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The kind of problems that we solve by exact methods are far and few. As we
edge beyond the hydrogen atom, and enter into the world of helium, lithium and
the bigger atoms and then enter the world of molecules, the situation becomes so
complicated that we have to resort to approximate methods. These are of different
kinds. Today we are going to look at one of the simplest approaches that provide
approximate solutions. This technique is called the time independent perturbation
theory.

In time independent perturbation theory, we know there is some Hamiltonian
Ĥ0 which is large and whose solution is well known, i.e. the eigenstates and

eigenenergies are all established. Let’s denote the eigenstates of Ĥo as ∣ψ(0)n ⟩, with

a zero in the superscript. We label the eigenvalues as E
(0)
n :

Ĥ0 ∣ψ(0)n ⟩ = E(0)n ∣ψ(0)n ⟩ . (1.1)

Therefore this is a well known system and becomes the starting point for the
approximate approach.

If the Hamiltonian now includes a small perturbative term, Ĥp, the overall
Hamiltonian changes to

Ĥ = Ĥo + Ĥp. (1.2)

What do we mean by small? For now, we can say that change in energy due to
Ĥp is much smaller than the energy eigenvalue E

(0)
n itself. How do we find the

eigenstates of the perturbed Ĥ? Our approach is to put a small parameter, a
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scalar λ, next to Ĥp
Ĥ = Ĥo + λĤp, (1.3)

such that if λ equals zero, we get the exact Hamiltonian. If λ equals one, we have
turned on the full perturbation. For 0 < λ < 1, we have mild to strong perturbation.
This parameter λ will also help keep track of the order of the problem, as we shortly
demonstrate.

The eigenstates of the unperturbed Hamiltonian, Ĥo, are ∣ψ(0)n ⟩. With λ > 0

the eigenstates will change. So in addition to the unperturbed wavefunction, we

have some undetermined correction. Suppose these corrections are ∣ψ(1)n ⟩, ∣ψ(2)n ⟩
and so on, and each correction is multiplied by a successively increasing order of
λ:

∣ψn⟩ = ∣ψ(0)n ⟩ + λ ∣ψ(1)n ⟩ + λ2 ∣ψ(2)n ⟩ + . . . . (1.4)

Eq.(1.4) is now the eigenstate of the fully perturbed Hamiltonian Ĥ. In this

formalism ∣ψ(0)n ⟩ is the original eigenstate, ∣ψ(1)n ⟩ is the first order term, ∣ψ(2)n ⟩
is the second order term and henceforth. Likewise, the energy eigenvalues of
the Hamiltonian will also be different from E0

n. The new energy eigenvalues will

include a zero’th order term, E
(0)
n , which is the unperturbed energy plus higher

order terms, in exactly an analogous,

En = E(0)n + λE(1)n + λ2E(2)n + . . . (1.5)

All of these terms are identified with our parameter λ.

1.1 First order correction to the energy

The first task is to find the first order correction to the energy E
(1)
n . The equation

we like to solve is the time independent Schrodinger equation,

Ĥ ∣ψn⟩ = En ∣ψn⟩ (1.6)

given the Hamiltonian Eq.(1.3),

Ĥ = Ĥ0 + λĤp. (1.7)

Let’s expand ∣ψn⟩ and En in terms of their approximations, picking from Eq.(1.4)
and Eq.(1.5), we obtain,

(Ĥ0 + λĤp)(∣ψ(0)n ⟩ + λ ∣ψ(1)n ⟩ + λ2 ∣ψ(2)n ⟩ + . . .)

= (E(0)n + λE(1)n + λ2E(2)n + . . .)(∣ψ(0)n ⟩ + λ ∣ψ(1)n ⟩ + λ2 ∣ψ(2)n ⟩ + . . .),
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while we assume that all eigenstates of the unperturbed Hamiltonian are nonde-
generate. This means there is only one eigenstate corresponding to one eigenvalue.
This simplifies the problem, especially when we are tackling it for the very first
time. We expand and collect the terms with same order of λ, on both sides of the
equation, yielding

Ĥ0 ∣ψ(0)n ⟩ + λ(Ĥ0 ∣ψ(1)n ⟩ + Ĥp ∣ψ(0)n ⟩) + λ2(Ĥ0 ∣ψ(2)n ⟩ + Ĥp ∣ψ(1)n ⟩) + . . .

= E(0)n ∣ψ(0)n ⟩ + λ(E(0)n ∣ψ(1)n ⟩ +E(1)n ∣ψ(0)n ⟩)

+λ2(E(0)n ∣ψ(2)n ⟩ +E(1)n ∣ψ(1)n ⟩ +E(2)n ∣ψ(0)n ⟩) + . . .

In the first stage, let’s collect all the terms that are independent of λ, yielding

Ĥ0 ∣ψ(0)n ⟩ = E(0)n ∣ψ(0)n ⟩ (1.8)

Ah! That’s no surprise! This is something we already know, that is E
(0)
n is the

unperturbed eigenvalue and ∣ψ(0)n ⟩ is the unperturbed eigenfunction of the unper-

turbed Ĥo.
In the second stage, let’s collect all terms in first order,

Ĥ0 ∣ψ(1)n ⟩ + Ĥp ∣ψ(0)n ⟩ = E(0)n ∣ψ(1)n ⟩ +E(1)n ∣ψ(0)n ⟩ (1.9)

and likewise to second order, we have

Ĥ0 ∣ψ(2)n ⟩ + Ĥp ∣ψ(1)n ⟩ = E(0)n ∣ψ(2)n ⟩ +E(1)n ∣ψ(1)n ⟩ +E(2)n ∣ψ(0)n ⟩ (1.10)

If you project Eq.(1.9) onto ∣ψ(0)n ⟩, we obtain

⟨ψ(0)n ∣ Ĥ0 ∣ψ(1)n ⟩ + ⟨ψ(0)n ∣ Ĥp ∣ψ(0)n ⟩ = E(0)n ⟨ψ(0)n ∣ψ(1)n ⟩ +E(1)n ⟨ψ(0)n ∣ψ(0)n ⟩ . (1.11)

We observe the terms one by one. Since Ĥo is a hermitian operator, it can act on
the bra to its left in the very first term to give E

(0)
n , resulting in the cancellations,

���
���

��
E
(0)
n ⟨ψ(0)n ∣ψ(1)n ⟩ + ⟨ψ(0)n ∣ Ĥp ∣ψ(0)n ⟩ =

���
���

��
E
(0)
n ⟨ψ(0)n ∣ψ(1)n ⟩ +E(1)n ⟨ψ(0)n ∣ψ(0)n ⟩ , (1.12)

after which we are left with

⟨ψ(0)n ∣ Ĥp ∣ψ(0)n ⟩ = E(1)n ⟨ψ(0)n ∣ψ(0)n ⟩ , (1.13)
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and since ⟨ψ(0)n ∣ψ(0)n ⟩ is equal to one, we finally obtain

E
(1)
n = ⟨ψ(0)n ∣ Ĥp ∣ψ(0)n ⟩ , (1.14)

which is the first order correction to energy. This correction to energy equals the
expectation value of the perturbative Hamiltonian considering the unperturbed
eigenstate. This appear a simple prescription and often very easy to remember
and straightforward to apply to real scenarios. Here is interim summary.

Find ∣ψ(0)n ⟩ the unperturbed eigenstate of the original Hamiltonian, Ĥ0. There

will be N such eigenstates, for the nondegenerate N dimensional system. Let’s
look at the n’th state, one of those states and find the expectation value of the
perturbative Hamiltonian in that particular state. The energy of n’th eigenstate
En is then approximately equal to the unperturbed energy E

(0)
n plus the correction

term E
(1)
n (put λ = 1):

En ≅ E(0)n +E(1)n . (1.15)

At the moment, the role of λ is just for bookkeeping purposes and for comparing
terms on both sides of the equation. In the end, λ slips the scene. We are now in
a position to calculate how the perturbation corrects the wavefunction correction.

1.2 First order correction to the eigenstates

Next, we are interested in the first order correction to the eigenstate. Assuming
that λ = 1, the new eigenstate ∣ψn⟩ would approximately be equal to the unper-

turbed state, ∣ψ(0)n ⟩ plus the first order correction, ∣ψ(1)n ⟩,

∣ψn⟩ ≅ ∣ψ(0)n ⟩ + ∣ψ(1)n ⟩ . (1.16)

To begin with, all we know are the ∣ψ(0)n ⟩, which form the eigenstates of Ĥo, and

hence form a complete basis of the nondegenerate system. We can expand the

correction term ∣ψ(1)n ⟩ in the basis, ∣ψ(0)m ⟩ within the same Hilbert space,

∣ψ(1)n ⟩ = ∑
m≠n

C
(1)
mn ∣ψ(0)m ⟩ , (1.17)

with the as yet unknown complex coefficient C
(1)
mn. In order to make progress,

we assume that the state, ∣ψ(1)n ⟩ does not include any amount of ∣ψ(0)n ⟩ which

translates to eliminating one term from the finite sum, hence the restraint m ≠ n
inside Eq.(1.17). There are two ways in which we can describe this exclusion. If
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Figure 1.1: Pictorial representation of the perturbation altering the unperturbed
state. The diagram cannot be taken literally because quantum states do not live in
the Euclidean space and it’s unjust to show states in this manner, but the diagram
is a useful pedagogical aid.

there is no perturbation, then the set of states

{∣ψ(0)1 ⟩ , ∣ψ(0)2 ⟩ , ∣ψ(0)3 ⟩ . . . ∣ψ(0)N ⟩} (1.18)

forms a basis in which any state can be represented. If I fetch some state inside this

manifold, ∣ψ(0)n ⟩ which is an eigenstate of unperturbed Hamiltonian, a correction

term ∣ψ(1)n ⟩ must be added to it. The correction should be orthogonal to the

unperturbed state (See Figure 1.1). The reason is simple. If ∣ψ(1)n ⟩ were not

orthogonal to ∣ψ(0)n ⟩, it will add to or subtract from the length of ∣ψ(0)n ⟩, resulting

in loss of normalization which is physically unrealizable.
The argument can also be seen to hold mathematically. The correction can be

written as superposition of all the unperturbed states,

∣ψ(1)n ⟩ = ∑
all m

C
(1)
mn ∣ψ(0)m ⟩ (1.19)

The coefficient C
(1)
mn, is found as the inner product

C
(1)
mn = ⟨ψ(0)m ∣ψ(1)n ⟩ . (1.20)

Suppose the state after correction is

∣ψn⟩ = ∣ψ(0)n ⟩ + λ ∣ψ(1)n ⟩ +O(λ2). (1.21)

The overlap of this state with itself must also be equal to 1, while ⟨ψ(0)n ∣ψ(0)n ⟩ = 1

as well. The inner product of the corrected state, therefore can be computed as,

⟨ψn∣ψn⟩ = 1 = (⟨ψ(0)n ∣ + λ ⟨ψ(1)n ∣))(∣ψ(0)n ⟩ + λ ∣ψ(1)n ⟩) +O(λ2)

= ⟨ψ(0)n ∣ψ(0)n ⟩ + λ ⟨ψ(0)n ∣ψ(1)n ⟩ + λ ⟨ψ(1)n ∣ψ(0)n ⟩ +O(λ2)

= 1 + λ ⟨ψ(0)n ∣ψ(1)n ⟩ + λ ⟨ψ(1)n ∣ψ(0)n ⟩ +O(λ2). (1.22)
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Since ⟨ψ(0)n ∣ψ(1)n ⟩ = ⟨ψ(1)n ∣ψ(0)n ⟩
∗
, the middle term can be replaced by the real num-

ber, yielding

2λR ⟨ψ(0)n ∣ψ(1)n ⟩ +O(λ2) = 0. (1.23)

This must hold true for all choices of λ. Therefore 2λR ⟨ψ(0)n ∣ψ(1)n ⟩ must be equal

to 0 implying that ⟨ψ(0)n ∣ψ(1)n ⟩ can at best be purely imaginary,

⟨ψ(0)n ∣ψ(1)n ⟩ = ia, aεR. (1.24)

Now it is legitimate to write,

∣ψ(1)⟩ = ⟨ψ(0)n ∣ψ(1)n ⟩ ∣ψ(0)n ⟩ + ∑
m≠n

⟨ψ(0)m ∣ψ(1)n ⟩ ∣ψ(0)m ⟩ , (1.25)

where I have partitioned the sum into two sectors; one is the projection onto the
eigenstate with basis state of the same index and second, is the projection onto all
the other basis states with different indices. Therefore, the state Eq.(1.21) after
perturbation is

∣ψn⟩ = ∣ψ(0)n ⟩ + ∣ψ1
n⟩ +O(λ2)

= ∣ψ(0)n ⟩ + ⟨ψ(0)n ∣ψ(1)n ⟩ ∣ψ(0)n ⟩ + ∑
m≠n

⟨ψ(0)m ∣ψ(1)n ⟩ ∣ψ(0)m ⟩ +O(λ2)

= (1 + ia +O(λ2)) ∣ψ(0)n ⟩ + ∑
m≠n

⟨ψ(0)m ∣ψ(1)n ⟩ ∣ψ(0)m ⟩ (1.26)

= eiaλ ∣ψ(0)n ⟩ + ∑
m≠n

⟨ψ(0)m ∣ψ(1)n ⟩ ∣ψ(0)m ⟩ , (1.27)

where Eq.(1.26) uses Eq.(1.24). Since this must be true for any real value of a
including a = 0, we can write

∣ψn⟩ ≅ ∣ψ(0)n ⟩ + ∑
m≠n

⟨ψ(0)m ∣ψ(1)n ⟩ ∣ψ(0)m ⟩ . (1.28)

which upon comparison with Eq.(1.16) immediately shows

∣ψ(1)n ⟩ = ∑
m≠n

⟨ψ(0)m ∣ψ(1)n ⟩ ∣ψ(0)m ⟩ , (1.29)

excluding the m = n term from the sum. The non-overlap assumption therefore
means that the correction term is orthogonal living in subspace orthogonal to the

unperturbed wavefunction. The overlaps ⟨ψ(0)m ∣ψ(1)n ⟩ are the coefficients C
(1)
mn.
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Let’s once again consider the Eq.(1.9), which I rewrite here,

Ĥ0 ∣ψ(1)n ⟩ + Ĥp ∣ψ(0)n ⟩ = E(0)n ∣ψ(1)n ⟩ +E(1)n ∣ψ(0)n ⟩ (1.30)

which upon projection onto ∣ψ(0)m ⟩ gives,

⟨ψ(0)m ∣ Ĥ0 ∣ψ(1)n ⟩ + ⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩ = E(0)n ⟨ψ(0)m ∣ψ(1)n ⟩ +
���

���
��

E
(1)
n ⟨ψ(0)m ∣ψ(0)n ⟩ (1.31)

where the last term cancels out since m ≠ n indicating orthogonal eigenstates of

the unperturbed Hamiltonian. The first term ⟨ψ(0)m ∣ Ĥ0 ∣ψ(1)n ⟩ can be written as

E
(0)
m ⟨ψ(0)m ∣ψ(1)n ⟩.

E
(0)
m ⟨ψ(0)m ∣ψ(1)n ⟩ + ⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩ = E(0)n ⟨ψ(0)m ∣ψ(1)n ⟩ (1.32)

and rearranging,

⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩ = E(0)n ⟨ψ(0)m ∣ψ(1)n ⟩ −E(0)m ⟨ψ(0)m ∣ψ(1)n ⟩ (1.33)

⟨ψ(0)m ∣ψ(1)n ⟩ =
⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩

E
(0)
n −E(0)m

, m ≠ n (1.34)

which is precisely the inner product we are seeking for in Eq.(1.29). Therefore if
we insert Eq.(1.34) into Eq.(1.29), we finally obtain the first order correction to
the eigenstate, .

∣ψ(1)n ⟩ = ∑
m≠n

⎡⎢⎢⎢⎢⎢⎣

⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩

E
(0)
n −E(0)m

⎤⎥⎥⎥⎥⎥⎦
∣ψ(0)m ⟩ . (1.35)

Note that ⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩ is not an expectation value, but a matrix element of Ĥp,
between ∣ψ(0)m ⟩ and ∣ψ(0)n ⟩. All in all, Eq.(1.35) is the first order correction to the

eigenstate. What does the correction term to n’th state look like? Its a sum over

all the unperturbed eigenstates of the original Hamiltonian, ∣ψ(0)m ⟩, excluding the

n’th state weighted by a coefficient with each term! This coefficient is simply a
matrix element of the perturbative Hamiltonian. Also remember to divide by the
difference in energy between the n′th state and m′th state. We notice that the
coefficients are indexed by m and n, Ĥp,mn. We can write the matrix in the basis
of unperturbed eigenstates, picking up the element in that matrix at the m’th row
and n’th column and weighing the unperturbed state with that element.

Luckily, this formula applies to a nondegenerate system so the values of E
(0)
n

and E
(0)
m are unequal, otherwise you run into trouble as the denominator will blow
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up. Degenerate states are different eigenstates which possess the same energy. For
degenerate perturbation theory, this procedure needs further adjustment as we
describe shortly. Let’s now go to the next level of approximation and perform a
second order correction to the energy; after all, this approximation may be required
in some important cases.

1.3 Second order correction to the energy

The mechanism by which we compute and update perturbed energies may now be
very clear. Let’s give the process another shot, attempting to calculate the second
order correction. We start with Eq.(1.10), which is the second order balance,

Ĥ0 ∣ψ(2)n ⟩ + Ĥp ∣ψ(1)n ⟩ = E(0)n ∣ψ(2)n ⟩ +E(1)n ∣ψ(1)n ⟩ +E(2)n ∣ψ(0)n ⟩ (1.36)

let’s project this onto the unperturbed state with an identical index n i.e, ∣ψ(0)n ⟩,
resulting in

⟨ψ(0)n ∣ Ĥ0 ∣ψ(2)n ⟩ + ⟨ψ(0)n ∣ Ĥp ∣ψ(1)n ⟩ = E(0)n ⟨ψ(0)n ∣ψ(2)n ⟩ +E(1)n ⟨ψ(0)n ∣ψ(1)n ⟩ +E(2)n ⟨ψ(0)n ∣ψ(0)n ⟩.
(1.37)

The inner product ⟨ψ(0)n ∣ψ(0)n ⟩ = 1 and furthermore, canceling the first term on

either side of the equation, leaves us with

⟨ψ(0)n ∣ Ĥp ∣ψ(1)n ⟩ = E(1)n ⟨ψ(0)n ∣ψ(1)n ⟩ +E(2)n (1.38)

but according to our previous argument ⟨ψ(0)n ∣ψ(1)n ⟩ = 0, finally yielding

E
(2)
n = ⟨ψ(0)n ∣ Ĥp ∣ψ(1)n ⟩ (1.39)

Compare this with the first order correction term, ⟨ψ(0)n ∣ Ĥp ∣ψ(0)n ⟩ given in Eq.(1.14).

The first order correction to energy is a sandwich of ĤP between ∣ψ(0)n ⟩ and itself

while the second order correction to energy is a sandwich between ∣ψ(0)n ⟩ and ∣ψ(1)n ⟩.
The latter state ∣ψ(1)n ⟩ is something we have already determined in Eq.(1.35), and

can be recursively inserted in to Eq.(1.39), resulting in

E
(2)
n = ⟨ψ(0)n ∣ Ĥp(∑

m≠n

⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩

E
(0)
n −E(0)m

∣ψ(0)m ⟩). (1.40)
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Correction Formula Where

First order correction

to energy, E
(1)
n ⟨ψ(0)n ∣ Ĥp ∣ψ(0)n ⟩ Eq.(1.14)

Second order correction

to energy, E
(2)
n ∑m≠n

∣⟨ψ(0)m ∣Ĥp∣ψ(0)n ⟩∣
2

E
(0)
n −E(0)m

Eq.(1.42)

First order correction

to wavefunction, ∣ψ(1)n ⟩ ∑m≠n [
⟨ψ(0)m ∣Ĥp∣ψ(0)n ⟩

E
(0)
n −E(0)m

] ∣ψ(0)m ⟩ Eq. (1.35)

The variable m in the sum is different from n, so we can take it outside the

summation. Moreover since, ⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩ is just a scalar so we can move it

anywhere we like,

E
(2)
n = ∑

m≠n

⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩ ⟨ψ(0)n ∣ Ĥp ∣ψ(0)m ⟩

E
(0)
n −E(0)m

(1.41)

= ∑
m≠n

∣⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩∣
2

E
(0)
n −E(0)m

(1.42)

which is the desired correction, to correct up to second order. In most cases we
don’t need to go beyond the second order correction in energy and seldom do
we need to find the second order correction to the wavefunction. We are now in
a good starting position to apply the time independent perturbation analysis to
some interesting physical problems. Of course, the method has wide application
in all fields, and is our first ammunition to attack complex problems of solving
Hamiltonians which defy a simple and exact solution. A rapid glance summary is
provided next.

1.4 Some applications of nondegenerate perturbation

1.4.1 Electron trapped inside an infinite well and subject to an
electric field

Suppose we have an electron inside infinite well (of length L) and we subject it
to an electric field. Without the field, everything is really simple and is all well-
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Figure 1.2: (a) Unperturbed and (b) tilted potential wells and some of the lowest
energy states.

known. The unperturbed Hamiltonian for the electron inside the well is

Ĥo =
p̂2

2m
, (1.43)

where p is momentum and m is the mass of electron. The n’th unperturbed
eigenenergy is,

E
(0)
n = n

2π2h̵2

2mL2
. (1.44)

The eigenstates in position basis are

ψ
(0)
n (x) = ⟨x∣ψ(0)n ⟩ =

√
2

L
sin(nπx

L
). (1.45)

That is all as far as the unperturbed solution to the Hamiltonian is concerned.
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The electric field is our perturbation. A relevant scenario could be of an electron
trapped inside the junction between two semiconductors, confined to move in one
dimension, and on top of it, one applies an electric field to the junction. Consider
an electric field ε⃗ is applied from left to right leading to higher potential energy
(for the electron) towards the right. This tilts the floor of the well, as shown in
Figure 1.2 (b). There is still zero probability for finding the electron outside the
well because of the impenetrably high walls. How does the sloped floor change the
energy eigenvalues? The potential energy V is charge of the electron −e times ε
times distance x, ensuring that as x increases, V (x) also increases

V (x) = eεx. (1.46)

The energy is the eigenvalue of perturbed Hamiltonian Ĥp, therefore

Ĥp = eεx̂. (1.47)

As x increases the potential energy increases. Consequently, the height of potential
energy on the right edge is, eεL above the potential energy on the left edge . 1

We want to find the first order correction to the energy due to the presence of
tilted potential at the bottom. This correction is simply the expectation value
of the perturbation Hamiltonian calculated using the unperturbed wavefunctions,
Eq.(1.14),

E
(1)
n = ⟨ψ(0)n ∣ Ĥp ∣ψ(0)n ⟩ . (1.49)

Using the completeness relation for the pure states of the position,

1̂ = ∫
∞

−∞
dx ∣x⟩ ⟨x∣ . (1.50)

this correction becomes

E
(1)
n = ∫

∞

x=0
∫

∞

x′=0
dx dx′ ⟨ψ(0)n ∣x⟩ ⟨x∣ Ĥp ∣x′⟩ ⟨x′∣ψn(0)⟩ (1.51)

x and x′ being independent running variable. Let’s see what the middle term looks
like:

⟨x∣ Ĥp ∣x′⟩ = eε ⟨x∣ x̂ ∣x′⟩ = eεx ⟨x∣x′⟩ = eεxδ(x − x′), (1.52)

1Let’s impose a condition that the raise in potential energy is less than the lowest unperturbed
state (n = 1),

π2h̵2

2mL2
> eεL. (1.48)
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resulting in,

E
(1)
n = ∫

∞

x=0
∫

∞

x′=0
dx dx′ ψ

∗(0)
n (x′)ψ(0)n (x) ⟨x∣ Ĥp ∣x′⟩

= ∫
∞

x=0
∫

∞

x′=0
dx dx′ ψ

∗(0)
n (x′)ψ(0)n (x)eεxδ(x − x′)

= 2

L
(eε)∫

L

x=0
dx x sin2 (nπx

L
)

= eεL
2
.

This result is independent of n, indicating that each one of the levels will shift up-
ward by an identical amount eεL/2. The total energy spectrum will shift whole-
some! The spacing between levels will however not change. If there are many
electrons and those electrons are making transition inside tilted infinite well, the
spectrum of emitted radiation will remain unchanged. Next, we determine the

x

(1) ( )xy

( )xy (0) ( )xy

Figure 1.3: In tilted potential well the electron would prefer to occupy the position
of lower potential. The solid curve shows the unperturbed ground state wavefunc-
tion. The dashed curves show the perturbed states, resulting in superposition of
ground state and first excited state.

corrections to the eigenstates ∣ψ(0)n ⟩. The correction by virtue of Eq.(1.35) is

∣ψ(1)n ⟩ = ∑
m≠n

⎡⎢⎢⎢⎢⎢⎣

⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩

E
(0)
n −E(0)m

⎤⎥⎥⎥⎥⎥⎦
∣ψ(0)m ⟩ , (1.53)
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for which we need the unperturbed wavefunction,

⟨x∣ψ(0)m ⟩ =
√

2

L
sin(mπx

L
) (1.54)

the denominator

E
(0)
n −E(0)m = h̵2π2

2m′L2
(n2 −m2) (1.55)

where we have now used primed m′ to denote the mass. The required matrix
element is

⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩ = 2eε
L ∫ ∫ dx′dx sin(mπx

′

L
) sin(nπx

L
) ⟨x′∣ x̂ ∣x′⟩

= 2eε
L ∫

L

0
dx x sin(mπx

L
) sin(nπx

L
)

= −eε
L ∫

L

0
dx x (cos((m + n)πx

L
) − cos((m − n)πx

L
))

(1.56)

Let’s evaluate the first integral,

(∫
L

0
dx x cos((m + n)πx

L
) =

=
���

���
���

���
���

Lx

(m + n)π sin((m + n)πx
L

)∣
L

0

− L

(m + n)π ∫
L

0
dx sin((m + n)πx

L
)

= ( L

(m + n)π)
2

cos((m + n)πx
L

)∣
L

0

= ( L

(m + n)π)
2

(cos((m + n)π) − 1)

= ( L

(m + n)π)
2

((−1)(m+n) − 1), (1.57)

while for the second integral,

∫
L

0
dx x cos((m − n)πx

L
) = ( L

(m − n)π)
2

((−1)(m−n) − 1). (1.58)
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Stringing these results together, we obtain for the integral Eq.(1.56), the following
form

⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩

= −eε
L

(L
π
)
2

( 1

(m + n)2((−1)(m+n) − 1) − 1

(m − n)2((−1)(m−n) − 1))

= −eεL
π2

1

(m + n)2(m − n)2

((m − n)2((−1)(m+n) − 1) − (m + n)2((−1)(m−n) − 1))

= −eεL
π2

1

(m2 − n2)2

���
���

���
���

���

(m2((−1)(m+n) − (−1)(m−n)) +
���

���
���

���
��

n2((−1)(m+n) − (−1)(m−n))

−2mn((−1)(m+n) + (−1)(m−n) − 2))

= eεL
π2

1

(m2 − n2)22mn((−1)(m+n) + (−1)(m−n) − 2)

=
⎧⎪⎪⎨⎪⎪⎩

− 8eεLmn
π2(m2−n2)2 ; m + n is odd

0 ; m + n is even
(1.59)

Inserting the expression into Eq.(1.53), the correction to the n′th eigenstates be-
comes

∣ψ(1)n ⟩ = 16eεL3m′n

π4h̵2
∑
m≠n

(m+n) is odd

m

(m2 − n2)3 ∣ψ(0)m ⟩ (1.60)

For computing correction to the ground state, n = 1, we obtain

∣ψ(1)1 ⟩ = 16eεL3m′

π4h̵2
∑
m≠n

m=2,4,6...

m

(m2 − 1)3 ∣ψ(0)m ⟩ (1.61)

The coefficients m/(m2 − 1)3 decreases rapidly as m goes up. Therefore, taking
only m = 2, will give

∣ψ(1)1 ⟩ = 32eεL3m′

27π4h̵2
∣ψ(0)m ⟩ , (1.62)

resulting in the corrected ground state,

⟨x∣ψ1⟩ ≅
√

2

L
sin(πx

L
) + 32eεL3m′

27π4h̵2

√
2

L
sin(2πx

L
) (1.63)
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which is correct up to a normalization factor and shows intermixing of some frac-
tion of the first excited state’s wavefunction into the ground state polynomial. The
corrected wavefunction for some imagined values of the electric field ε, and length
L are shown in Figure 1.3

1.4.2 A harmonic oscillator inside an electric field

( )V x

min( )V xminx
x

2 21

2
V m xw=

2 21

2
V m x e xw e= +

Figure 1.4: Harmonic oscillator inside an electric field. The solid (dashed) curve
shoes the unperturbed (perturbed) potential energy function.

As another example of the application of the time independent perturbation
theory, consider a harmonic oscillator placed inside an electric field ε. An electron
acts like a harmonic oscillator inside a parabolic potential and over and above sees
the electric field too. The curve in Figure 1.4 for the Harmonic oscillator which is
given by

V (x) = 1

2
mω2x2. (1.64)
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The potential energy is minimum at x = 0. The Hamiltonian corresponding to this
system is of the form,

Ĥ = h̵ω(â†â + 1

2
). (1.65)

We impose an electric field once again acting toward the right, producing the
perturbative Hamiltonian given in Eq.(1.47),

Ĥp = eεx̂. (1.66)

What are the perturbed energies and eigenstates? The perturbed energies? Be-
ginning with the unperturbed scenario, the eigenstates are just the number (Fock)
states, while the energies are

E
(0)
n = h̵ω(n + 1

2
), (1.67)

where n is a quantum number going from 0 to ∞. The first order correction to
the energy is quite straightforward to compute,

E
(1)
n = ⟨n∣ Ĥp ∣m⟩ = eε ⟨n∣ x̂ ∣m⟩ (1.68)

and since x̂ can be written in terms of raising and lowering operators,

E
(1)
n = eε

√
h̵

2mω
⟨n∣ (â + â†) ∣m⟩ = 0. (1.69)

Lo and behold, the energies do not change but this is only true up to first order. It
is, thus, instructive to investigate the second order correction to the energy, which
goes as,

E
(2)
n = ∑

m≠n

∣⟨ψ(0)m ∣ Ĥp ∣ψ(0)n ⟩∣
2

E
(0)
n −E(0)m

= e2ε2
∑
m≠n

∣⟨m∣ x̂ ∣n⟩∣2

h̵ω(n −m)
(1.70)

Once again, replacing x̂ by the combination of raising and lowering operators, we
obtain

E
(2)
n = e

2ε2

h̵ω

h̵

2mω
∑
m≠n

∣⟨m∣ (â + â†) ∣n⟩∣
2

(n −m)
= e2ε2

2mω2 ∑
m≠n

∣⟨m∣ (â + â†) ∣n⟩∣
2

(n −m)
(1.71)
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When the lowering operator acts on ∣n⟩, we get
√
n ∣n − 1⟩, while the raising oper-

ator acting on ∣n⟩ produces
√
n + 1 ∣n + 1⟩. As we take the square of these terms,

we obtain

E
(2)
n = e2ε2

2mω2 ∑
m≠n

∣√n ⟨m∣n − 1⟩ +
√
n + 1 ⟨m∣n + 1⟩∣2

(n −m)

= e2ε2

2mω2 ∑
m≠n

∣√nδm,n−1 +
√
n + 1δm,n+1∣

2

(n −m)

= e2ε2

2mω2 ∑
m≠n

(nδ2m,n−1 + (n + 1)δ2m,n+1

(n −m)
)

+ e2ε2

2mω2 ∑
m≠n
(((

((((
(((

((√
n
√
n + 1δm,n−1δm,n+1 +((((((

((((
((√

n + 1
√
nδm,n+1δm,n−1

(n −m)
),

where in the third step, we employ the property that the product of δm,n−1 and
δm,n+1 is zero, and the square of delta function is equal to the delta function itself.

E
(2)
n = e2ε2

2mω2 ∑
m≠n

(nδm,n−1 + (n + 1)δm,n+1)

(n −m)
(1.72)

The first term is non-zero when m equals n − 1. So all terms in the sum besides
m = n − 1 vanish. Similarly for the second term that contains δm,n+1, there is only
one value of m = n + 1 which renders only this very term to be non-zero, while
all other terms in the sum vanish. Putting this all together, we obtain for the
correction,

E
(2)
n = e2ε2

2mω2
(n − (n + 1)) = − e

2ε2

2mω2
(1.73)

This is the correction to the energy and it is negative! Since the correction has ε2,
the direction of the electric field does not matter; the energies are always reduced.
Furthermore, we obtain the same correction no matter which number state we are
talking about.
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Figure 1.4 shows our unperturbed potential a smooth parabola with a minimum
at x = 0. When we apply an electric field the potential will clearly shift downwards
and depart from its nice parabolic feature, attaining a modified form

V (x) = 1

2
mω2x2 + eεx. (1.74)

What is the −eεx term going to do? First it translates the potential energy along
the axis. Secondly,it changes the form from parabolic to parabolic plus linear.
Let’s find the minimum of this function through the derivative

dV

dx
=mω2x + eε = 0 (1.75)

xmin = − eε
mω2 , (1.76)

which shows a translation towards the negative axis which is completely under-
standable as the electron would tend to spent more time to the left rather than
the right, in a region of lower energy. Next we find the minimum value of potential
energy. If we put xmin value into V (x), we obtain

V (xmin) = 1

2
mω2x2min + eεxmin (1.77)

= 1

2
mω2( eε

mω2
)
2

− eε( eε
mω2

) = −( e
2ε2

2mω2
) (1.78)

indicating the amount by which the potential energy (non-parabolic) curve shifts
downwards. Figure 1.4 compares the unperturbed and perturbed potentials and
the eigenenergy landscape. Since the potential is no longer parabolic, the eigen-
states will not be the nice Hermite polynomials that we derived earlier for a bare
harmonic oscillator.

1.5 Time independent degenerate perturbation theory

In nondegenerate perturbation theory which was the subject of previous sections,
all the eigenvalues are unique. However, degenerate perturbation theory deals with
Ĥo possessing at least two identical eigenvalues. For example, consider Ĥo with
the following set of eigenvalues called the spectrum,

Ĥo = {E1,E2, . . . ,En+1 = En+2 = En+3, . . . ,EN} (1.79)

In this spectrum three eigenstates {∣ψ(0)n,1⟩ , ∣ψ
(0)
n,2⟩ , ∣ψ

(0)
n,3⟩} have the same eigenvalue

and hence are degenerate. The degenerate eigenstates can always be constructed



1.5. DEGENERATE PERTURBATION THEORY 19

to become orthogonal and there are infinite variety of ways in which one can do
that. For example, suppose you have a two-dimensional degenerate subspace in
which there are two basis eigenvectors

{∣ψ(0)n,1⟩ , ∣ψ
(0)
n,2⟩} (1.80)

which are orthogonal to one another. It is well nigh possible that one choose
another basis which is still orthonormal. For example I can create an equal super-
position of states,

∣ψ(0)n,+⟩ = 1√
2
(∣ψ(0)n,1⟩ + ∣ψ(0)n,2⟩), and (1.81)

∣ψ(0)n,−⟩ = 1√
2
(∣ψ(0)n,1⟩ − ∣ψ(0)n,2⟩) (1.82)

which forms another legitimate choice for the basis set for the unperturbed degen-
erate subspace. The conundrum therefore is: which of the eigenstates do I choose
as my unperturbed eigenbasis. Technically I can choose from a large variety of
orthonormal basis but I need to choose one. The first order correction to the
eigenstate is Eq.(1.16)

∣ψn⟩ ≅ ∣ψ(0)n ⟩ + λ ∣ψ(1)n ⟩ , (1.83)

in the nondegenerate perturbation theory. The correction will of course depend
on what you start off with. For the degenerate I will write the corresponding
corrected eigenstate to first order

∣ψn⟩ =
N

∑
i=1
Ci ∣ψ(0)n,i ⟩ + λ ∣ψ(1)n ⟩ , (1.84)

where the first term is the sum over the i unperturbed degenerate eigenstates, with
some unknown coefficients Ci and the second term is the first order correction
weighted with some λ real. I am suppressing the i in first order correction of
eigenstate to make life a bit easier. I take the overlap of the corrected eigenstate
with anyone of the basis states exclusively, in the unperturbed degenerate subspace,

⟨ψ(0)n,j ∣ψn⟩ =
N

∑
i=1
Ci ⟨ψ(0)n,j ∣ψ

(0)
n,i ⟩ + λ ⟨ψ(0)n,j ∣ψ

(1)
n ⟩ , (1.85)

where j ∈ [1,2 . . .N] is an index in the degenerate subspace. The Schrodinger
equation in the degenerate subspace becomes

(Ĥ0+λĤp)(
N

∑
i=1
Ci ∣ψ(0)n,i ⟩+λ ∣ψ(1)n ⟩) = (E(0)n +λE(1)n )(

N

∑
i=1
Ci ∣ψ(0)n,i ⟩+λ ∣ψ(1)n ⟩). (1.86)
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Let’s first collect the terms up to zeroth order in λ,

Ĥ0

N

∑
i=1
Ci ∣ψ(0)n,i ⟩ = E

(0)
n

N

∑
i=1
Ci ∣ψ(0)n,i ⟩ (1.87)

that would just be unperturbed time independent Schrodinger equation which
in plain words, mean that Ĥo acting on some combination of degenerate basis

vectors equals the unperturbed energy and the same state. Clearly ∑Ni=1Ci ∣ψ
(0)
n,i ⟩

is an eigenstate of Ĥo but we don’t know the Ci’s at the moment unless of course
we diagonalize Ĥo.

For the first order correction, we extract from Eq.(1.86),

Ĥ0 ∣ψ(1)n ⟩ + Ĥp
N

∑
i=1
Ci ∣ψ(0)n,i ⟩ = E

(0)
n ∣ψ(1)n ⟩ +E(1)n

N

∑
i=1
Ci ∣ψ(0)n,i ⟩ . (1.88)

Note that while in the nondegenerate case there was no need for summation ∑Ci
because i was just a single index. In the degenerate case, the degenerate subspace
has dimensionality N . Let’s project Eq.(1.88) on to an eigenstate of the degenerate

unperturbed Hamiltonian ∣ψ(0)n,j ⟩, with some j. The i can be moved around allowing

Ci to be pulled out, finally giving the equation,

⟨ψ(0)n,j ∣ Ĥ0 ∣ψ(1)n ⟩ +
N

∑
i=1
Ci ⟨ψ(0)n,j ∣ Ĥp ∣ψ

(0)
n,i ⟩ = E

(0)
n ⟨ψ(0)n,j ∣ψ

(1)
n ⟩ +E(1)n

N

∑
i=1
Ci ⟨ψ(0)n,j ∣ψ

(0)
n,i ⟩ .

(1.89)
Since Ĥ0 is a hermitian operator, it can act from the left on an eigenstate giv-
ing back the eigenvalue E

(0)
n and the state. That’s the first term above. Using

similar argument that predicate that the first order correction must be in a space
that is orthonormal to the unperturbed states, leads to the following fortuitous
cancellations,

���
���

��
E
(0)
n ⟨ψ(0)n,j ∣ψ

(1)
n ⟩ +

N

∑
i=1
Ci ⟨ψ(0)n,j ∣ Ĥp ∣ψ

(0)
n,i ⟩ =����

��
��

E
(0)
n ⟨ψ(0)n,j ∣ψ

(1)
n ⟩ +

N

∑
i=1
CiE

(1)
n ⟨ψ(0)n,j ∣ψ

(0)
n,i ⟩

(1.90)
and we are left with the statement

N

∑
i=1
Ci ⟨ψ(0)n,j ∣ Ĥp ∣ψ

(0)
n,i ⟩ =

N

∑
i=1
CiE

(1)
n ⟨ψ(0)n,j ∣ψ

(0)
n,i ⟩ . (1.91)

Since the inner product ⟨ψ(0)n,j ∣ψ
(0)
n,i ⟩ is of unperturbed eigenstates in the degenerate

subspace, the product will be the Kronecker delta

N

∑
i=1
Ci ⟨ψ(0)n,j ∣ Ĥp ∣ψ

(0)
n,i ⟩ = E

(1)
n

N

∑
i=1
Ciδi,j. (1.92)
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On the L.H.S, the perturbative Hamiltonian is sandwiched between two basis states
inside the degenerate subspace, indexed by i and j. This is really a scalar matrix

element, often denoted by ⟨ψ(0)n,j ∣ Ĥp ∣ψ
(0)
n,i ⟩, which can also be written in shorthand

way as (Ĥp)j,i, indicating which element located in the jth row and ith column of
the matrix representation in the original choice of the unperturbed eigenbasis. We
express eq.(1.92) as the matrix equation

N

∑
i=1

(Ĥp)j,iCi = E(1)n
N

∑
i=1
Ciδi,j, (1.93)

which primarily shows the j’th row in the matrix Ĥp being multiplied with a

column vector comprising all the C ′s. The size of (Ĥp)j,i is N ×N . From our basic
understanding of the quantum algebraic functions when we write this matrix, we
are essentially talking about two things: a choice of basis and a particular ordering
in which we choose to write the basis. The matrix can be written as

Ĥp =

⟨1∣
⟨2∣
⟨3∣
⋮

⟨N ∣

∣1⟩ ∣2⟩ ∣3⟩ . . . ∣N⟩
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⟨1∣ Ĥp ∣1⟩ ⟨1∣ Ĥp ∣2⟩ ⟨1∣ Ĥp ∣3⟩ . . . ⟨1∣ Ĥp ∣N⟩
⟨2∣ Ĥp ∣1⟩ ⟨2∣ Ĥp ∣2⟩ ⟨2∣ Ĥp ∣3⟩ . . . ⟨2∣ Ĥp ∣N⟩
⟨3∣ Ĥp ∣1⟩ ⟨3∣ Ĥp ∣2⟩ ⟨3∣ Ĥp ∣3⟩ . . . ⟨3∣ Ĥp ∣N⟩

⋮ ⋮ ⋮ ⋱ ⋮
⟨N ∣ Ĥp ∣1⟩ ⟨N ∣ Ĥp ∣2⟩ ⟨N ∣ Ĥp ∣3⟩ . . . ⟨N ∣ Ĥp ∣N⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

If you like to remember which order to use, write these small bras and kets next
to the rows and columns respectively Here the states {∣1⟩ , ∣2⟩ , . . . ∣N⟩} are the
unperturbed eigenstates in the degenerate subspace and are expressed in the usual
fashion,

∣1⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∣2⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

1

0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, . . . , ∣N⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Moreover, we can represent the C ′
is as a column vector,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

C2

C3

⋮
CN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1.94)

Therefore expressing Eq.(1.93) in matrix form, we obtain the amenable form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⟨1∣ Ĥp ∣1⟩ . . . ⟨1∣ Ĥp ∣i⟩ . . . ⟨1∣ Ĥp ∣N⟩
⋮ ⋱ ⋮ ⋱ ⋮

⟨j∣ Ĥp ∣1⟩ . . . ⟨j∣ Ĥp ∣i⟩ . . . ⟨j∣ Ĥp ∣N⟩
⋮ ⋱ ⋮ ⋱ ⋮

⟨N ∣ Ĥp ∣1⟩ . . . ⟨N ∣ Ĥp ∣i⟩ . . . ⟨N ∣ Ĥp ∣N⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

⋮
Ci

⋮
CN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= E(1)n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1

⋮
Ci

⋮
CN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1.95)

allowing us to find the eigenvalue E
(1)
n and the vector C which is the set of co-

efficients that are required to completely settle the superposition needed for de-
termining the first order correction. This converts the problem of finding energy
corrections to a problem in diagonalizing Ĥp in the degenerate subspace. This is
kind of cute! You want to find perturbation to the energy, you don’t know which
energy eigenstate you want to find perturbation to. As you solve the problem,
find the perturbation to the energy and automatically obtain corrected eigenstates
which are linear superposition of the unperturbed eigenstates:

∣ψ(0)n ⟩ =∑
i

Ci ∣ψ(0)n,i ⟩ . (1.96)

This rather circuitous argument is clarified through some applications, as is always
the case in the subject of quantum mechanics.

1.6 Some applications of time independent degenerate per-

turbation

1.6.1 Single ion anisotropy

In many magnetic system such as molecular magnets which is rendered magnetic
by the presence of a suitable transition metal ion, the background Hamiltonian is
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ms E
(0)
n ∣ψ(0)n ⟩

1 D ∣1,1⟩
0 0 ∣1,0⟩
−1 D ∣1,−1⟩

Table 1.1: Eigenstates and eigenenergies of unperturbed Hamiltonian for the ap-
plication 1.6.1.

of the form

Ĥo =D
Ŝ2
z

h̵2
, (1.97)

where D is some scalar constant. Consider a spin s = 1 which has this Hamiltonian
has three eigenstates

∣1,1⟩ , ∣1,0⟩ , ∣1,−1⟩ , (1.98)

and has respectively, the eigenvalues

{D,0,D} . (1.99)

where the states are written in the usual notation ∣s,ms⟩. Two eigenvalues of
Ĥo the first and the third, are just the same so they form a degenerate subspace
spanned by ∣1,1⟩ and ∣1,−1⟩. In the absence of perturbation there are two states
with the same energy D and one state with lower energy 0. See Table 1.6.1 the
unperturbed Hamiltonian in matrix form is,

Ĥo =D
Ŝ2
z

h̵2
=
⎛
⎜⎜⎜⎜
⎝

D 0 0

0 0 0

0 0 D

⎞
⎟⎟⎟⎟
⎠
, (1.100)

which being expressed in its eigenbasis is clearly diagonal. Now suppose that a
perturbation is switched on, that is smaller than Ĥo,

Ĥp = C(
Ŝ2
x − Ŝ2

y

h̵2
), (1.101)

under the constraint that C ≪D. This is a useful problem because it treats both
degenerate and nondegenerate systems in one go. We intend to find the correction
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to unperturbed energies and we also need to determine which combination of
unperturbed states to use, for which we are calculating the perturbed energies.
We need to write the perturbed Hamiltonian in a particular basis. We choose the
unperturbed set of states given in Eq.(1.98). This results in,

Ĥp =
C

h̵2
×

⟨1,1∣
⟨1,0∣
⟨1,−1∣

∣1,1⟩ ∣1,0⟩ ∣1,−1⟩
⎛
⎜⎜⎜⎜
⎝

⟨1,1∣ (Ŝ2
x − Ŝ2

y) ∣1,1⟩ ⟨1,1∣ (Ŝ2
x − Ŝ2

y) ∣1,0⟩ ⟨1,1∣ (Ŝ2
x − Ŝ2

y) ∣1,−1⟩
⟨1,0∣ (Ŝ2

x − Ŝ2
y) ∣1,1⟩ ⟨1,0∣ (Ŝ2

x − Ŝ2
y) ∣1,0⟩ ⟨1,0∣ (Ŝ2

x − Ŝ2
y) ∣1,−1⟩

⟨1,−1∣ (Ŝ2
x − Ŝ2

y) ∣1,1⟩ ⟨1,−1∣ (Ŝ2
x − Ŝ2

y) ∣1,0⟩ ⟨1,−1∣ (Ŝ2
x − Ŝ2

y) ∣1,−1⟩

⎞
⎟⎟⎟⎟
⎠

;

(1.102)

where for your convenience, we have demarcated the rows and column with prop-
erly ordered bras and kets. Given the prescription in the (Chapter on Angular
momentum) we know that in the eigenbasis (1.98) of Ŝz, the operators Ŝx and Ŝy
for the s = 1 system are,

Ŝx =
h̵√
2

⎛
⎜⎜⎜⎜
⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎟⎟⎟
⎠

Ŝy =
h̵√
2

⎛
⎜⎜⎜⎜
⎝

0 −i 0

i 0 −i
0 i 0

⎞
⎟⎟⎟⎟
⎠

(1.103)

which results in the perturbative Hamiltonian

Ĥp =
C

h̵2
(Ŝ2

x − Ŝ2
y) = C

⎛
⎜⎜⎜⎜
⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎟⎟
⎠
. (1.104)

Is Ĥp diagonal in the basis of Ĥo? No, it’s not. Therefore when you switch on the
perturbation the eigenstates in Eq.(1.98) are no longer eigenstates of the unper-
turbed Hamiltonian. To consider the perturbed energy, we need to diagonalize the
matrix. In fact, the perturbative Hamiltonian matrix, Eq.(1.104), can be broken
down into two parts. One is the nondegenerate part comprising just the middle
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element ⟨1,0∣ Ĥp ∣1,0⟩ = 0,

Ĥp =
⟨1,1∣
⟨1,0∣
⟨1,−1∣

∣1,1⟩ ∣1,0⟩ ∣1,−1⟩
⎛
⎜⎜⎜⎜
⎝

0 0 C

0 0 0

C 0 0

⎞
⎟⎟⎟⎟
⎠

. (1.105)

with ∣1,0⟩ being the approximate eigenstate. Second, we isolate out the colored
elements shown on diagonal edges of the matrix

Ĥp =
⟨1,1∣
⟨1,0∣
⟨1,−1∣

∣1,1⟩ ∣1,0⟩ ∣1,−1⟩
⎛
⎜⎜⎜⎜
⎝

0 0 C

0 0 0

C 0 0

⎞
⎟⎟⎟⎟
⎠

(1.106)

yielding the degenerate block matrix

⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

(1.107)

which is the Pauli σx matrix whose eigenstates are

∣+⟩ = 1√
2
(∣1,1⟩ + ∣1,−1⟩) (1.108)

∣−⟩ = 1√
2
(∣1,1⟩ − ∣1,−1⟩) (1.109)

with eigenvalues ±D. This would result in the perturbed eigenenergies C +D and
C −D for ∣+⟩ and ∣−⟩ and merely 0 for ∣1,0⟩. The fanning of energies is shown in
Figure 1.5, plotted as the strength of the perturbation C is increased. Note that
the energy of ∣1,0⟩ state remains constant even in the presence of perturbation.

1.6.2 A coupled 2D harmonic oscillator

For the two dimensional uncoupled harmonic oscillator the Hamiltonian is

Ĥo =
p̂2x
2m

+ 1

2
mω2x̂2 +

p̂2y
2m

+ 1

2
mω2ŷ2 (1.110)
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0

D

C

D C+

D C-

0

(a) (b)

n
E

Figure 1.5: (a) Two degenerate eigenvalues D and nondegenerate eigenvalue 0. (b)
Perturbation C lifts degeneracy giving eigenvalues D + C and D − C. Increasing
the perturbation C causes further fanning of degenerate energies. However C ≪D
for degenerate theory to work.

The energy eigenstates are ∣nxny⟩ where nx is the quantum number energy level
along x and ny is the quantum number for energy level along y, where nx, ny ∈
{0,1,2, . . .}. When nx = 0 and ny = 0 the energy eigenvalue is

E
(0)
0,0 = h̵ω

2
+ h̵ω

2
= h̵ω (1.111)

n the eigenstate ∣nx = 0, ny = 0⟩ is nondegenerate. As nx, ny increase the degeneracy
increases, for example the eigenvalues

E
(0)
1,0 = E

(0)
0,1 = 2h̵ω; being 2-fold degenerate (1.112)

E
(0)
1,1 = E

(0)
2,0 = E(0)0,2 = 3h̵ω; being 3 fold degenerate (1.113)

In general, when nx = n and ny =m, the eigenvalue is

E
(0)
n,m = (n + 1

2
)h̵ω + (m + 1

2
)h̵ω = (n +m + 1)h̵ω. (1.114)

The gist of the problem is the addition of coupling between the two directions.
This adds the perturbation

Ĥp = Cx̂ŷ. (1.115)

and we seek to find the correction to energies Eq.(1.114) and the energy eigenstates
∣nx, ny⟩. Starting for the ground state, which is nondegenerate we need to evaluate
the matrix element

E
(1)
0,0 = ⟨0,0∣ Ĥp ∣0,0⟩ = C ⟨0,0∣ x̂ŷ ∣0,0⟩ . (1.116)
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For the unperturbed harmonic oscillator, the eigenfunctions are Hermite polyno-
mials,

⟨x∣0⟩ = (mω
πh̵

)
1/4

e−
mωx2

2h̵ (1.117)

⟨x∣1⟩ = ( 4

π
(mω
h̵

)
3

)
1/4

xe−
mωx2

2h̵ , etc. (1.118)

In two dimensions we can write the ground state as

⟨x∣0⟩⊗ ⟨y∣0⟩ = (mω
πh̵

)
1/2

e−
mω(x2+y2)

2h̵ (1.119)

Let’s first find the first order energy correction thus

E
(1)
0,0 = C ∫ ∫ ∫ ∫ dx′dx′′dy′dy′′

⟨0∣x′′⟩ ⟨0∣y′′⟩ ⟨x′′∣ ⟨y′′∣ (x̂ŷ) ∣x′⟩ ∣y′⟩ ⟨x′∣0⟩ ⟨y′∣0⟩
(1.120)

Inserting Eq.(1.119) in Eq.(1.120)

E
(1)
0,0 = C ∫ ∫ ∫ ∫ dx′dx′′dy′dy′′

(mω
πh̵

)
1/2

e−
mω(x′′2+y′′2)

2h̵ ⟨x′′∣x′⟩ ⟨y′′∣y′⟩x′y′(mω
πh̵

)
1/2

e−
mω(x′2+y′2)

2h̵

(1.121)

Due to the orthonormality of position states we get

E
(1)
0,0 = ∫ ∫ dx′dy′ C(mω

πh̵
)(x′y′)e−

mω(x′2+y′2)
h̵ (1.122)

= C(mω
πh̵

)(∫ dx′x′e−
mωx′2

h̵ )(∫ dy′y′e−
mωy′2

h̵ ) = 0, (1.123)

Therefore we find the first order correction for the ground state energy is zero.
For first degenerate state which is 2-fold degenerate we need to find four matrix

elements

Ĥp = C × ⟨1,0∣
⟨0,1∣

∣1,0⟩ ∣0,1⟩
⎛
⎜
⎝

⟨1,0∣ x̂ŷ ∣1,0⟩ ⟨1,0∣ x̂ŷ ∣0,1⟩
⟨0,1∣ x̂ŷ ∣1,0⟩ ⟨0,1∣ x̂ŷ ∣0,1⟩

⎞
⎟
⎠

(1.124)



28 CHAPTER 1. TIME INDEPENDENT PERTURBATION THEORY

The matrix elements can be calculated using the concept that integral of odd
function over all of space is zero

⟨1,0∣ x̂ŷ ∣1,0⟩ = C A ∫ ∫ dx dy (x y) x2 e−mωx′2

h̵ e−
mωy′2

h̵ = 0 (1.125)

⟨1,0∣ x̂ŷ ∣0,1⟩ = C B ∫ ∫ dx dy (x y) x y e−mωx′2

h̵ e−
mωy′2

h̵ (1.126)

⟨0,1∣ x̂ŷ ∣1,0⟩ = C B ∫ ∫ dx dy (x y) xy e−mωx′2

h̵ e−
mωy′2

h̵ (1.127)

⟨0,1∣ x̂ŷ ∣0,1⟩ = C A∫ ∫ dx dy (x y) y2 e−mωx′2

h̵ e−
mωy′2

h̵ = 0, (1.128)

where A and B are some constants. Here, we do not bother about the constant
A in the first and last integrals that computes to zero anyway. The elements
Eqs.(1.126) and (1.127) are identical. We now show the explicit calculation for
Eq.(1.126), which automatically yields an expression for B as well,

⟨1,0∣ x̂ŷ ∣0,1⟩
= C ∫ ∫ ∫ ∫ dx′ dx′′ dy′ dy′′ ⟨1∣x′′⟩ ⟨0∣y′′⟩ ⟨x′′∣ ⟨y′′∣ x̂ŷ ∣x′⟩ ∣y′⟩ ⟨x′∣0⟩ ⟨y′∣1⟩

= C ∫ ∫ ∫ ∫ dx′ dx′′ dy′ dy′′ (x′ y′) ⟨x′′∣x′⟩ ⟨y′′∣y′⟩

( 4

π
(mω
h̵

)
3

)
1/2

(x′′ y′′) e−mωx′′2

2h̵ e−
mωy′2

2h̵ (mω
πh̵

)
1/2

e−
mωy′′2

2h̵ e−
mωx′2

2h̵

= C( 2

π
)(mω

h̵
)
2

∫ ∫ dx dy (x2 y2) e−mωx2

h̵ e−
mωy2

h̵

= C( 2

π
)(mω

h̵
)
2

(∫ dx x2 e−
mωx2

h̵ )(∫ dy y2 e−
mωy2

h̵ ).

Finally using the standard integral,

∫
∞

−∞
dx x2 e−ax

2 = 1

2a

√
π

a
, (1.129)

we obtain

⟨1,0∣ x̂ŷ ∣0,1⟩ = C h̵

2mω
(1.130)

Repeating this process for (1.127), we obtain an identical value resulting in

Ĥp = C
h̵

2mω

⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

(1.131)
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which gprovides an energy shift of

2h̵ω ±C h̵

2mω
(1.132)

for the eigenstates
∣0,1⟩ ± ∣1,0⟩√

2
, (1.133)

yielding the energies for the coupled 2D harmonic oscillator.


