgm−3 =
M

4
3
πR3

(5)

⇒M =
4

3
πρR3. (6)

Inserting the value of M into (4) and then back substituting results in,

M = 4× 1026 kg,

R = 1.6× 107m.

The measured mass and radius of Jupiter are 1.9×1027 kg and 7×107 m (values taken

from Wikipedia).
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Tutorial on relevance of quantum concepts to the classical world

1. A visual inspection of an ant (mass: 0.5 mg) verifies that it is within an uncertainty

of 0.7 µm of a given point, apparently stationary. How fast might the ant actually be

moving?

2. The uncertainty in the position of a cricket ball of mass 0.145 kg is 1 µm. What is the

minimum uncertainty in its speed?

3. A mosquito of mass 0.15 mg is found to be flying at a speed of 50 cm/s with an

uncertainty of 0.5 mm/s.

(a) How precisely may its position be known?

(b) Does this inherent uncertainty present any hindrance to the application of classical

mechanics?

4. The position of a neutron in nucleus is known within an uncertainty of ∼ 5 × 10−15

m. At what speeds might we expect to find it moving?
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Recitation: Thanks Mr. Planck that your constant is small!

Solution

1. A stationary 1 mg grain of sand is found to be at a given location within an uncertainty

of 550 nm.

(a) What is the minimum uncertainty in its velocity?

(b) Were it moving at this speed, how long would it take to travel 1 µm?

(c) Can classical mechanics be applied reliably?

(d) What is a reasonable wavelength of the grain of sand and will it behave as a wave

or as a particle?

(e) What is the minimum uncertainty in its velocity if h = 6.67 × 10−10Js instead of

6.67× 10−34Js.

Answer 1: We are given that,

Mass of grain = m = 1 mg = 10−6 kg

Uncertainty in position = ∆x = 550 nm = 550× 10−9 m.

(a) Uncertainty in velocity can be calculated by calculating uncertainty in its momen-

tum. According to uncertainty principle, the minimum uncertainty is approximately,

∆x ∆p ≥ ~
2

⇒ ∆p ≥ ~
2∆x

=
1.05× 10−34

2× 550× 10−9 m

= 9.65× 10−29 kgms−1.

∆p is small because ~ is small. Now the uncertainty in speed is calculated as,

∆p = m∆v

∆v =
∆p

m

=
9.7× 10−29 kgm s−1

10−6 kg

= 9.65× 10−23 ms−1.
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For macroscopic particle ∆v ≥ ~/2(∆x)m is small because of the very small ~/m ratio.

∆v becomes significant only if ~ were large or the mass m decreases. Small ~ and large

m makes the macroscopic classic world “undisturbed” by quantum uncertainties!

(b)

∆t ≈ 1 µm

∆v
=

10−6

9.65× 10−23
s = 0.1× 1017 s ≈ 3 billion years!

The uncertainty in velocity is really really small! An observer would require 3 billion

years to notice the grain of sand, supposedly at rest, at a position 1 µm away from its

original position. The current age of the solar system is approximately 5 billion years.

(c) Yes uncertainties are extremely small. No device has ever been built, and may

never be built that can measure these small velocities. We can safely apply classical

mechanics to a grain of sand; there is effectively no uncertainty in position or in

momentum. Furthermore, a precision as fine as 10−22 m/s is never required in classical

mechanics.

(d)

λ =
h

mv
=
h

p
.

Now what momentum should I choose? The uncertainty principle dictates a ∆p ∼

9.7 × 10−29 kgm s−1. The momentum could therefore have any value between, ap-

proximately −∆p/2 and ∆p/2. Let’s choose an extreme value, p ∼ ∆p/2 ∼ 5× 10−29

kgm s−1. Therefore,

λ ∼ 6.67× 10−34

5× 10−29
∼ 1.3× 10−5 m.

This is such a small wavelength compared to apparatus we might use for macroscopic

objects, that for all practical purposes, the grain of sand acts like a particle!

(e) ∆v would be 9.65× 10 ≈ 96 m/s, if h were this large. This is a huge uncertainty.

We are “saved” by the exceedingly small value of h

2. An electron is held in orbit about a proton by electrostatic attraction.

(a) Assume that an “orbiting electron wave” has the same energy an orbiting particle

would have if at radius r and of momentum mv. Write an expression for this energy.
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(b) If the electron behaves as a classical particle, it must obey F = ma. Assuming

circular orbit, apply F = ma to eliminate v in favor of r in the energy expression.

(c) Suppose instead that the electron is an orbiting wave, and that the product of the

uncertainties in radius r and momentum p is governed by an uncertainty relation of

the form ∆p∆r ≈ ~. Also assume that a typical radius of this orbiting wave is roughly

equal to the uncertainty ∆r, and that a typical magnitude of the momentum is roughly

equal to the uncertainty ∆p, so that the uncertainty relation becomes pr ≈ ~. Use

this to eliminate v in favor of r in the energy expression.

(d) Sketch on the same graph the expressions from parts (b) and (c).

(e) Find the minimum possible energy for the orbiting electron wave, and the value of

r to which it corresponds.

Answer 2:

(a) Total energy of an orbiting particle in terms of its kinetic energy and electrostatic

potential energy is give by,

Etotal = K.E. + P.E.

Etotal =
1

2
mv2 +

[
−ke

2

r

]
Etotal =

1

2
mv2 − ke2

r
,

where k = 1/4πϵ0. Therefore total energy of the particle will become,

Etotal =
1

2
mv2 − e2

4πϵ0r
·

Hence the energy of “orbiting electron wave” is also,

E =
1

2
mv2 − e2

4πϵ0r
· (1)

(b) Since electron is orbiting in a circular orbit, its centripetal acceleration in its orbit

is (v2/r), while electrostatic force on the electron is (ke2/r2), thus,

F = ma

ke2

r2
= m

(
v2

r

)
⇒ v2 =

ke2

mr

v2 =
e2

4πϵ0mr
.
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Use this value of v2 in equation (1),

Eclassical particle =
1

2
m

(
e2

4πϵ0mr

)
− e2

4πϵ0r

=
1

2

(
e2

4πϵ0r

)
− e2

4πϵ0r

=
e2

8πϵ0r
− e2

4πϵ0r

= − e2

8πϵ0r
·

The negative electrostatic potential energy is always of greater magnitude than the

positive kinetic energy, so the total energy strictly decreases as r decreases. Hence

there is no minimum energy. In the accompanying figure, course A corresponds to the

energy of the classical particle, whose energy decreases as r.

(c) Now assuming pr = ~, we have p = ~/r or v = ~/mr. Therefor equation (1)

becomes,

Ematter wave =
1

2
m

(
~
mr

)2

− e2

4πϵ0r

=
~2

2mr2
− e2

4πϵ0r
·

In this case as r decreases, and the wave become more compact, the likely speed

increases. The kinetic energy increases faster than the potential decreases, and the

total energy at some point must increase. Hence applying uncertainty principle there

is a turning point A in the curve labelled B.

(d) The two plots are shown in the figure.

2 4 6 8 10

-0.6

-0.4

-0.2

0.2

r

E
(arb. units)

A

Curve A

Curve B

While the energy of a classical particle would monotonically decrease as r decreases,

the energy of the matter wave reaches a minimum, and then increases.
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(e) The minimum possible energy for the orbiting electron wave can be calculated by

setting the derivative of energy with respect to r, to zero.

Ematter wave =
~2

2mr2
− e2

4πϵ0r

dEmatter wave

dr
= − ~2

mr3
+

e2

4πϵ0r2
= 0

⇒ r =
4πϵ0~2

me2

=
9× 109 Nm2/C2 × (1.055× 10−34 Js)2

9.11× 10−31 × (1.6× 10−19 C)2

= 5.3× 10−11 m.

This turns out to be astoundingly close to the Bohr radius calculated earlier in class.

Inserting this value of r and other constants will give energy for matter wave as follows.

Ematter wave = −13.6 eV.

The energy happens to equal the correct, experimentally determined value, and the

radius is indeed the most probable radius at which the electron would be found. That

these agree so closely is an accident; many approximations have been made. Never-

theless, the uncertainty principle does impose a lower limit on the energy, and it is no

accident that the value we obtained is of the correct order of magnitude.
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Recitation on infinite well

Solution

1. An electron is confined in an infinite well of 30 cm width.

(a) What is the ground-state energy?

(b) In this state, what is the probability that the electron would be found within 10

cm of the left-hand wall?

(c) If the electron instead has an energy of 1.0 eV, what is the probability that it

would be found within 10 cm of the left-hand wall?

(d) For the 1-eV electron, what is the distance between nodes and the minimum

possible fractional decrease in energy?

Answer 1:

(a) For an infinite square well, the energy is,

En =
π2~2n2

2mL2
·

For the ground state, n = 1 and the corresponding energy is,

E1 =
π2~2

2mL2

=
π2(1.054× 10−34 J sec)2

2(9.1× 10−31 kg)(0.3m)2

= 6.71× 10−37 J.

(b) The wavefunction for an infinite square well is,

ψn =

√
2

L
sin

(
nπx

L

)
ψ1 =

√
2

L
sin

(
πx

L

)
.
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The probability of finding the electron within 10 cm of the left-hand wall is,

P (0 < x < 0.1m) =

∫ 0.1

0

ψ∗(x)ψ(x)dx

=

∫ 0.1

0

|ψ(x)|2dx

=
2

L

∫ 0.1

0

sin2(πx/L)dx

=
2

L

∫ 0.1

0

(1− cos(2πx/L))

2
dx

=
1

L

∫ 0.1

0

(1− cos(2πx/L))dx

=
1

L

[
1− sin(2πx/L)

2π/L

]0.1
0

= 0.21.

(c) If the electron has 1.0 eV of energy, then,

π2~2n2

2mL2
= 1.6× 10−19 J

n2 =
2mL2(1.6× 10−19 J)

π2~2

=
2(9.11× 10−31 kg)(0.3m)2(1.6× 10−19 J)

π2(1.054× 10−34 J sec)2

= 2.38× 1017

n = 4.88× 108.

With this energy of electron, the probability of finding it within 10 cm of left-hand

wall is,

P (0 < x < 0.1m) =

∫ 0.1

0

ψ∗(x)ψ(x)dx

=
2

L

∫ 0.1

0

sin2(nπx/L)dx

=
2

L

∫ 0.1

0

(1− cos(2nπx/L))

2
dx

=
1

L

∫ 0.1

0

(1− cos(2nπx/L))dx

=
1

L

[
1− sin(2nπx/L)

2nπ/L

]0.1
0

= 0.33.
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(d) We know that,

L = n
λ

2

λ =
2L

n
·

Now the distance between the nodes is,

λ

2
=

L

2
=

0.3

4.8× 108

= 6.15 Å.

The maximum possible fractional decrease in energy is thus,

∆E

E
=

En − En−1

En

=
n2 − (n− 1)2

n2

=
2

n
− 1

n2
,

since n = 4.8× 108, the minimum fractional decrease in energy is,

∆E

E
= 4.1× 10−9 J.

2. A 50 eV electron is trapped in a finite well. How “far” (in eV) is it from being free

if the penetration length of its wave function into the classically forbidden region is 1

nm?

Answer 2:

x= x= L0

Uo
δ

E
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The penetration depth δ is given by,

δ =
~√

2m(U0 − E)
= 1× 10−9 m

2m(U0 − E) =
~2

(1× 10−9m)2

U0 − E =
~2

2m(1× 10−9 m)2

= 38.2meV.
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Tutorial on infinite well

1. Consider a particle that is bound inside an infinite well whose “floor” is sloping as

shown on the next page.

x=

x=L

0

U(x) U(x)

E

E

1

2

oo oo

Sketch a plausible wave function when the energy is E1 and when the energy is E2.

2. In an infinite well, consider the 1st excited state, i.e., n = 2.

(a) What is the most probable position of the particle after a measurement has been

made?

(b) What is the average position, ⟨x⟩?

3. The nuclear potential that binds protons and neutrons in the nucleus of an atom

is often approximated by a square well. Imagine a proton confined in an infinite

square well of length 10−5 nm, a typical nuclear diameter. Calculate the wavelength

and energy associated with the photon that is emitted when the proton undergoes a

transition from the first excited state (n = 2) to the ground state (n = 1). In what

region of the electromagnetic spectrum does this wavelength belong?
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Tutorial on infinite well

Solution

1. Consider a particle that is bound inside an infinite well whose “floor” is sloping as

shown on the next page.

x=

x=L

0

U(x) U(x)

E

E

1

2

oo oo

Sketch a plausible wave function when the energy is E1 and when the energy is E2.

Answer 1:

The plausible wavefunctions are shown in the Figure.

x=

x=L

0

U(x) U(x)

E

E

1

2

oo oo

Penetration into the 

classically forbidden 

region

nodenode

ψ
1

ψ2

The wavefunction ψ1(x) corresponds to energy E1 and ψ2(x) corresponds to energy E2.

If E > U(x), the wavefunction is ∝ exp
( i
√

2m(E−U(x))

~

)
, which is oscillatory. Larger the

value of E − U(x), higher the value of k =
√

2m(E−U(x))
~ and shorter the wavelength.

If E < U(x), the wavefunction decays (damps). Note that the wavelength for ψ1(x)

is not uniform, rather the wavelength increases, k decreases as E − U(x) decreases in

going from left to right.
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2. In an infinite well, consider the 1st excited state, i.e., n = 2.

(a) What is the most probable position of the particle after a measurement has been

made?

(b) What is the average position, ⟨x⟩?

Answer 2:

The wavefunction for an infinite well is,

ψn(x) =

√
2

L
sin

(
nπx

L

)
For first excited state, n = 2,

ψ2(x) =

√
2

L
sin

(
2πx

L

)
and the probability is,

P2(x) = |ψ2(x)
∗ψ2(x)|

=
2

L
sin2

(
2πx

L

)
·

To find the most probable position, we have to maximize P2(x).

dP2(x)

dx
= 2

(
2

L

)
sin

(
2πx

L

)
cos

(
2πx

L

)(
2π

L

)
= 2π

(
4

L2

)
sin

(
2πx

L

)
cos

(
2πx

L

)
The quantity dP2(x)

dx
= 0 when x = 0, L/4, L/2, 3L/4, L but when x = 0, L/2, L, the

wavefunction ψ2(x) = 0.

Thus at x = 0, L/2, L, the probability of finding the particle is zero. The most

probable positions are x = L/4, and x = 3L/4.
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(b) The average position is given by the following,

⟨x⟩ =

∫ L

0

xψ∗
2(x)ψ2(x)dx

=

∫ L

0

x |ψ2(x)|2 dx

=
2

L

∫ L

0

x sin2(2πx/L)dx

=
2

2L

∫ L

0

x (1− cos(4πx/L))dx

=
1

L

∫ L

0

xdx− 1

L

∫ L

0

x cos(4πx/L)dx

=
L

2
− 0

=
L

2
·

3. The nuclear potential that binds protons and neutrons in the nucleus of an atom

is often approximated by a square well. Imagine a proton confined in an infinite

square well of length 10−5 nm, a typical nuclear diameter. Calculate the wavelength

and energy associated with the photon that is emitted when the proton undergoes a

transition from the first excited state (n = 2) to the ground state (n = 1). In what

region of the electromagnetic spectrum does this wavelength belong?

Answer 3:

In a square well, the energy that corresponds to n’th energy level is,

En =
π2~2n2

2mL2
·

When a proton undergoes a transition from the first excited state (n = 2) to the

ground state (n = 1), the energy of emitted photon is,

∆E2→1 =
π2~2

2mL2
(22 − 12)

=
3π2~2

2mL2

=
3π2(1.054× 10−34 Js)2

2(1.67× 10−27 kg)(10−14 m)2

= 9.8× 10−15 J.
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The wavelength of emitted photon is,

λ =
hc

∆E

=
(6.63× 10−34 Js)(3× 108m/s)

9.8× 10−15 J

= 2× 10−11 m.
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