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The hydrogen atom is a three-dimensional system so crucial to our understanding
of physical reality, that it deserves a special place in all annals of quantum mechanics.
First, it’s simple. It’s just an electron bound by the pull of a proton. Second,
other atoms and molecules can be build upwards from the lessons taught by
hydrogen. Atomic and molecular physics thus start with an understanding of
hydrogen. Third, one can begin to decipher the intricacies of spectroscopy by
mastering the quantum structure of hydrogen.

The time independent Schrodinger equation is defined by the Hamiltonian Ĥ
acting on an eigenstate ∣ψ⟩n yielding an eigenvalue En,

Ĥ ∣ψn⟩ = En ∣ψn⟩ . (1.1)

Solving the Schrodinger equation means finding the eigenenergies and eigenstates.
That’s what we set to do for the hydrogen atom. In Cartesian space, it is useful
to describe a quantum state in either the position or the momentum basis, for
example by expressing the eigenstate in position basis,

⟨r⃗∣ψn⟩ = ψn(r⃗). (1.2)

yields the wavefunction where it is also customary to express the position vector
in terms of polar coordinates

∣r⃗⟩ ≜ ∣r, θ, φ⟩ . (1.3)

Don’t forget that the full Schrodinger equation is

ih̵
d

dt
∣ψ(t)⟩ = Ĥ ∣ψ(t)⟩ , (1.4)
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and includes a time dependent part too. We will deal with time dependence as
well.

The hydrogen atom as we all know has a proton with charge +e and an electron
with charge −e separated by distance r⃗. But truly so, in the quantum mechanical
world it is uncalled for to think of the electron as a particle located at some
position, since the electron is best described by a wavefunction that is spread
everywhere in space. The most one can do is to write the quantum state for the
electron, perhaps write a wavefunction and it is only the modulus square of the
wavefunction that provides probability densities informing the inquirer where the
electron can probably be found when an attempt to is made to find where it is!
So let’s stop thinking of the location of the electron, rather consider where we can
catch it to be, during a particular measurement run.

If an electron sees a proton, as it does in the hydrogen atom, what kind of
eigenstates does it possess and what are the corresponding eigenenergies? The
eigenenergies have a “normalness” to the hydrogen atom. The analogy is quite
straightforward. When a mass m is attached to a spring with spring constant k it
has a normal mode with a normal or natural frequency ωo =

√
k/m which provides

a measure of the natural energy. It is exactly in this sense that the hydrogen atom
has some natural energies. The eigenstates associated with these natural energies
will be stationary states. Let’s for now call these stationary states “orbits”. An
electron in orbit remains there, neither absorbing nor emitting energy; unless some
disturbance to the Hamiltonian takes place.

However if the electron is in a superposition of orbits, say

∣ψ⟩ = a ∣ψ1⟩ + b ∣ψ2⟩ (1.5)

then ∣ψ⟩ will in general not be a stationary state, except when ∣ψ1⟩ and ∣ψ2⟩ are
degenerate with identical eigenvalues. Suppose ∣ψ1⟩ and ∣ψ2⟩ have eigenenergies λ1

and λ2, i.e

Ĥ ∣ψ1⟩ = λ1 ∣ψ1⟩ , and (1.6)

Ĥ ∣ψ2⟩ = λ2 ∣ψ2⟩ (1.7)

allowing us to write the action of the Hamiltonian, on Eq. (1.5)

Ĥ ∣ψ⟩ = Ĥ(a ∣ψ1⟩ + b ∣ψ2⟩) (1.8)

= aλ1 ∣ψ1⟩ + bλ2 ∣ψ2⟩ (1.9)

≠ c(a ∣ψ1⟩ + b ∣ψ2⟩) (1.10)

indicating that the superposition of eigenstates will be an eigenstate only when
we can write Eq. (1.9) as Eq. (1.10) which happens only when λ1 = λ2 = c. A
superposition of orbits, is therefore another orbit only if the component orbits
possess identical energies. In the next section, we begin the process of determining
these orbits. This requires us to solve the Schrodinger equation Eq. (1.1).
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1.1 Solving the Schrodinger equation for the hydrogen atom
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Figure 1.1: (a) Spherical symmetry of the electronic potential inside the hydrogen
atom. The potential energy is uniform on a radius r and on any other radius
r′. (b) Since there is spherical symmetry it is worthwhile using polar coordinates
(r, θ, φ). Point P is at distance r from the origin. When P is projected on the xy
plane the azimuthal angle φ varies from 0 to 2π. The angle θ between the positive
z-axis and P is the angle of colatitude or polar angle and varies from 0 to π.

We begin by proposing the Hamiltonian for the hydrogen atom. First of all,
think about the forces acting on the electron? The Coulombic interaction between
the electron and the proton is the force which causes potential energy,

V (r) = −
e2

4πεor
, (1.11)

where εo is the permittivity of free space and r is the distance from the proton. The
potential energy drops as 1/r. The electron also possesses momentum which has
the three components p̂x, p̂y and p̂z. Therefore we can write the total Hamiltonian
as,

Ĥ =
p̂2

2m
+ V̂ (r⃗) =

p̂2
x + p̂

2
y + p̂

2
z

2m
−

e2

4πεor
(1.12)

where m is the mass of electron. The momentum tells how fast the electron is
moving, while the potential energy tells where the electron can be found with
respect to the nucleus in some measurement, but remember that really we should
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Figure 1.2: Central potential for the hydrogen atom.

rest aside our conventional notation of a “moving” electron or an electron that is
“located somewhere”. The potential term does not depend on the precise location
on a sphere of fixed radius r, therefore points P , Q and S in Figure 1.1 (a)
have the same potential energy. However if we take another sphere with radius
r′ concentric to sphere of radius r, the potential energy does change across the
spheres. This means the potential energy is spherically symmetric independent of
angular orientation (θ, φ) and dependent exclusively on radius r.

In these situations, it is useful to employ a coordinate system that respects
this spherical symmetry. Instead of Cartesian coordinates x, y and z, one uses the
polar coordinates r, θ and φ, which are defined in Figure 1.1 (b). The spherically
symmetric potential is called a central potential since the strength of interaction
depends only on the electron-nucleus distance. As shown in Figure 1.2 the energy
gets lower as the electron gets closer to the nucleus. It is natural to ask why doesn’t
the electron fall right into the nucleus, squishing the atom to dimensions of the
nucleus? In fact, the uncertainty principle doesn’t let that happen. If one were to
confine the electron to a small region of space, ∆r, the uncertainty in momentum,
∆p, becomes really large. According to the uncertainty principle,

∆r∆p ≥ h̵ (1.13)

∆p ≥
h̵

∆r
=
h̵

ao
, (1.14)
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where we have chosen the Bohr radius1 ao as a measure of ∆r. Since uncertainty
in momentum is large, the momentum must also be large and at least as big as
the uncertainty in momentum,

pmin ≥ ∆p =
h̵

ao
(1.15)

indicating that the minimum energy must be

Emin =
(∆p)2

2m
≥

h̵2

2ma2
o

≈ 13.6 eV. (1.16)

This puts a lower limit on the energy. This phenomenon can be imagined as an
outward pressure due to the uncertainty principle. A similar effect also manifests
in neutron stars wherein due to the extreme density of the star, the neutrons
are confined to a very small space, which results in a large uncertainty in their
momentum imparting an outward degeneracy pressure that may also result in a
supernova explosion.

We now attempt to write the Hamiltonian in Eq. (1.12) in the position basis,
while being represented in polar coordinates. The momentum in the position basis
is

⟨r⃗∣ p̂x = −ih̵
∂

∂x
; ⟨r⃗∣ p̂y = −ih̵

∂

∂y
; ⟨r⃗∣ p̂z = −ih̵

∂

∂z
. (1.17)

whose square becomes

⟨r∣ p̂2 = −(ih̵)2(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
) = −h̵2∇⃗2, (1.18)

with ∇⃗2 being the Laplacian operator which in itself is a scalar,

∇⃗2 = ∇⃗.∇⃗ = (î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
).(î

∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
) (1.19)

since it is the dot product of the gradient operator ∇⃗ with itself. The time
independent three-dimensional Schrodinger equation therefore becomes

(−
h̵2

2m
∇⃗2 + V (r⃗))ψi(r⃗) = Eiψi(r⃗). (1.20)

The subscript i is introduced to allow for labeling of the various eigenfunctions.
We notice later that these indexes are a quantum number. We write the operator

1The value of ao is 5.29×10−11 m and can be determined by applying methods described later
in this chapter.
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∇⃗2, in term of polar coordinates,

[−
h̵2

2m
{

1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2
}−

e2

4πεor
]ψi(r⃗) = Eiψi(r⃗).

(1.21)
All terms in curly brackets are merely the Laplacian operator in spherical coordinates.
All terms in square brackets acting on ψi(r⃗) produce the energy when they act on
the eigenfunction. For a moment we are going to suppress the index i in ψi(r⃗),
reintroducing it later. Eq. (1.21) is a partial differential equation and we assume
a trial solution,

Ψ(r⃗) = ψ(r, θ, φ) ≜ R(r)Θ(θ)Φ(φ) = RΘΦ (1.22)

which is the product of a function R that depends only on r, a function Θ that
depends only on θ and a function Φ that depends only on φ. Inserting the ansatz
into the Schrodinger equation,

−
h̵2

2m
{

1

r2

∂

∂r
(r2 ∂

∂r
)RΘΦ +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
)RΘΦ +

1

r2 sin2 θ

∂2

∂φ2
RΘΦ}

+ V RΘΦ = ERΘΦ,

(1.23)

and dividing both sides by RΘΦ,

−
h̵2

2m
{

1

Rr2

∂

∂r
(r2∂R

∂r
) +

1

Θr2 sin θ

∂

∂θ
(sin θ

∂Θ

∂θ
) +

1

Φr2 sin2 θ

∂2Φ

∂φ2
} + (V −E) = 0,

(1.24)
followed by multiplying both sides of the equation with 2mr2 sin2 θ/h̵2

−{
sin2 θ

R

∂

∂r
(r2∂R

∂r
)+

sin θ

Θ

∂

∂θ
(sin θ

∂Θ

∂θ
)+

1

Φ

∂2Φ

∂φ2
}+r2 sin2 θ

2m

h̵2
(V −E) = 0 (1.25)

The first term and the fourth term above depend on r and θ, the second term
depends only on θ and the third terms depends only on φ.

1.1.1 Solving the azimuthal part

The azimuthal term −(1/Φ)∂2Φ/∂φ2 is really simple to handle since it is completely
independent of r and θ, and so we tackle it first. We move it to the R.H.S. of
Eq. (1.25) yielding,

sin2 θ

R

∂

∂r
(r2∂R

∂r
) +

sin θ

Θ

∂

∂θ
(sin θ

∂Θ

∂θ
) −

2mr2 sin2 θ

h̵2
(V −E) = −

1

Φ

∂2Φ

∂φ2
. (1.26)
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Since the R.H.S now depends exclusively on φ and the L.H.S. exclusively on
distinct variables, r and θ, each side must be equal to an identical constant, say
C. Therefore

−
1

Φ(φ)

∂2Φ(φ)

∂φ2
= C (1.27)

which upon rearrangement gives the differential equation

d2Φ(φ)

dφ2
+CΦ(φ) = 0

whose solution is proportional to,

Φ(φ) = Aei
√

Cφ +�����
Be−i

√

Cφ, (1.28)

where A and B are normalization constants. Wait a minute as we prove that the
B containing term is not really needed. This is a 3D problem, so it is inconvenient
to normalize each function separately. It suffices to normalize the angular part
Θ(θ)Φ(φ) separately and R separately and multiply these parts together in the
end. Therefore the unnormalized azimuthal part of the wavefunction is

Φ(φ) = ei
√

Cφ, (1.29)

and has the property that if one rotates φ by 2π or multiples thereof, the wave
function does not change,

Φ(φ + 2πn) = ei
√

C(φ+2πn) = ei
√

Cφei
√

C2πn = ei
√

Cφ (1.30)

indicating that ei
√

C2πn must be equal to 1.

ei
√

C2πn = ei2πk = 1, or that

C = (
k

n
)

2

(1.31)

where k and n are integers and since this must hold true for n = 1, we have

C = k2 =m2
l . (1.32)

The variable k is an integer and we have denoted it by ml. Therefore the azimuthal
solution (unnormalized is)

Φ(φ) = eimlφ, ml ∈ Z. (1.33)

We were justified in ignoring theBe−i
√

Cφ term in Eq. (1.28) because it is subsummed
in Eq. (1.33) when ml is a negative integer; so Eq. (1.33) is a sufficient solution
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when ml is allowed to take both positive and negative integer values. We notice
that we constrained the value of ml by evoking the property of uniqueness of the
wave function. The consequence is that ml is an integer 0,±1,±2, . . .. Additional
constraints onml will emerge as we explore further. Ifml changes, the wavefunction
changes, hence we denote the wavefunction as Φml

(φ). The number ml is called
the magnetic quantum number. The index i that we suppressed in ψi(r) is a
combination in fact, of three quantum numbers, not just ml, as we show shortly.
We have now solved the azimuthal part and move onto the polar part.

1.1.2 Solving the polar part

We start by Eq. (1.26), divide both sides by sin2 θ and take all the angular terms
to the R.H.S, leaving us with

1

R

∂

∂r
(r2∂R

∂r
) −

2mr2

h̵2
(V −E) = −

1

Θ sin θ

∂

∂θ
(sin θ

∂Θ

∂θ
) −

1

Φ sin2 θ

∂2Φ

∂φ2
. (1.34)

where from Eqs.(1.27) and (1.33) we also have

1

R

∂

∂r
(r2∂R

∂r
) −

2mr2

h̵2
(V −E) = −

1

Θ sin θ

∂

∂θ
(sin θ

∂Θ

∂θ
) +

m2
l

sin2 θ
. (1.35)

Furthermore, using an argument similar to what preceded Eq. (1.27), each side
of the equation must be equal to a constant that we call l(l + 1). Therefore, we
obtain

1

R

∂

∂r
(r2∂R

∂r
) −

2mr2

h̵2
(V −E) = −

1

Θ sin θ

∂

∂θ
(sin θ

∂Θ

∂θ
) +

m2
l

sin2 θ
= l(l + 1). (1.36)

It will become clear later why we write this constant in this rather unusual form
of a number multiplied by that number +1.

Eq. (1.36) is a differential equation for the polar part. Multiplying Eq. (1.36)
by Θ, and putting a minus sign on both sides gives us an equation for polar part,

1

sin θ

d

dθ
(sin θ

dΘ

dθ
) −

m2
l Θ

sin2 θ
= −l(l + 1)Θ, (1.37)

which is then slightly rearranged to produce

1

sin θ

d

dθ
(sin θ

dΘ

dθ
) + (l(l + 1) −

m2
l

sin2 θ
)Θ = 0. (1.38)

Using the chain rule for differentiation,

cos θ

sin θ

dΘ

dθ
+
d2Θ

dθ2
+ (l(l + 1) −

m2
l

sin2 θ
)Θ = 0. (1.39)
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Multiplying by sin2 θ we obtain

sin θ cos θ
dΘ

dθ
+ sin2 θ

d2Θ

dθ2
+ (l(l + 1) sin2 θ −m2

l )Θ = 0. (1.40)

In order to solve Eq. (1.40), we implement a series of substitutions, the first being
Θ(θ) = P (z) where

z = cos θ (1.41)

which leads to the relations,

sin θ =
√

1 − z2 (1.42)

dz

dθ
= − sin θ (1.43)

d sin θ

dz
= −

z

1 − z2
. (1.44)

These identification will come in handy in subsequent steps. Next, we use the
chain rule to compute,

dΘ

dθ
=

dΘ

dz

dz

dθ
= −

dP

dz
sin θ, yielding (1.45)

dP

dz
= −

1

sin θ

dΘ

dθ
. (1.46)

In the next step, let’s find the second derivative of Θ(θ) with respect to θ expressing
it in terms of P (z) and z,

d2Θ

dθ
=

d

dθ
(
dΘ

dθ
) (1.47)

=
d

dθ
(−
dP

dz
sin θ) (1.48)

=
d

dz
(−
dP

dz
sin θ)

dz

dθ
(1.49)

= sin θ
d

dz
(
dP

dz
sin θ) (1.50)

where we have used Eq. (1.43) in writing the last step above. From this we obtain

d2Θ

dθ
= sin2 θ

d2P

dz2
+ sin θ

dP

dz

d

dz
sin θ, (1.51)

and upon inserting results from Eq. (1.42) and (1.44), we arrive at,

d2Θ

dθ
= (1 − z2)

d2P

dz2
− z

dp

dz
. (1.52)
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From Eqs.(1.41), (1.43) and (1.52) the polar equation Eq. (1.40) has been fully
recast in terms of P and z,

(1 − z2)
2d2P

dz2
− 2(1 − z2)z

dP

dz
+ ((1 − z2)l(l + 1) −m2

l )P = 0, (1.53)

which upon division by (1 − z2) becomes

(1 − z2)
d2P

dz2
− 2z

dP

dz
+ (l(l + 1) −

m2
l

(1 − z2)
)P = 0. (1.54)

This is the historically famous Legendre equation and can be written in the
compact form,

d

dz
((1 − z2)

dP

dz
) + (l(l + 1) −

m2
l

(1 − z2)
)P = 0 (1.55)

and can be solved by a standard power series method. At this juncture, we throw
in another function G(z) to the mix, which is defined by

P (z) = (1 − z2)∣ml∣/2G(z). (1.56)

Differentiating this by parts gives,

dP

dz
=

∣ml∣

2
(1 − z2)

(
∣ml ∣

2
−1)

(−2z)G(z) + (1 − z2)
∣ml ∣

2 G′(z) (1.57)

= −∣ml∣z(1 − z2)
(
∣ml ∣

2
−1)
G(z) + (1 − z2)

∣ml ∣

2 G′(z), (1.58)

where G′(z) is the first derivative of G(z). Multiplying both sides by (1 − z2),

(1 − z2)
dP

dz
= −∣ml∣z(1 − z2)

∣ml ∣

2 G(z) + (1 − z2)
(
∣ml ∣

2
+1)G′(z). (1.59)

Now differentiating both sides with respect to z finally results in

d

dz
((1 − z2)

dP

dz
) = −∣ml∣(1 − z2)

∣ml ∣

2 G(z) + ∣ml∣
2z2(1 − z2)

(
∣ml ∣

2
−1)
G(z)

−∣ml∣z(1 − z2)
∣ml ∣

2 G′(z) − 2z(
∣ml∣

2
+ 1)(1 − z2)

∣ml ∣

2 G′(z)

+(1 − z2)
(
∣ml ∣

2
+1)G′′(z), (1.60)
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where double and triple primes show the order of differentiation. Inserting the
value of P (z) and Eq. (1.60) into Eq. (1.55) (which is written here again for
convenience) presents us with the form

d

dz
((1 − z2)

dP

dz
) + (l(l + 1) −

m2
l

(1 − z2)
)P (z)

= (1 − z2)
(
∣ml ∣

2
+1)G′′(z)

+(−∣ml∣z(1 − z2)
∣ml ∣

2 − 2z(
∣ml∣

2
+ 1)(1 − z2)

∣ml ∣

2 )G′(z)

+(∣ml∣
2z2(1 − z2)

(
∣ml ∣

2
−1)

− ∣ml∣(1 − z2)
∣ml ∣

2 )G(z)

+(l(l + 1) −
m2
l

(1 − z2)
)(1 − z2)∣ml∣/2)G(z) = 0, (1.61)

which is divided by (1 − z2)
∣ml ∣

2 producing the result

(1 − z2)G′′(z) − (2∣ml∣z + 2z)G′(z) + (l(l + 1) − ∣ml∣ − ∣ml∣
2)G(z) = 0. (1.62)

This is finally the new equation we set to solve. We find a G(z) that solves
Eq. (1.62) and back substitute it to find P (z) through Eq. (1.56) and ultimately
Θ(θ).

Suppose G(z) is a power series (a polynomial in z),

G(z) =
∞

∑
n=0

azz
n (1.63)

thus we have the derivatives,

G′(z) =
∞

∑
n=0

nazz
n−1 (1.64)

G′′(z) =
∞

∑
n=0

n(n − 1)azz
n−2. (1.65)

Substitution of these values into Eq. (1.62) needs a bit of patience but is relatively
straightforward,

(1−z2)
∞

∑
n=0

n(n−1)azz
n−2−(2∣ml∣z+2z)

∞

∑
n=0

nazz
n−1+(l(l+1)−∣ml∣−∣ml∣

2)
∞

∑
n=0

azz
n = 0

(1.66)
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(1−z2)
∞

∑
n=0

n(n−1)azz
n−2−2(∣ml∣+1)

∞

∑
n=0

nazz
(n)+(l(l+1)−∣ml∣− ∣m2

l ∣)
∞

∑
n=0

azz
n = 0.

(1.67)
Carefully opening the terms in the series, one by one, yields

+ ((2)(1)a2 + (3)(2)a3z + (4)(3)a4z
2 + (5)(4)a5z

3 + . . .)

− ((2)a2z
2 + (3)(2)a3z

3 + (4)(3)a4z
4 + (5)(4)a5z

5 + . . .)

− 2(∣ml∣ + 1)(a1z + 2a2z
2 + 3a3z

3 + . . .)

+ (l(l + 1) − ∣ml∣
2 − ∣ml∣)(ao + a1z + a2z

2 + a3z
2 + . . .) = 0.

(1.68)

The terms in parentheses can be recast in series form to be

((2)(1)a2 + (3)(2)a3z + (4)(3)a4z
2 + . . .) =

∞

∑
n=0

(n + 2)(n + 1)an+2z
n (1.69)

((2)(1)a2z
2 + (3)(2)a3z

3 + (4)(3)a4z
4 + . . .) =

∞

∑
n=0

n(n − 1)anz
n (1.70)

(a1z + 2a2z
2 + 3a3z

3 + . . .) =
∞

∑
n=0

nanz
n (1.71)

(ao + a1z + a2z
2 + a3z

2 + . . .) =
∞

∑
n=0

anz
n (1.72)

Therefore Eq. (1.68) can also be written as

∞

∑
n=0

[(n+2)(n+1)an+2−n(n−1)an−2(∣ml∣+1)nan+(l(l+1)− ∣ml∣− ∣ml∣
2)an]z

n = 0.

(1.73)
Since each of the coefficients of zn must be zero, each term in the square brackets
must also be zero,

(n+2)(n+1)an+2−n(n−1)an−2(∣ml∣+1)nan+(l(l+1)−∣ml∣− ∣ml∣
2)an = 0, (1.74)

which results in the recursive formula,

an+2 = (
n(n − 1) + 2(∣ml∣ + 1)n − (l(l + 1) + ∣ml∣ + ∣ml∣

2)

(n + 2)(n + 1)
)an (1.75)

= (
(n + ∣ml∣)(n + ∣ml∣ + 1) − l(l + 1)

(n + 2)(n + 1)
)an, (1.76)
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where both n and ml are integers.
At the moment, we do not know what is the allowed form of the number l. So

let’s figure it out! We know that z = cos θ whose unconstrained range is [−1 ≤ z ≤ 1]
including z = ±1 but G(z) = ∑

∞

n=0 anz
n is an infinite series, so the endpoints z = ±1

will yield an unconstrained infinity when n → ∞. Therefore we cannot allow the
index n in the power series Eq. (1.63) go all the way to infinity. This series must
be truncated at an upper bound nmax. If we want the series to converge then the
numerator in Eq. (1.76) must also successively get smaller and smaller and finally
anmax diminishes to zero. Thus we can find nmax by setting the numerator as zero,2

(nmax + ∣ml∣)(nmax + ∣ml∣ + 1) = l(l + 1), (1.77)

from which we observe that
l = (nmax + ∣ml∣). (1.78)

What pops out from this analysis is that first, l is a positive integer, since nmax

and ∣ml∣ both are positive integers themselves. Secondly ∣ml∣ ≤ l indicating ml is a
positive or negative integer whose magnitude is less than or equal to l and is given
by ∣ml∣ = l −nmax. Solving the polar part of the Schrodinger equation has imposed
one more constraint on the integer ml.

Let’s summarize our results as this has become quite a lengthy argument. We
choose a positive integer l and some ml such that ∣ml∣ ≤ l. For this combination
of l and ml, we determine nmax = l − ∣ml∣. We then find the coefficients an from
Eq. (1.76) from n = 0 to n = nmax. This helps us determine the series G(z) =

∑
nmax
n=0 anzn. Once G(z) is available, we obtain P (z) = (1 − z2)∣ml∣/2G(z) which is

Eq. (1.56) and finally replacing z by cos θ, yields Θ(θ) = P (z). Bingo, we have the
solution to the polar part of the Schrodinger equation of hydrogen atom.

We need a few examples to bring together some of these calculations. Let’s
just take the plunge and try out a few test cases. The simplest of course is l = 0
for which only ml = 0 is allowed and hence nmax = 0. Dot simple! This means that
G(z) = ao is just a constant with no z-dependence. Hence Θ(θ) is also a constant
stripped of on any angular dependence. We learn later how to find that constant.
So Θ(θ) for l = 0, ml = 0 is for practical purposes proportional to 1, i.e., no angular
dependence.

Next, consider l = 1 for which we allow ml to take the values 0, +1 and −1.
Begin by ml = 0, which gives nmax = l−∣ml∣ = 1, allowing us to write G(z) = ao+a1z
and that’s it, just two terms in the series. Now a2 = 0, so from the recursive
formula, Eq. (1.76), ao = 0 and we are left with G(z) = a1z and Θ(θ) is just
proportional to cos θ. Repeating a similar line of reasoning for ml = +1, we have
nmax = l − ∣ml∣ = 0, giving us G(z) = ao and P (z) = (1 − z2)1/2G(z) = (1 − z2)1/2ao
or Θ(θ) proportional to sin θ. We also obtain Θ(θ) = sin θ for ml = −1.

2Don’t confuse nmax with the principal quantum number.
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Figure 1.3: Orbitals of hydrogen atom.
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Just another example to give you a feel for higher values. Consider l = 3 and
while ml = ±3,±2,±1,0, we consider the example of only ml = 2. This gives us
nmax = l − ∣ml∣ = 1 and therefore G(z) = ao + a1z. But a2 = 0 gives ao = 0, hence
G(z) = a1z and P (z) = (1 − z2)∣ml∣/2G(z) = a1z(1 − z2) which produces a Θ(θ)
proportional to cos θ sin2 θ, which is the solution for this particular combination of
l and ml, of course up to a yet to be determined proportionality factor.

Table 1.1.2 is a compilation of some of these calculations for l = 3. Pick in one
or two instances from this Table and confirm if Θ(θ)′s provided can be derived.
Since we already determined the azimuthal solutions in section 1.1.1 we now have
a method to determine the complete angular solution to the Schrodinger equation
for the hydrogen atom.

l ml nmax G(z) P (z) Θ(θ) ∝

3 3 0 ao ao(1 − z2)3/2 sin3 θ

3 2 1 a1z a1z(1 − z2) cos θ sin2 θ

3 1 2 a0(1 − 5z2) ao(1 − z2)1/2(1 − 5z2) sin θ(1 − 5 cos2 θ)

3 0 3 a1z(1 − (5/3)z2) a1z(1 − (5/3)z2) cos θ(3 − 5 cos2 θ)

3 −1 2 a0(1 − 5z2) ao(1 − z2)1/2(1 − 5z2) sin θ(1 − 5 cos2 θ)

3 −2 1 a1z a1z(1 − z2) cos θ sin2 θ

3 −3 0 ao ao(1 − z2)3/2 sin3 θ

Table 1.1: This table shows the list of combinations for the l = 3 state, including
the non-zero terms in the series expansion G(z) and P (z) and finally the polar
solution Θ(θ). See if you are able to reproduce some of these expressions.

1.1.3 Normalizing the angular part

At this stage, we try to wrap everything together and get an idea of some of the
implications of what we have achieved so far. We know that the angular part of
wavefunction in Eq. (1.22) is

Θl,ml
(θ)Φml

(φ). (1.79)

The azimuthal part will change withml, hence it is written with this very subscript,
called the magnetic quantum number because it is in the presence of a magnetic
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field, that the different m′

ls acquire different energies, otherwise they remain
degenerate. This is the Zeeman effect and will be discussed later. The polar
part Θ(θ) clearly depends on both l and ml which are quantum numbers that
have popped out from the formalism of quantum mechanics due to conditions
imposed on the wavefunction —uniqueness, finitude, and the requirement that the
modulus square when integrated must be 1. The allowed values of these quantum
numbers are

l = 0,1,2,3, . . . (1.80)

and for any l, ∣ml∣ ≤ l,where ml ∈ Z. (1.81)

The product of Θ(θ) and Φ(φ) is a new function that is well known in mathematical
physics and is denoted by Y l

ml
(θ, φ). It depends on θ and φ and parametrized by

the two quantum numbers l and ml. It is called a spherical harmonic function.
These functions have well known properties and are commonly used in many areas
of mathematical physics. The spherical harmonics which combine Θl,ml

(θ) and
Φml

(φ) are given in Table 1.2. Figure 1.3 depicts some of the spherical harmonic
functions in a 3D enviroment.

The arbitrariness of the constant of proportionality which was left unattended
in sections 1.1.1 and 1.1.2 is still coming back to us. We know that as we integrate
the modulus square over the entire volume, the answer should be one,

∫ dV∣Y l
ml

(θ, φ)∣
2
= ∫

π

θ=0
∫

2π

φ=0
dθ dφ sin θ ∣Y l

ml
(θ, φ)∣

2
= 1. (1.82)

The normalization condition helps determine the constant. So far we are only
looking the normalization for the angular coordinates, ignoring the radial parts.
Both Rn,l(r) and Y l

ml
(θ, φ) will be independently normalized and subsequently

multiplied together. When we are talking about the spherical harmonic functions,
they tell us how the electronic wavefunction looks in three dimensional space as
one goes around the nucleus subsequently at a fixed radius. These wavefunctions
are called “orbitals”.

Here are some examples showing the protocol of determining the normalizations
in Table 1.2 and hence complete the story. The lowest value possible is l = 0 and
ml = 0, for which

Y 0
0 (θ, φ) ∝ constant = C. (1.83)

With this mere constant, the normalization constant in Eq. (1.82) yields

∫

π

θ=0
∫

2π

φ=0
dθdφ sin θ∣Y l

ml
(θ, φ)∣

2
= C2

∫

π

θ=0
∫

2π

φ=0
dθdφ sin θ = C2(4π) = 1 (1.84)

giving us C = (1/2)
√

1/π and hence Y 0
0 (θ, φ) = (1/2)

√
1/π. This is the s orbital. If

the electron is in this quantum state, irrespective of the radial part, it will have no
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l = 0 Y 0
0 (θ, φ) =

1

2

√
1

π

l = 1 Y 1
−1(θ, φ) =

1

2

√
3

2π
e−iφ sin θ =

1

2

√
3

2π

(x − iy)

r

Y 1
0 (θ, φ) =

1

2

√
3

π
cos θ =

1

2

√
3

π

z

r

Y 1
1 (θ, φ) = −

1

2

√
3

2π
eiφ sin θ = −

1

2

√
3

2π

(x + iy)

r

l = 2 Y 2
−2(θ, φ) =

1

4

√
15

2π
e−2iφ sin2 θ =

1

4

√
15

2π

(x − iy)2

r2

Y 2
−1(θ, φ) =

1

2

√
15

2π
e−iφ sin θ cos θ =

1

2

√
15

2π

(x − iy)z

r2

Y 2
0 (θ, φ) =

1

4

√
5

π
(3 cos2 θ − 1) =

1

4

√
5

π

(3z2 − r2)

r2

Y 2
1 (θ, φ) = −

1

2

√
15

2π
eiφ sin θ cos θ = −

1

2

√
15

2π

(x + iy)z

r2

Y 2
2 (θ, φ) =

1

4

√
15

2π
e2iφ sin2 θ =

1

4

√
15

2π

(x + iy)2

r2

l = 3 Y 3
−3(θ, φ) =

1

8

√
35

π
e−3iφ sin3 θ =

1

8

√
35

π

(x − iy)3

r3

Y 3
−2(θ, φ) =

1

4

√
105

2π
e−2iφ sin2 θ cos θ =

1

4

√
105

2π

(x − iy)2z

r3

Y 3
−1(θ, φ) =

1

8

√
21

π
e−iφ sin θ(5 cos2 θ − 1) =

1

8

√
21

π

(x − iy)(5z2 − r2)

r3

Y 3
0 (θ, φ) =

1

4

√
7

π
(5 cos3 θ − 3 cos θ) =

1

4

√
7

π

(5z3 − 3zr2)

r3

Y 3
1 (θ, φ) = −

1

8

√
21

π
eiφ sin θ(5 cos2 θ − 1) = −

1

8

√
21

π

(x + iy)(5z2 − r2)

r3

Y 3
2 (θ, φ) =

1

4

√
105

2π
e2iφ sin2 θ cos θ =

1

4

√
105

2π

(x + iy)2z

r3

Y 3
3 (θ, φ) = −

1

8

√
35

π
e3iφ sin3 θ = −

1

8

√
35

π

(x + iy)3

r3

Table 1.2: Listing of spherical harmonic functions.
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dependence on θ and φ. Hence, it is best drawn as sphere! A pictorial depiction
of the spherical harmonic is presented in Figure 1.3. Shortly we describe how to
draw some of these orbitals through a systematic procedure.

Similarly for l = 1, we have three possibilities ml = 0,±1. Let’s consider ml = 0,
then Θ(θ) ∝ cos θ, Φ(φ) ∝ 1 and Y 1

0 (θ, φ) ∝ cos θ. The normalization constant is
straightforward to compute.

C2
∫

π

θ=0
∫

2π

φ=0
dθdφ sin θ cos2 θ = C2(2π)

2

3
= 1 (1.85)

yielding,

C =
1

2

√
3

π
(1.86)

which is identical to the entry in third row in Table 1.2.

1.1.4 Drawing orbitals

It would be really interesting to make an attempt to draw some orbitals, at least
on paper or your digital screen. We draw what are called polar diagrams. A polar
diagram plots a value of the function evaluated at some θ and φ, at a distance
from the origin proportional to the value of that function, at the θ and φ specified.

Let’s exemplify by plotting the orbital Y 1
0 (θ, φ) = (1/2)

√
3/π cos θ. We set aside

the normalization factor for the visualization process. First of all, Figure 1.4 (a)
shows a plot of the function cos θ, indicating how the function varies from θ = 0 to
θ = π. From this we generate one cut of the lobe shown in Figure 1.4 (b) which is
the cross section of the 3D space drawn at the plane φ = 0. For the point a (θ = 0),
we have the value of the function = 1. This creates a point a′ on the polar diagram
in Figure 1.4 (b). The distance of a′ from the origin is 1 unit and it lies squarely
on the z axis (since θ = 0). The lobe in Figure 1.4 (b) is just a plane cut in the
xz plane. We convert this to 3D later. Now, the function needs to be traversed
point to another point. Consider point b at θ = π/6 (= 30○). The function has
a value cos(π/6) = 0.866, so we draw a point b′ in Figure 1.4 (b) at an angle of
30○ from the z axis, at a distance of 0.866 units from the origin. We repeat the
mapping c (at θ = π/3, value = 0.5) to c′. For d, we have θ = π/2, value = 0 which
generates the point d′ in the cut lobe. Though we have shown only the mappings
a → a′, b → b′, c → c′ and d → d′, this is in fact a continuous process, negotiating
the entire domain of the function from θ = 0 to θ = π. Going continuously from
a to d generates the top right half of the cut lobe shown in Figure 1.4 (b). The
function is positive everywhere, we just place a + symbol next to the top half.

As we continue our journey onward beyond θ = π/2, upto θ = π, which is
point e, we continue the same mapping process. Points are mapped onto the polar
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Figure 1.4: (a)Plot of Y 1
0 (θ, φ) = cos θ from 0 to π. (b)Visualizing the pz orbital

with θ from 0 to π at a fixed φ drawn by mapping points a→ a′, b→ b′, c→ c′, d→ d′

,e → e′ and all points in between. A half-cut lobe appears in the polar diagram.
(c) The orbital pz is cylindrically symmetric and obtained by twisting (b) around
the z-axis. (d) Probability density function for the pz orbital. (e)3 cos2 θ − 1 (f)dz2
orbital,
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diagram by distances from the origin reflective of the magnitude of the function,
synthesizing the lower half of the lobe in Figure 1.4 (b). This locus from d′ to e′ has
a negative connotation, thus is indicated by the − symbol. So we have successfully
created the lobe of the Y 1

1 (θ, φ) orbital called a pz orbital at least in the (+x,+z)
half plane. This half lobe is at φ = 0. Since the orbital has no φ dependence, ml

being zero, the 3D pattern of the lobe will be cylindrically symmetric and can be
generated by smoothly twisting the lobe structure as shown in Figure 1.4 (c). If
I were to plot the probability density function which is the square of probability
amplitude, then both lobes well change shape a little bit and both of them will be
positive. This is shown in Figure 1.4 (d).

The case of the orbital Y 2
0 (θ, φ) in three dimensions is also rather interesting.

The functional form of this spherical harmonic is 3 cos2 θ − 1 shown in Figure 1.4
(e). This function is not symmetric about the horizontal axis which imparts an
interesting bimodal feature to the half-cut lobe. The function starts at θ = 0○ with
a negative value and becomes 0 at b = cos−1 (1/

√
3) = 54.7○, the so called magic

angle. The mapping from a→ a′ to b→ b′ synthesis the bigger loop in the (+x,+z)
quarter plane. This quarter lobe has a − character. Then it rises in the positive
range to c, to a maximum and falls back to zero at d = 135○, creating another
lobe. The point c is not as high as a is below zero, so this secondary loop formed
from b → c → d is smaller in size. Repeating the continuous process, we generate
the lobe in the whole (+x,±z) plane which is finally twisted around z in three
dimensions showing the picture of the Y 2

0 (θ, φ) orbital called the dz2 half plane
orbital. If we plot Y 2

0 (θ, φ) in 3 dimensions we obtain donut in the center with
an upper central lobe and a lower central lobe. The upper and lower lobes are −

in character while the donut is + . See Figure 1.4 (f). The angular wavefunction
vanishes when 3 cos2 θ − 1 = 0 at angles of cos−1 (1/

√
3) and π − cos−1 (1/

√
3). The

other four d-orbitals are also clover leaf shaped, identical to one another but with
different orientations in space. d-orbitals are illustrated in Figure 1.3 (e), (f), (g),
(h) and (i).

1.1.5 Superpositions of orbitals

We also have spherical harmonics such as

Y 1
1 (θ, φ) =

1

2

√
3

2π
sin θeiφ (1.87)

Y 1
−1(θ, φ) = −

1

2

√
3

2π
sin θe−iφ, (1.88)

which are complex functions. Plotting these is not straightforward. One possibility
is to draw the real and imaginary parts one by one, but we can also fashion
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linear combinations so that the resultants become real, easy to plot and visualize.
Consider the equal superpositions,

Y 1
1 (θ, φ) + Y 1

−1(θ, φ)√
2

= Y 1
x (θ, φ) =

1
√

2

√
3

2π
sin θ cosφ (1.89)

Y 1
1 (θ, φ) − Y 1

−1(θ, φ)

i
√

2
= Y 1

y (θ, φ) = −
1

√
2

√
3

2π
sin θ sinφ (1.90)

In fact, it is these orbitals that are conventionally drawn in textbooks and are
called, respectively, px and py orbitals. See Figure 1.3 (b) and(c). The sin θ factor
in Eqs.(1.89) and (1.90) indicates that the lobe has maximal strength around
θ = π/2 which is the equatorial plane. However these orbitals don’t possess the
cylindrical symmetry that we’ve seen for some of the ml = 0 orbitals. The Y 1

x (θ, φ)
has cosφ dependence showing that even in the equatorial plane, not all φ′s are the
same. The lobe will exist primarily around φ = 0 which is the x-axis. Therefore we
get the lobe predominately along the ±x axis, hence the name px orbital. Similarly
the py orbital, being proportional to sin θ sinφ has maximum alignment along y.

1.2 Radial part of the Schrodinger equation

1.2.1 Deriving the radial solution

We know how the wavefunction looks like in three dimension at a fixed distance
but we don’t know how it varies with distance. For this purpose, we turn attention
to the radial part R(r), which also depends on some yet to be determined quantum
number. At the onset, let’s call the that is principal quantum number(s) denoted
by n. It transpires that R(r) will also depend on l.

The Schrodinger equation in spherical coordinates is given by Eq. (1.24) and
reproduced here,

−
h̵2

2mr2

1

R

∂

∂r
(r2∂R

∂r
) +

h̵2

2mr2
{−

1

Θ sin θ

∂

∂θ
(sin θ

∂Θ

∂θ
) −

1

Φ sin2 θ

∂2Φ

∂φ2
} + (V −E) = 0

(1.91)
The terms in curly bracket is identical to Eq. (1.36) and we equated it to a constant
denoted by l(l+1) where l is an integer and at the moment we conceive this number
as going from 0 to ∞. There is no further constraint on it for the time being.
Therefore we have

−
h̵2

2mr2

1

R

d

dr
(r2dR

dr
) +

h̵2

2mr2
(l(l + 1)) + (V −E) = 0 (1.92)
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which is cast into the form,

−
h̵2

2mr2

1

R

d

dr
(r2dR

dr
) + [{V (r) +

h̵2

2mr2
(l(l + 1))} −E] = 0 (1.93)

where we have lumped the terms V (r) and h̵2(l(l + 1))/2mr2 together. We call
this the effective potential,

Veff = −
e2

4πεor
+

h̵2

2mr2
(l(l + 1)). (1.94)

Eq. (1.93) is a purely radial equation whose solution will provide the radial part
of the wavefunction. Notice that the bare nuclear potential is

V (r) = −
e2

4πεor
(1.95)

but as a result of angular energy (second term on R.H.S. of Eq. (1.94)), the
potential energy is modified. In fact the potential energy increases for l ≠ 0 while
for l = 0, the potential energy is just the bare value in Eq. (1.95). The physical
implication is that higher l states3 evade the nucleus, suggest that the angular
term with l = 0 is acting as a barrier against the electron approaching the nucleus.
This barrier h̵2(l(l + 1))/2mr2 is called the centrifugal barrier. As l increases, the
centrifugal barrier increases and the electron tend to be pushed further out.

With this background, we can begin the solution of the time-independent radial
wave equation. In order to solve the radial equation we need to do a sequence of
substitutions. We first define u(r),

u(r) = rR(r) (1.96)

which leads to the derivatives,

du(r)

dr
= R + r

dR

dr
, (1.97)

and
d2u(r)

dr2
= 2

dR

dr
+ r

d2R

dr2
(1.98)

Analyzing the Schrodinger equation Eq. (1.93) again,

−
h̵2

2mr2

1

R
[
d

dr
(r2dR

dr
)] + Veff = E, (1.99)

3We will see in the next chapter that higher l means larger angular momentum.
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the term in the square bracket really is (using Eq. (1.98)),

d

dr
(r2dR

dr
) = 2r

dR

dr
+ r2d

2R

dr2
= r

d2u(r)

dr2
, (1.100)

and so Eq. (1.93) becomes,

−
h̵2

2mu(r)

d2u(r)

dr2
+ Veff = E (1.101)

which is appointed as

−
h̵2

2m

d2u(r)

dr2
+ Veffu(r) = Eu(r). (1.102)

Curiously, this looks very similar to a one dimensional Schrodinger equation albeit
with the modified potential given in Eq. (1.94). We open up the potential term
and divide by E,

−
h̵2

2mE

d2u

dr2
+ [

h̵2l(l + 1)

2mr2E
−

e2

4πεorE
]u = u. (1.103)

We define the dimensionless variable,

ρ =

√
−2mE

h̵
r, (1.104)

Since the bound electron has negative energy, the radical is a positive number and
so ρ remains real. We want to express all derivatives in Eqs.(1.97) and (1.98) in
term of ρ. Let’s try to perform these substitutions. Using the chain rule,

dF

dr
=

dF

dρ

dρ

dr
(1.105)

=

√
−2mE

h̵

dF

dρ
. (1.106)

Therefore writing d/dr in terms of d/dρ we have

d

dr
=

√
−2mE

h̵

d

dρ
, (1.107)

and the second order derivative becomes

d2

dr2
=
−2mE

h̵2

d2

dρ2
. (1.108)
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With these substitutions the Schrodinger equation Eq. (1.103) transforms to,

d2u

dρ2
+ [

h̵2l(l + 1)

2mr2E
−

e2

4πεorE
]u = u (1.109)

Expressing 1/r2 and 1/r in terms of ρ using Eq. (1.104), we can rewrite Eq. (1.109)
as

d2u

dρ2
= [1 +

l(l + 1)

ρ2
−
ρo
ρ
]u, (1.110)

where we have also defined

ρo =
e2

4πεoh̵

√
−2m

E
. (1.111)

After all, Eq. (1.110) looks much simpler. The elegance comes out of substitutions,
one after another! Next, we use physical intuition and historical baggage to
solve this differential equation. Furthermore, the solutions should hold true at all
boundaries, whether close or far away from the nucleus. These boundary conditions
narrow down or help discard certain solutions.

Let’s look at the asymptotic expression of Eq. (1.110), when we are close to
and far from the nucleus. As ρ is proportional to r, ρ → ∞ means that one is
very far from the nucleus. In this case, the second and third terms approach zero,
leading to

d2u

dρ2
≈ u (1.112)

predicting a general solution

u(ρ) = Ae−ρ +���Beρ. (1.113)

This is our first guess for u(ρ). However, ρ is always positive, so when ρ approaches
infinity, the Beρ terms blows up giving us an unphysical wavefunction, thus B = 0.
So for any ρ, we propose that one component of the of solution be,

u1(ρ) = Ae
−ρ. (1.114)

which is a decaying function of ρ which makes sense, for at large ρ, uρ diminishes.
We want the electron to, after all, be bound to the nuclear influence! On the other
hand when rho = 0 Eq. (1.110) becomes

d2u

dρ2
≈
l(l + 1)

ρ2
u, (1.115)
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as the middle term on the R.H.S. of Eq. (1.110)f overwhelms the first and third
terms. A guess for the solution in this regime is,

u2(ρ) = Cρ
l+1 +���Dρ−l. (1.116)

Try inserting this ansatz into Eq. (1.115) verifying that this is indeed a prospective
solution. However, as ρ → 0, ρ−l explodes and hence D must be zero, leading to
another component,

u2(ρ) ≈ Cρ
l+1 (1.117)

which suggests an increasing function. The two solutions u1 and u2 from Eqs.(1.114)
and (1.117) represent respectively a decaying function and an increasing function.
The decaying function u1 however dominates because it is an exponential function
whereas the increasing function is a mere polynomial. Hence everything will remain
finite when combined together. Therefore, we juxtapose the two solutions, by
multiplying them together and allow the possibility of another polynomial function
ν(ρ) to serve as a pre-multiplier, hence

u(ρ) = u1(ρ)u2(ρ)ν(ρ) = ρ
l+1e−ρν(ρ), (1.118)

which adequately satisfies boundary condition: e−ρ will be zero when ρ → ∞ and
ρl+1 will remain finite when ρ→ 0.

The task at hand is now to find the premultiplying polynomial ν(ρ). You
may appreciate that in this drawn out argument, we are introducing functions
that are easier to compute through new and newer substitutions. If we substitute
Eq. (1.118) into Eq. (1.110), this lead to the modified equation,

ρ
d2ν

dρ2
+ 2(l + 1 − ρ)

dν

dρ
+ (ρo − 2(l + 1))ν = 0 (1.119)

The amenable observation about this equation is that we don’t have a ρ in the
denominator. To solve it, we use the power series approach. Assume the polynomial
ν(ρ) is power series in ρ with some index j,

ν(ρ) =
∞

∑
j=0

Cjρ
j. (1.120)

For inserting this into Eq. (1.119) we need to find the derivative and double
derivative of ν(ρ). Lets take the first derivative of the series,

dν(ρ)

dρ
=

∞

∑
j=0

Cjjρ
(j−1) =

∞

∑
j=1

Cjjρ
(j−1), (1.121)

followed by the substitution,
j′ = j − 1, (1.122)
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giving us
dν(ρ)

dρ
=

∞

∑
j′=0

Cj′+1(j
′ + 1)ρj

′

=
∞

∑
j=0

Cj+1(j + 1)ρj. (1.123)

The reason for doing the substitution in Eq. (1.122) was to get a series of terms
ρj. Let’s now take the second derivative of the power series

d2ν(ρ)

dρ2
=

∞

∑
j=0

Cj+1(j + 1)(j)ρ(j−1) (1.124)

Inserting the expression from Eqs.(1.120), (1.121), (1.123) and (1.124) into Eq. (1.119),
we finally obtain

ρ(
∞

∑
j=0

Cj+1(j + 1)(j)ρ(j−1)) + 2(l + 1)(
∞

∑
j=0

Cj+1(j + 1)ρj) − 2ρ(
∞

∑
j=1

Cjjρ
(j−1))

+(ρo − 2(l + 1))(
∞

∑
j=0

Cjρ
j) = 0.

In order for the equality to hold each coefficient in the polynomial expansion must
be zero, hence

Cj+1j(j + 1) + 2(l + 1)Cj+1(j + 1) = [2j − ρo + 2l + 2]Cj. (1.125)

yielding a recursive equation,

Cj+1 =
2(j + l + 1) − ρo

(j + 1)(j + 2l + 2)
Cj. (1.126)

These coefficients determine Cj and thus ν(ρ) and u(ρ) through Eqs.(1.120) and
(1.118) and henceforth the radial function R(r). This is highly satisfying, but
before we consider the matter closed, we still need a third quantum number that
arises out of some additional physicality constraints. Of course we must also
normalize.

At the moment j is an arbitrary non zero integer in Eq. (1.120), but what
happens for large j? We assume j is much larger than both l + 1 and ρo. In this
case, the recursive relation in Eq. (1.126) simplifies to

Cj+1 =
2

j
Cj. (1.127)

This shows that at large j, the ratio of two successive coefficients Cj+1/Cj = 2/j.
In parallel, if we consider the MacLaurin series expansion of e2x

e2x =
∞

∑
j=0

(2x)j

j!
=

∞

∑
j=0

2j

j!
xj, (1.128)
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we observe that the ratio of two successive term in the expansion of e2x is,

2j+1

(j + 1)!

j!

2j
=

2

(j + 1)
(1.129)

which for large j, is also equal to 2/j. Hence this comparison with e2x allows us
to write Eq. (1.120) as an exponent,

ν(ρ) =
∞

∑
j=0

Cjρ
j ≈

∞

∑
j=0

(2ρ)j

j!
= e2ρ. (1.130)

Finally, substituting ν(ρ) into Equation Eq. (1.118), we obtain

u(ρ) ≈ ρl+1e−ρe2ρ = ρl+1eρ (1.131)

but this blows up as ρ → ∞. In order to prevent this infinity, we truncate the
series in Eq. (1.120) at j = jmax, such that Cjmax+1 = 0, which allows us to write,
with the help of Eq. (1.126),

Cjmax+1 =
2(jmax + l + 1) − ρo

(jmax+1)(jmax + 2l + 2)
Cjmax = 0, (1.132)

whose numerator becomes zero for this choice of j = jmax, i.e.,

2(jmax + l + 1) = ρo. (1.133)

If we were to define
n = jmax + l + 1, (1.134)

ρo would become
ρo = 2n (1.135)

and with the ρo defined in Equation (1.111), we obtain,

ρ2
o =

e4

(4πεoh̵)2

−2m

E
= 4n2 (1.136)

Therefore the energy turns out as,

En =
−m

2h̵2
(
e2

4πεo
)

2 1

n2
=
E1

n2
, n = 1,2,3, . . . (1.137)

where E1 is the ground state energy of hydrogen atom and has a value of −13.6
eV. Hence, we obtain the quantum number n which defines jmax for computing
ν(ρ) and as a result the energy also becomes quantized. The number n, which is
called the principal quantum number.
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At some point in your life, you may have derived Bohr formula by a brute force
approach. The approach outlined here is systematic and reproduces what Bohr
derived in his old quantum theory. Every time, we try keeping the wavefunction
finite or unique, we create a new quantum number and impose a constraint on it.
Hence by determining the radial and angular solutions, we have extracted three
quantum numbers n, l and ml. Furthermore, the number n is any nonzero integer;
from Eq. (1.134) we have,

jmax = n − l − 1 ≥ 0 (1.138)

which imposes another constraint on l itself

l ≤ n − 1. (1.139)

this is an upper bound on the integer l.
These three quantum numbers define the state of the electron in the hydrogen

atom. They are called the principal quantum number n, orbital quantum number
l and the azimuthal or magnetic quantum number ml. Each l has (2l + 1) values
of ml. There is also a fourth quantum number ms which deals with spin but that
cannot be derived by the Schrodinger equation. If we consider spin as well with its
two possibilities ms = ±1/2, the total degeneracy which is defined as the number
of quantum states all with identical energy, for a given n is

n−1

∑
l=0

2(2l + 1) = 2n2. (1.140)

Before our mind digresses into other avocations, let’s turn back to the radial
wavefunctions. We have already found them. We know ν(ρ), u(ρ) and hence
can write R(r) and eventually ψn,l,ml

(r, θ, φ). Using Eq. (1.137) we can write

ρ =

√
−2mE

h̵
r =

√
−2m

h̵

¿
Á
ÁÀ−m

2h̵2
(
e2

4πεo
)

2 1

n2
=

me2

4πεoh̵2

r

n
=

1

n
(
r

ao
) (1.141)

where

ao =
4πεoh̵2

me2
(1.142)

is the Bohr radius, depends upon fundamental constants and hence is a constant.
The rescaled radius ρ tells how big the radius is compared to the Bohr radius;
r is terms of meters (or Angstroms) and ρ is units of the Bohr radius. Finally
the radial wavefunction that is given by two quantum number n and l, can be
composed using the result derived in Eqs.(1.96), (1.118), and (1.141) and is given
by

Rn,l(r) =
ρl+1e−ρν(ρ)

r
=

1

n

ρle−ρν(ρ)

ao
. (1.143)
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We can tabulate the functional form ν(ρ) for different combination of n and l. For
example for n = 1, l = 0, so from Eq. (1.134) jmax = n− l−1 = 0. This makes ν(ρ) =
constant. Say the constant is Co. Therefore, from Eq. (1.143), we obtain

R10(r) ∝
1

aon
ρle−ρν(ρ) =

1

ao
ρ0e−ρCo ∝

e−r/ao

ao
(1.144)

We can similarly obtain the forms for Rn,l(r) for various combinations. Some

n l L2l+1
n+l (ρ) Rn,l(r)

1 0 L1
1(ρ) = −1 2(

1

ao
)

3/2

e−r/ao

2 0 L1
2(ρ) = −2!(2 − ρ) (

1
√

8
)(

1

ao
)

3/2

(2 −
r

ao
) e−r/(2ao)

2 1 L3
3(ρ) = −3! (

1
√

24
)(

1

ao
)

3/2 r

ao
e−r/(2ao)

3 0 L1
3(ρ) = −3!(3 − 3ρ +

1

2
ρ2) (

2

81
√

3
)(

1

ao
)

3/2

(27 − 18
r

ao
+ 2

r2

a2
o

) e−r/(3ao)

3 1 L3
4(ρ) = −4!(4 − ρ) (

4

81
√

6
)(

1

ao
)

3/2

(6
r

ao
−
r2

a2
o

) e−r/(3ao)

3 2 L5
5(ρ) = −5! (

4

81
√

30
)(

1

ao
)

3/2 r2

a2
o

e−r/(3ao)

Table 1.3: Listing of some elementary radial wavefunctions.

values are tabulated in Table 1.3. See the rightmost column and don’t worry,
we will sort the normalization (and the form in the second column of Table 1.3)
shortly. Figure 1.5 illustrates the radial wavefunctions for various n and l. Note in
the left column of the figure, the absolute amplitude decreases for higher values of
n. All radial wavefunctions remain finite. The l = 0 radial function (corresponding
to s orbitals) all have a maximum at r = 0 which is the apparent position of the
nucleus. This paradoxical scenario will be addressed shortly.

1.2.2 Compact forms of radial wavefunctions

Pre-quantum classical physics gives us some really compact relationship for the
radial wavefunction. We use a particularly neat form proposed by Laguerre. In
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( )a

( )b

( )c

( )d

( )e

1s

2s

2p

3s

3p

3d

( )f

( )g

( )h

( )i

( )j

( )k

( )l

Figure 1.5: Radial wavefunctions and corresponding radial probability densities,
shown in the left and right columns respectively.
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general,

ν(ρ) = L2l+1
n−l−1(2ρ) (1.145)

where Lpq−p(x) = (−1)p (
d

dx
)

p

Lq(x) (1.146)

is the associated Laguerre polynomial, that is connected to the Laguerre polynomial

Lq(x) = e
x (

d

dx
)

q

(e−xxq) (1.147)

One can verify in Table 1.3 that the tabulated values of L2l+1
n+l (ρ) for a particular

value of n and l are also consistent with the following formula,

L2l+1
n+l (ρ) =

n−l−1

∑
k=0

(−1)k+2l+1 ((n + l)!)2

(n − l − 1 − k)!(2l + 1 + k)!k!
ρk. (1.148)

Finally we can assemble everything together and using Eq. (1.145) write,

Rn,l(r) = Aρ
l+1e−ρL2l+1

n−l−1(2ρ) (1.149)

which upon the respective substitution finally becomes

Rn,l = A(
2r

nao
)

l

e−r/nao [L2l+1
n−l−1(

2r

nao
)] (1.150)

1.3 Putting everything together

Hence the wavefunction is the product of the radial part and angular part,

ψn,l,m(r, θ, φ) = Rn,l(r)Y
l
ml

(θ, φ)

=

¿
Á
ÁÀ(

2

nao
)

3 (n − l − 1)!

2n[(n + l)!]3
e−r/nao (

2r

nao
)
l

[L2l+1
n−l−1 (

2r

nao
)]Y l

ml
(θ, φ)

The square root coefficient is the normalization constant that no one in the world
remembers and can be easily determined through a familiar normalization routine.
Table 1.4 provides a few wavefunctions of the hydrogen atom.

1.3.1 Finding probabilities of locating the electron in some region
of space

The Born postulate states that the wavefunction’s modulus square tells where one
can find the quantum object in a measurement shot. We know that ∣ψ(r, θ, φ)∣2 is
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n l ml ψn,l,ml
(r, θ, φ)

1 0 0
1

√
πa

3/2
o

e−r/ao

2 0 0
1

4
√

2πa
3/2
o

(2 −
r

ao
) e−r/2ao

2 1 0
1

4
√

2πa
3/2
o

r

ao
e−r/2ao cos θ

2 1 ±1
1

8
√

3πa
3/2
o

r

ao
e−r/2ao sin θe±iφ

3 0 0
1

81
√

3πa
3/2
o

(27 − 18
r

ao
+ 2

r2

a2
o

) e−r/3ao

3 1 0
1

81
√

3πa
3/2
o

r

ao
(6 −

r

ao
) e−r/3ao cos θ

3 1 ±1
1

81
√

3πa
3/2
o

r

ao
(6 −

r

ao
) e−r/3ao sin θe±iφ

3 2 0
1

81
√

6πa
3/2
o

r2

a2
o

e−r/3ao (3 cos2 θ − 1)

3 2 ±1
1

81
√
πa

3/2
o

r2

a2
o

e−r/3ao sin θ cos θe±iφ

3 2 ±2
1

162
√
πa

3/2
o

r2

a2
o

e−r/3ao sin2 θe±2iφ

Table 1.4: Some of hydrogen wavefunctions
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Figure 1.6: Volume element V on a sphere shown as a shaded grey element. Here
dr is the radial length, r dθ is the arc length going from θ to θ+dθ and (r sin θdφ) is
the arc length moving parallel to the equatorial plane. The bounded region shown
in the equatorial plane is highly exaggerated.
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the probability density function. Before making the measurement we don’t know
where the electron is. When we perform a measurement using a Heisenberg or a
tunneling microscope, the image obtained does not tell us where the electron was,
only that it was captured at the precise location revealed in the image. This is
only one of the numerous a priori potentiates of where it could be found. The
electron was “everywhere” but we found it only “somewhere”. Only by repeated
measurements we can create a probability histogram of potentiates.

The probability of locating the electron in the hydrogen atom inside a small
volume element dV at r, θ and φ is given by

∣ψ(r, θ, φ)∣2dV = ∣ψ∣2r2 sin θ dθ dφdr. (1.151)

The small volume element dV and its dimensions with respect to the spherical
coordinate system are shown in Figure 1.6. In order to find the probability of
locating a particle inside a macroscopic region in space, we then need to integrate
between the appropriate limits, φ ∈ [φ1, φ2], θ ∈ [θ1, θ2] and r ∈ [r1, r2] which bound
the region,

∫

r2

r1
∫

θ2

θ1
∫

φ2

φ1
dr dθ dφr2 sin θ∣Rn,l(r)∣

2∣Y l
ml

(θ, φ)∣2 (1.152)

The radial part and the angular part are independent so one can break this integral
into two parts

∫

r2

r1
dr r2∣Rn,l(r)∣

2
∫

θ2

θ1
∫

φ2

φ1
dθ dφ sin θ∣Y l

ml
(θ, φ)∣2. (1.153)

1.3.2 Radial probability density

To calculate the probability of locating the electron just between the radii ro and
ro + ∆r which is the the probability of locating the electron in a thin veneer of
space, shaped like a thin hollow ring of radius ro. For this purpose, we need to
consider all the θ and φ and the second integral in Eq. (1.153) becomes

∫

π

θ=0
∫

2π

φ=0
dθ dφ sin θ∣Y l

ml
(θ, φ)∣2 = 1, (1.154)

as spherical harmonic functions enumerated in Table 1.2 are already normalized.
Therefore the radial probability becomes

P(ro, ro +∆r) = ∫

ro+∆r

ro
dr Pr(R) (1.155)

where Pr(r) = r2∣Rn,l(r)∣
2. (1.156)
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Figure 1.7: Probability density functions of the hydrogen atom.
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3s2s1s

node nodes

Figure 1.8: 1s, 2s and 3s radial probability distribution functions. The location of
the antinodal rings are highlighted. In between the antinodal are the nodal region.

Here is one wholesome example that lets us look at different aspects of the radial
structure of the electron state. Consider a 2p state given by

R2,1(r) = Are
−r/2ao

where A is a normalization constant and ao is the Bohr radius. The radial
probability density will be

P (r)r,(2,1) = r
2∣R2,1(r)∣

2 = ∣A∣2r4e−r/aodr

First of all we first find the constant A by imposing the normalization condition
on just the radial function,

∫

∞

r=0
P (r)dr = ∣A∣2∫

∞

r=0
r2r4e−r/aodr = 1

= A2a5
o4!

and using the standard result, ∫
∞

z=0 z
ne−zdz = n!, we obtain

∣A∣ =
1

a
5/2
o 2

√
6

which is identical to the third entry in Table 1.3. In the next step, we We may
like to calculate the average distance,

⟨r⟩ = ∫ dr r Pr(r) = A
2
∫ dr r5e−r/ao = 5ao,
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Figure 1.9: Modulus square of the angular part of the wavefunction for n = 2, l = 1
and ml = 0 is multiplied with the associated radial probability density to yield a
pobability density cloud in three dimensions.

which shows that the average (mean) density is five times the Bohr radius. In
order to find the maxima, we compute

dPr(r)

dr
= ∣A∣2(4r3e−r/ao −

1

ao
r4e−r/ao)

and set it to zero, yielding rmax = 4ao This is where there is maximum probability of
situating the electron, a so called antinode. The position of the average (⟨r⟩ = 5ao)
and maximum (rmax = 4ao) are shown as a red triangle and dashed line in Figure
1.5 (i).

The definition of the radial density Eq. (1.156) is satisfying on another count
as well. The maxima of the radial wavefunction at r = 0 (nuclear point) for l = 0
orbitals do not pose a problem since the pre-multiplication by r2 ensures that
the probability densities always vanish at the nuclear site. This fully matches
our prediction from the uncertainty principle as elucidated in the argument that
followed Eqs. (1.15) and (1.16). We cannot squish the atom to nothingness.

The right column of Figure 1.5 shows the radial probability densities for the few
wavefunctions. They all start at Pr(r = 0) = 0. A node is a radius where Pr(r) = 0.
It’s possible to situate an electron in the vicinity of the node and very likely to
be situated near some peak of Pr(r). The peaks can be determined by setting
dPr(r)/dr = 0 and choosing where d2Pr(r)/dr2 < 0 (condition for a maximum that
you learn in calculus). The number of nodes is n−l−1. This can be easily inspected
from the plots of Pr(r) in Figure 1.5.
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1.3.3 Drawing the combined probability density emerging from radial
and angular parts

In order to visualize the probability density of the overall function, it is quickest
and simplest to use some 3D visualization software. For example, we depict a
few probability density function for the hydrogenic wavefunction in Figure 1.7
using the popular software Mathematica. Some probability densities can also be
visualized through one’s mental faculties. For example consider 1s, 2s and 3s
orbitals where Pr(r) are shown respectively in Figure 1.5 (g), (h) and (j) and
reproduced in Figure 1.8. The angular wave function and hence ∣Y l

ml
(θ, φ)∣2 are

spherically symmetric. So the spherically uniform probability density is modulated
along the radial direction by the function Pr(r) whose undulating behavior creates
a striated (or layered) structure which can be visualized as a sequence of rings
centered at nucleus. This structure is shown in Figure 1.8.

For n = 2, l = 1 and ml = 0 the wave function is

ψ2,1,0(r, θ, φ) =
1

4
√

2πa
3/2
o

r

ao
e−r/2ao cos θ. (1.157)

The angular dependence is embodied through the pz orbital but this is being
modulated in the radial dimension by the radial wavefunction. The radial part is
an exponentially decaying function e−r/2ao multiplied by linear function r/ao. The
radial density is therefore proportional to r4e−r/ao , whose form is also plotted in
Figure 1.5 (e). We now combine the radial density Pr,(2,1) with Y l

ml
∣(θ, φ)∣ and

obtain the result that looks similar to Figure 1.9.

1.3.4 Hydrogenic energy levels

In a hydrogen atom the energy levels are quantized and are given by Eq. (1.137)
with the degeneracy 2n2 (Eq. (1.140)). These energy levels are not evenly spaced;
instead, they come closer together as n increases. Hydrogen’s emission spectrum
shows bright lines at specific wavelengths, while its absorption spectrum displays
dark lines at the same wavelengths. These spectrums are a finger print of the
hydrogen atom. for example, the Lyman series refers to the group of spectral
lines produced when an electron in a hydrogen atom transitions from a higher
energy level n ≥ 2 to the lowest energy level n = 1, resulting in ultraviolet emission.
Refer to Figure 1.10. Similarly, the Balmer series is due to electron transitions
from higher energy levels n ≥ 3 to the n = 2 energy level, resulting in mostly
visible light. The Paschen series, which falls in the near-infrared region, comprises
spectral lines resulting from n ≥ 4 down to n = 3. The Rydberg formula helps
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Figure 1.10: Transitions between the energy levels inside the hydrogen atom.

calculate the wavelengths corresponding to these transitions,
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where R is the Rydberg constant with a value of 1.097× 107m−1 and E1 is defined
in Eq. (1.137).


