Problem 1

(Zettili Q.7.6) Consider the wave function of a particle

$$\Psi(r,\theta,\phi) = (\sqrt{2x} + \sqrt{2y} + z)f(r),$$

where f(r) is a spherically symmetric function.

- (a) Is $\Psi(r, \theta, \phi)$ an eigenfunction of L^2 ? If so, what is the eigenvalue?
- (b) What are the probabilities for the particle to be found in the states $m_l = -1$, $m_l = 0$, and $m_l = 1$?
- (c) If $\Psi(r, \theta, \phi)$ is an energy eigenfunction with eigenvalue E and if $f(r) = 3r^2$, find the expression of the potential V(r) to which this particle is subjected.

Problem 2

Suppose a half-integer *l*-value, say $\frac{1}{2}$, were allowed for orbital angular momentum. From

$$\hat{\mathbf{L}}_{+}Y_{1/2,1/2}(\theta,\phi) = 0,$$

we may deduce, as usual,

$$Y_{1/2,1/2}(\theta,\phi) \propto e^{i\phi/2} \sqrt{\sin\theta}.$$

Now try to construct $Y_{1/2,-1/2}(\theta,\phi)$ by (a) applying L_- to $Y_{1/2,1/2}(\theta,\phi)$; and (b) using $L_-Y_{1/2,-1/2}(\theta,\phi) = 0$. Show that the two procedures lead to contradictory results. (This gives an argument against half-integer *l*-values for orbital angular momentum.)

Problem 3

A D_2 molecule at 30 K, at t = 0, is known to be in the state

$$\psi(\theta,\phi,0) = \frac{3Y_1^1 + 4Y_7^3 + Y_7^1}{\sqrt{26}}.$$

- (a) What values of L and L_z will measurement find and with what probabilities will these values occur?
- (b) What is $\psi(\theta, \phi, t)$?
- (c) What is $\langle E \rangle$ for the molecule (in eV) at t > 0? (*Note:* For the purely rotational states of D_2 , assume that $\hbar/4\pi I_c = 30.4 \text{ cm}^{-1}$.)

Problem 4

A particle of spin $\frac{1}{2}$ is in a *d*-state of orbital angular momentum (i.e., l = 2).

- (a) Work out the coupling of the spin and orbital angular momenta of this particle, and find all the states and the corresponding Clebsch–Gordan coefficients.
- (b) If its Hamiltonian is given by

$$H = a + b\hat{L}\cdot\hat{S} + c\hat{L}^2,$$

where a, b, and c are numbers, find the values of the energy for each of the different states of total angular momentum. Express your answer in terms of a, b, and c.

Problem 5

(Shankar Q.12.5.3)

- (a) Show that $\langle J_x \rangle = \langle J_y \rangle = 0$ in a state $|j, m\rangle$.
- (b) Show that in these states:

$$\langle J_x^2 \rangle = \langle J_y^2 \rangle = \frac{1}{2}\hbar^2 [j(j+1) - m^2].$$

(Use symmetry arguments to relate $\langle J_x^2 \rangle$ to $\langle J_y^2 \rangle$.)

- (c) Check that $\Delta J_x \cdot \Delta J_y$ from part (b) satisfies the inequality imposed by the uncertainty principle.
- (d) Show that the uncertainty bound is saturated in the state $|j, \pm j\rangle$.

Problem 6

Consider a system of two particles. Particle 1 has spin $s_1 = \frac{1}{2}$ and particle 2 has spin $s_2 = \frac{1}{2}$. The total spin of the system is given by

$$S = S_1 + S_2.$$

- (a) List all the possible uncoupled basis states $|s_1, s_2, m_1, m_2\rangle$.
- (b) Identify the stretched state $|s_1, s_2, m_1, m_2\rangle$.
- (c) Starting with the stretched state, generate all the coupled basis states $|S, M\rangle$ using the lowering operator and the orthogonality condition.
- (d) From the results in (c), construct the Clebsch-Gordan table for this system.