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and the overlap is negligible. This is quite gratifying. We never have to
worry about the question of antisymmetrization with 10 billion electrons,
nor is it necessary to take into account the antisymmetrization requirement
between an electron in Los Angeles and an electron in Beijing.

6.4. THE HELIUM ATOM

A study of the helium atom is rewarding for several reasons. First of all, it is
the simplest realistic problem where the question of identity—which we
encountered in Section 6.3—plays an important role. Second, even though it
is a simple system, the two-particle Schrédinger equation cannot be solved
analytically; therefore, this is a nice place to illustrate the use of perturba-
tion theory and also the use of the variational method.

The basic Hamiltonian is given by

jo By B, 2680 200 (6.4.1)
2m  2m n Iy Iy

where r =x,|, r,=|x,|, and r, =[x, —X,[; see Figure 6.3. Suppose the
e2/ry,-term were absent. Then, with the identity question ignored, the wave
function would be just the product of two hydrogen atom wave functions
with Z =1 changed into Z = 2. The total spin is a constant of the motion, so
the spin state is either singlet or triplet. The space part of the wave function
for the important case where one of the electrons is in the ground state and
the other in an excited state characterized by (n/m) is

¢(x1,x,) = 712—“ [Hl’loo(xl)‘l’nlm(xz)i' ‘l’loo(xz)‘l’n/m(xl)] (6.4.2)

where the upper (lower) sign is for the spin singlet (triplet). We will come

back to this general form for an excited state later.
For the ground state, we need a special treatment. Here the con-

figuration is characterized by (15)2, that is, both electrons in n =1, /=0.

Electron 1 pa~ s
N &

- Electron 2
X1

—

X2

Nucleus of charge + 2lel
FIGURE 6.3. Schematic diagram of the helium atom,
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The space fl.lnCt!On must then necessarily be symmetric and only the spin
singlet function is allowed, So we have

7]
\blm(xl)\blm(x l)x.xlnglcl

= -L..c‘ Z(n tr)/ag

na) X (6.4.3)

“unperturbed”

9
E=2><4(——‘_)

2a,

with Z = 2. Not surprisingly, this * ave function gives

(6.4.4)
for the ground-state energy, which is
tal value. . . .
This is just the starting point of our investigation be
ing the above form (6.4.3), we have complete
(6.4.1) that describes the interaction betw

approach the problem of obtaining a better cnergy value is to apply

first-order perturbation theory using (6.4.3) as the unperturbed wave func-
tion and e?/r, as the perturbation. We obtain

about 30% bigger than the experimen-

cause in obtain-
ly ignored the last term in
¢en the two electrons, One way to

2 6 2
¢ Z -2 +try)/ay €
Baspr=(7=) = [[Serzniny "—dx, d’x,. (6.4.5)
4V (1s)? T ag 12
To carry out the indicated integration we first note
o0 F’
X : =) ~1Pi(cosy), (6.4.6)
2 \rl+r2—2rrcosy im0t

where r, (r_)is the larger (smaller) of r, and r, and vy is the angle bctwcrcn
X, and x,. The angular integration is easily performed by expressing

P/(cosy) in terms of Y,"(6,,¢,) and Y,"(0,, ¢,) using the addition theorem
of spherical harmonics:

{
2;121 Z )'/"'.(01’¢|)),l”'(02'¢2)' (6.4.7)

1o/

P/(cosy) =

.

The angular integration is now trivial:
: (6.4.8)
i = T 47T)8 8m()'
fyl (0:"¢1)d$2r m( 10

. i ral); it leads
The radial integration is elementary (but involves tedious algebra!)
to

o ] +r),.2 2dr
-QZ7aXn* e 2 dp N rfdry
- "_l_e—<22/ao)<n+'z’r22dr2+f P ?
0 | L

r

i o (6.4.9)
e 0
128 5
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(’Cﬂli(;] »
i
Combining everything, we have (for Z = 2) ‘
: Z%? o 5 \(al
Ay = 47(v4 — || 20
(15)? (Wzag) 77(‘/7) (128)(25)
” ( 2) ( e_’)
Adding this energy shift to (6.4.4), we have
5\( e?
E,= (—8+ E)(m) =—T748¢V. (6.4,1])
Compare this with the experimental value,
E,,=-78.8¢eV. (6.4,12)

This is not bad, but we can do bet

ter! We propose to use the
variational method with Z, which we call Zy, as a variational parameter

The physical reason for this choice is that the effective Z seen by one of the
electrens is smaller than 2 because the positive charge of 2 units at the
origin (see Figure 6.3) is “screened” by the negatively charged cloud of
the other electron: in other words, the other electron tends to neutralize the

-positive charge due to the helium nucleus at the center. For the normalized
trial function we use

3
E‘.ﬁ e~ Zln+n)/ay (6413)
nay

(xl,leﬁ) T (
From this we obtain

2 2
F={062r 4+ P2[5\_/5
- (o 2p)- o

VA 5 e?
= (27"—22,2,"+ Ezc")(a). (6.4.14)

We easily see that the minimization of H is at

Zy=2—{=1.6875. (6.4.15)
This is smaller than 2, as anticipated. Using this value for Zo we get
Ea = =77.5¢V, (6.4.16)

which is already very close considering the crudeness of the trial wave
function. . _

Historically, this achievement was cpnmdcrcd 10 be one of the
earliest signs that Schrodinger's wave mechanics was on the righ, track, We

| S
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‘“pl“-

ot get this kind of number by the
cann

helium calculation was first done by A Unsold in 1927+
The Let us briefly consider excited states. This is more inlcresting from
he point of view of illustrating quantum-mechan;j
the

. identity
we consider just (1s)(nl). We write the energy of this state g
E= Em() + E,,,m + AE. (6.4.17)
In first-order perturbation theory, AE is obtained by evaluating the expec-
wtion value of e/r,. We can write
o2
<‘>=1:tf, (6.4.18)
M2

where I and J, known respectivel

Y as the direct integral and the exchange
integral, are given by

2
2 e
I=[d, [ A2l 100() Wi (x2) -, (6.4.192)

2
J= fdsxlde«Vz\l'loo(xl)‘Pnlm(xz):Tz‘l’foo(xz)‘l’:lm(xl)-

(6.4.19b)

The upper (lower) sign goes with the spin singlet (triplet) state. vanously, I
is positive; we can also show that J is positive. So tl3e net result is such th?t
for the same configuration, the spin singlet state lies higher, as shown in
Figure 6 4. |
g The physical interpretation for this is as follows: In the sm%lel g?::
¢ Space function is symmetric and the electrons have a tenfiency lo'c 7
dose to each other. Therefore, the effect of the electrostatlc rep;xl sion >
More serious; hence, a higher energy results. In the triplet f:(z;se, the zgiier
function i antisymmetric and the electrons tend to avo;li 1 ea;:elium ™
lium jn Spin-singlet states is known as parahelium, while iy
spi"‘“‘iPlCt states is known as orthohelium. Each configuration sp

‘\
A- Unssld, Anp. Phys. 82 (1927) 355.
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o Identical Particle,

(1s)(2p) < para 'P;

ortho P21
1
(15)(2s) < para 'So
ortho S,

(15)2'So

Spin singlet, necessarily “para”

FIGURE 6.5. Schematic energy level diagram for low-lying configurations of the helium
atom.

the para state and the ortho state, the para state lying higher. For the
ground state only parahelium is possible. See Figure 6.5 for a schematic
energy level diagram of the helium atom.

It is very important to recall that the original Hamiltonian is
spin-independent because the potential is made up of just three Coulomb
terms. There was no S,*S,-term whatsoever. Yet there is a spin-dependent
effect—the electrons with parallel spins have a lower energy—that arises
from Fermi-Dirac statistics.

This explanation of the apparent spin dependence of the helium
atom energy levels is due to Heisenberg. The physical origin of ferromag-
netism—alignment of the electron spins extended over microscopic dis-
tances—is also believed to be essentially the same, but the properties of

ferromagnets are much harder to calculate quantitatively from first princi-
ples. '
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