Homework 4

Problem 1

Let \mathbf{J}_1 and \mathbf{J}_2 be the respective angular momenta of the individual components of a twocomponent system. The total system has angular momentum $\mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2$. Show that:

- (a) $\mathbf{J}_1 \cdot \mathbf{J}_2 = \frac{1}{2}(J_{1+}J_{2-} + J_{1-}J_{2+}) + J_{1z}J_{2z}$
- **(b)** $J^2 = J_1^2 + J_2^2 + 2J_{1z}J_{2z} + (J_{1+}J_{2-} + J_{1-}J_{2+})$

Problem 2

Consider the case where $j = \frac{3}{2}$.

- (a) Find the matrices representing the operators \hat{J}^2 , \hat{J}_z , \hat{J}_{\pm} , \hat{J}_x and \hat{J}_y . Mention the basis which is used for representation.
- (b) Find the joint eigenstates of \hat{J}^2 and \hat{J}_z , and verify that they form an orthonormal and complete basis.
- (c) Use the matrices of \hat{J}_x, \hat{J}_y and \hat{J}_z to calculate $[\hat{J}_x, \hat{J}_y], [\hat{J}_y, \hat{J}_z]$, and $[\hat{J}_z, \hat{J}_x]$.
- (d) If the Hamiltonian for a spin- $\frac{3}{2}$ particle is given by

$$\hat{H} = \omega_0 \hat{S}_z$$

and at time t = 0, $|\psi(0)\rangle = |3/2, 3/2\rangle$, determine the probability that the particle is in the state $|3/2, -3/2\rangle$ at time t. Evaluate this probability when $t = \pi/\omega_0$ and explain your result.

Problem 3

Consider a particle of total angular momentum j = 1. Find the matrix for the component of \hat{J} along a unit vector with arbitrary direction \hat{n} . Find its eigenvalues and eigenvectors.

Problem 4

Consider the operator

$$\hat{A} = \frac{1}{2}(\hat{J}_x\hat{J}_y + \hat{J}_y\hat{J}_x)$$

Calculate the expectation value of \hat{A} and \hat{A}^2 with respect to the state $|j,m\rangle$.

Problem 5

Consider a system of total angular momentum j = 1. We are interested here in the measurement of \hat{J}_y . Its matrix in the simultaneous eigenbasis of \hat{J}^2 and \hat{J}_z is given by

$$\hat{J}_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}$$

- (a) What are the possible values we will obtain when measuring \hat{J}_y ?
- (b) Calculate $\langle \hat{J}_z \rangle$, $\langle \hat{J}_z^2 \rangle$, and ΔJ_z if the system is in the state $j_y = \hbar$.

Problem 6

A spin-1 particle with a magnetic moment $\boldsymbol{\mu} = (gq/2m)\mathbf{S}$ is situated in a magnetic field $\mathbf{B} = B_0 \hat{k}$ in the z-direction. At time t = 0, the particle is in the state

$$|1,1\rangle_y = \frac{1}{2}|1,1\rangle + i\frac{\sqrt{2}}{2}|1,0\rangle - \frac{1}{2}|1,-1\rangle$$

with $S_y = \hbar$. Here, the unsubscripted kets represent eigenstates of \hat{S}^2 and \hat{S}_z . Determine the state of the particle at time t. Calculate how the expectation values $\langle S_y \rangle$ and $\langle S_z \rangle$ vary in time.

Problem 7

Find the matrix representations of S_x, S_y, S_z and S_n for spin 1/2 system.

Problem 8

Consider a spin- $\frac{1}{2}$ particle with a magnetic moment.

- (a) At time t = 0, the observable S_x is measured, with the result $\frac{\hbar}{2}$. What is the state vector $|\psi(t=0)\rangle$ immediately after the measurement?
- (b) Immediately after the measurement, a magnetic field $\mathbf{B} = B_0 \hat{\mathbf{z}} (H = \omega_0 S_z)$ is applied and the particle is allowed to evolve for a time T. What is the state of the system at time t = T?
- (c) At t = T, the magnetic field is very rapidly changed to $\mathbf{B} = B_0 \hat{\mathbf{y}} (H = \omega_0 S_y)$. After another time interval T, a measurement of S_x is carried out once more. What is the probability that a value $\frac{\hbar}{2}$ is found?

Problem 9

A proton is placed in a uniform magnetic field pointing in the z-direction:

 $\vec{B} = B\hat{z}$

- (a) What is the precession of the spin if the initial spin state lies in the x-y plane, at an angle ϕ with respect to the x-axis? Find the time-evolved state $\Psi(t)$, Draw the time evolution of the state on the Bloch sphere for different values of ϕ .
- (b) What are the time-dependent expectation values of the spin components $\langle S_x(t) \rangle$, $\langle S_y(t) \rangle$, and $\langle S_z(t) \rangle$?

Problem 10

Find the Fourier Transform of the following function, defined for t > 0, and plot its magnitude. Show that the result is a Lorentzian function.

$$f(t) = e^{i\omega_0 t - \frac{t}{T}}, \quad t > 0$$

Problem 11

Show that if $[\hat{A}, \hat{B}] = i\hat{C}$, the following sandwich theorem holds:

$$e^{-i\theta\hat{C}}\hat{A}e^{i\theta\hat{C}} = \cos\theta\,\hat{A} + \sin\theta\,\hat{B}$$

and that this helps explain the result $e^{-\frac{i\theta\hat{S}_z}{\hbar}}\hat{S}_x e^{\frac{i\theta\hat{S}_z}{\hbar}} = \hat{S}_x cos\theta + \hat{S}_y sin\theta$.

Problem 12

Starting from $|\alpha\rangle$ we desire to take the quantum state of the spin-1/2 particle through the following sequence

$$|\widetilde{\alpha}\rangle \to |\widetilde{x}\rangle \to |\widetilde{y}\rangle \to |-\widetilde{y}\rangle \to |\widetilde{x}\rangle.$$

Here the kets with tildes are states in the rotating frame. Draw a timing sequence of magnetic fields and phases that need to be applied to achieve this choreography of the spin vector. Specialists call this sequence a *spin echo*.

Homework 4

Problem 13

A magnetic field is pointing in the z-direction corresponding to a Hamiltonian $\omega_0 \hat{S}_z$. A spin-1 particle is placed inside the field. Its initial state, written in the eigenbasis of \hat{S}_z , is:

$$|\psi\rangle = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \end{pmatrix}$$

Given:

$$\hat{S}_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \quad \hat{S}_y = \frac{\hbar}{\sqrt{2}i} \begin{pmatrix} 0 & 1 & 0\\ -1 & 0 & 1\\ 0 & -1 & 0 \end{pmatrix}$$

- (a) What is the state after a time t? Don't forget to mention your basis if you write a matrix representation.
- (b) After time t, the component \hat{S}_x is measured. What is the probability of obtaining zero as the measurement outcome?

Problem 14

The Hamiltonian of a three-level system is

$$\begin{pmatrix} E_0 & 0 & A \\ 0 & E_0 & 0 \\ A & 0 & E_0 \end{pmatrix}$$

when written in the $\{|1\rangle, |2\rangle, |3\rangle\}$ basis in the same order. If the system is in the state $|3\rangle$ at time t = 0, how long will it take to convert to $|1\rangle$? $|2\rangle$?