Quantum Optics: HW1 by Muhammad Sabieh Anwar Please submit before 10 am, Thursday, 6 February 2025

- 1. Consider N atoms inside an open cavity exposed to radiation of energy density $u(\omega)$. The radiation enters the cavity at time t = 0. Answer the following questions. Each atom has two levels and all of them are initially in the ground state.
 - (a) Using Einstein's rate equations, find and plot the fraction of atoms in the excited state, N_2 , as a function of time.
 - (b) Plot the steady state population N₂, as a function of the energy density u(ω).
 - (c) What is the steady state population of N_2 and how does the population behave at short times?
 - (d) Answer question (a) for the population N_1 .
 - (e) What is the maximum achievable population of N_2 and what energy density is required for that?
- 2. The energy density in a certain volume of space is $u(\omega)$. Show that the intensity (energy per unit area per unit time) received on a surface is $I = \alpha c u$ where c is the speed of light. The factor $\alpha = 1$ for a collimated beam of radiation as in a laser and $\alpha = 1/4$ for a source radiating isotropically in all directions. Using Planck's radiation formula, and the latter sesult, show that the energy radiated per unit time per unit area from a source is $R = \sigma T^4$. This is called Stefan-Boltzmann's law. In the process determine the value of the constant σ . You may have to

use the integral

$$\int_0^\infty dx \frac{x^3}{e^x - 1} = \frac{\pi^4}{15}.$$
 (1)

- 3. Using Einstein's description of absorption and emission, and Planck's radiation formula, determine the temperature at which spontaneous and stimulated emission rates become equalized. What is this temperature for the following?
 - (a) microwave radiation at 10 GHz
 - (b) optical radiation at 600 nm
 - (c) X-rays of energy 10 KeV
- 4. Express the total emission rate from a two-level system, inclusive of spontaneous and stimulated emission in terms of the number of photons $\langle n_{\omega} \rangle$ inside the system. Under what conditions would stimulated emission dominate and is this feasible for a two-level system?
- 5. The diagram (Fig.1) shows a Lorentzian lineshape $g(\omega)$ with a peak at ω_o and FWHM= Δ . Identify the FWHM and centre frequency on this figure. We need to keep $\int d\omega g(\omega) = 1$. What is the height of the peak? Show that this is the Fourier transform a decaying sinusiod and relate Δ to the decay rate.
- 6. Here are some properties of gaseous mercury atoms in a discharge lamp: mass= 200 atomic units, $T = 200^{\circ}$ C, Einstein coefficient $A = 5 \times 10^{7} \text{ s}^{-1}$, atomic radius= 0.17 nm.
 - (a) Estimate the natural linewidth.

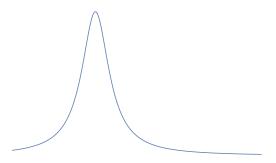


Figure 1: Lorentzian spectral lineshape.

- (b) Show the complete working for determining the pressure broadened linewidth at a pressure P for an arbitrary gas.
- (c) Estimate the pressure broadened linewidth given a pressure P = 1 atm, and $P = 10^{-3}$ atm.
- (d) At what pressure would the pressure broadened linewdith be a tad smaller than the naturally broadened linewidth?
- (e) Given the linewidth in terms of frequency $\Delta \omega$ at ω_o , find the corresponding linewidth in terms of wavelengths $\Delta \lambda$, at λ_o .
- 7. In class, we discussed the Lorentz oscillator model in one dimension. Let's upgrade this to three-diemnsional space. The equation of motion, with the usual meanings of the symbols, becomes:

$$\frac{d^2\mathbf{r}}{dt^2} = -\omega_o^2\mathbf{r} - m\gamma\frac{d\mathbf{r}}{dt} - \frac{e\mathbf{E}_o}{m}e^{-i\omega t},\tag{2}$$

where \mathbf{r} is the position vector. Bold fonts represent three-dimensional vectors.

(a) Propose a solution r, and verify by inserting this ansatz into the equation of motion.

- (b) Find the electric dipole vector $\mathbf{p} = -e\mathbf{r}$.
- (c) Find the polarization $\mathbf{P} = N\mathbf{p}$ where N is the total number of oscillators.
- (d) Using $P + \varepsilon_o(\varepsilon_r 1)\mathbf{E}$, find the refractive index $n = \sqrt{\varepsilon_r}$. Is the refractive index complex? Note that $\varepsilon_{(o,r)}$ represents the vacuum (relative) permittivity.
- (e) What do the real and imaginary parts of the refractive index represent?
- (f) Plot the real and imaginary parts only in the vicinity of $\omega \approx \omega_o$.