



# XRR Alignment, Measurements and Analysis with Rigaku SmartLab SE



Dr. Ghulam Sarwar Butt, Dr. Sabieh Anwar, Dr. Sumera Siddique and Hamid Mehmood https://physlab.org/, Physical Properties Measurements Lab, CentralLab, Department of Physics, LUMS

# Contents

| XRR Alignment and Measurements and Analysis with Rigaku SmartLab SE | 3  |
|---------------------------------------------------------------------|----|
| Introduction                                                        | 3  |
| XRR Optic Alignment                                                 | 3  |
| XRR Sample Alignment                                                | 12 |
| XRR Measurements                                                    | 21 |
| XRR Data Analysis XRR measurement requirements:                     | 24 |
| XRR analysis requirements:                                          | 24 |
| Summary of XRR measurements and Analysis                            | 25 |
| Analysis Steps                                                      | 25 |
| XRR Theory and Concepts                                             | 31 |
| Typical Measurement Ranges:                                         | 31 |
| Factors Affecting Accuracy:                                         | 31 |
| Why Oscillations Appear in XRR                                      | 32 |
| Why Oscillations Become Noise at Higher 2θ Angles                   | 33 |
| Why Focus on the Clear Kiessig Fringes?                             | 34 |
| How to Focus on the Kiessig Fringes in SmartLab SE:                 | 34 |
| Understanding the Fitting Methods                                   | 35 |
| Interpreting the Graph:                                             |    |
| Recommended 2θ Range:                                               |    |
| Significance of X-ray reflectivity (XRR) Kiessig fringes            |    |
| Gold Film Results                                                   |    |
| Handling Materials Not in the Database                              | 44 |
| For new crystalline material                                        | 45 |
| For new structureless material                                      | 47 |

## XRR Alignment and Measurements and Analysis with Rigaku SmartLab SE

## Introduction

XRD primarily analyses crystal structures, phase identification, and crystallographic properties, XRR is an advanced feature in XRD used to characterize thin film thickness, density, and surface/interface roughness. This makes XRR a valuable complement to XRD for advanced material analysis, particularly for thin films, multilayers, and coatings. X-ray Reflectivity (XRR) measurement on the Rigaku SmartLab SE involves a few key steps: optic alignment, sample alignment, measurement, and data analysis. First, **optic alignment** ensures that the X-ray beam and detector are correctly configured to optimize reflectivity measurements. This includes setting up slits and Soller slits to control beam divergence. **Sample alignment** is critical for accurate XRR, involving adjustments to ensure the sample surface is perfectly parallel to the X-ray beam. The **measurement** process involves scanning over a low-angle 20 range to capture reflected X-rays and generate a reflectivity curve that contains oscillations (Kiessig fringes) related to film thickness, density, and roughness. Finally, **data analysis** is performed using Rigaku's software, which fits the reflectivity curve to determine the sample's structural properties, such as film thickness, density, and surface roughness, through model-based fitting techniques like Levenberg-Marquardt or genetic algorithms.

## **XRR Optic Alignment**

XRR Configuration settings

- 1. Turn OFF XRD unit and Turn OFF SmartLab SE Software
- 2. Replace Soller Slit 2.5 deg and IPS adapter with Monochromator Ge(220)x2
- 3. Turn ON XRD unit and Turn ON SmartLab SE Software
  - a. Click Hardware Configuration
  - b. Select incident optical unit as shown in arrows
  - c. Change IPS adapter with Ge(220)x2 and press Apply

| Seometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |             | 4 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 0      | 10          | 5 · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Distance | Unit   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (1) X-ray source - Mirror<br>(2) X-ray rource - Selection rlit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 114.000  | mm     |             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (3) X-ray source - IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190,000  | mm     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (d) X-ray source - Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300.000  | mm     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (5) Sample - RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 187,000  | mm     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (6) Sample - RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300.000  | mm     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (7) RS1 - RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.000  | mm     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (8) Sample - Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 331.000  | mm     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Incident primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        | IPS adaptor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Incident primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        | IPS adaptor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ncideat primary<br>Handard @<br>RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | × .    | IPS adaptor | In fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ncident primary<br>Randard @<br>SO<br>20 @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | × 1    | IPS adaptor | Aris Lover limit Upper Limit Unit Speed Limit Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Incident primary<br>Tandard 🗑<br>CBO<br>BO 🗑<br>Incident central unst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | y<br>y | IPS adaptor | Avis Lower Limit Und Speed Limit Und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| incident primary<br>Jandard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | × •    | PS adapter  | Avis Lover Limit Upper Limit Unit Speed Limit Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Incident primary<br>Standard 1<br>20 1<br>20 1<br>20 agust 1<br>2 |          | × .    | PS adaptor  | Aris Lover Limit Unit Speed Limit Unit<br>Speed Limit Unit Speed Limit Unit<br>Speed Limit Unit Speed Limit Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Incident primary<br>Standard ©<br>CBD<br>EDD ©<br>Stadptor ©<br>Incident splical unit<br>Stadptor ©<br>Incident St box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ×.     | IS adaptor  | Asis Lower Limit Und Speed Limit Und<br>Software |
| Incident primary<br>Standard @<br>CBO<br>CBO @<br>Incident optical unit<br>Ps adaptor @<br>Incident slit box<br>Standard incident slit box @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        | 15 sdapter  | Asis Lower Limit Unit Speed Limit Unit<br>Limit Speed Limit Unit Speed Limit                                                                                                                                                                 |



Or use this



|                                   | Optics Alignment (PB)        | ?      | × |
|-----------------------------------|------------------------------|--------|---|
| Optical settings                  |                              |        |   |
| Incident monochro                 | mator: Ge(220)x2             |        |   |
| Receiving optics:                 | Slit                         |        |   |
| Run alignment f                   | for vert Slit                |        |   |
| Use default opt                   | ics O PSA 0.5°               |        |   |
| Alignment conditio  Full  Quick ( | ns<br>Dnly receiving optics) |        |   |
| Registration destina              | ation                        |        |   |
| Optics attribute:                 | PB-Ge(220)x2                 |        |   |
| User settings                     | User defined settings        | / New. |   |
| O System settings                 |                              |        |   |
| Desistration data:                | 2024-05-20 13:39:42          |        |   |
| Registration date:                |                              |        |   |
| Post alignment                    |                              |        |   |
| Post alignment Print out results  |                              |        |   |

| Optical settings                                                                                                          |                                                                                                                                          |                                              |        |                         |                           |           |                   |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|-------------------------|---------------------------|-----------|-------------------|
|                                                                                                                           | mator: Ge(220)x2                                                                                                                         | $\sim$                                       |        |                         |                           | . (DD)    | 0                 |
|                                                                                                                           | Slit                                                                                                                                     |                                              |        | Custo                   | omize - Optics Aligni     | ment (PB) | 0                 |
| Run alignment f                                                                                                           | or vertical transmission geor                                                                                                            | metry                                        |        | Optical settings        |                           |           |                   |
| Use default opti                                                                                                          | cs  Customize optics                                                                                                                     | ustomize                                     |        | Incident monochromator: | Ge(220)x2                 |           |                   |
|                                                                                                                           |                                                                                                                                          |                                              |        | Incident Soller slit:   | Soller slit open (short)  |           |                   |
| Alignment conditio                                                                                                        | ns                                                                                                                                       |                                              |        | Length-limiting slit:   | 5 mm                      |           |                   |
| Full     Ouick (C                                                                                                         | )nly receiving ontics)                                                                                                                   |                                              |        | Attachment base:        | Standard attachment       |           |                   |
|                                                                                                                           | ing receiving optics,                                                                                                                    |                                              |        | Attachment:             | Standard attachment head  | 1         |                   |
| Registration destina                                                                                                      | ation                                                                                                                                    |                                              |        | Receiving optics:       | Slit                      |           |                   |
|                                                                                                                           | DP. Ga(220)w2                                                                                                                            |                                              |        | Receiving Soller slit:  | Soller slit 2.5°          |           |                   |
| User settings                                                                                                             | User defined settings                                                                                                                    |                                              | New    | Detector:               | D/teX Ultra 250           |           |                   |
| System settings                                                                                                           | oser denned settings                                                                                                                     |                                              | INEW   | Monochromator:          | None                      |           |                   |
| Benistration date:                                                                                                        | 2024-05-20 13:39:42                                                                                                                      |                                              |        | Detector distance, mm:  | Free (150 - 300 mm)       |           |                   |
| legistration date.                                                                                                        |                                                                                                                                          |                                              |        | Run alignment for vert  | ical cansmission geometry |           |                   |
| Post alignment                                                                                                            |                                                                                                                                          |                                              |        |                         | Set Current               | Optics Se | et Default Optics |
| Print out results                                                                                                         |                                                                                                                                          |                                              | l      |                         |                           | OK        | C                 |
|                                                                                                                           |                                                                                                                                          |                                              |        |                         |                           | UK        | Cance             |
| Run                                                                                                                       |                                                                                                                                          | ОК                                           | Cancel | Intensity               | FWH                       | MH        |                   |
| Use defa                                                                                                                  | ault optics   Custo                                                                                                                      | omize optics                                 | Custom |                         |                           |           |                   |
|                                                                                                                           |                                                                                                                                          |                                              |        | ize                     |                           |           |                   |
| Alignment                                                                                                                 | onditions                                                                                                                                |                                              |        | ize                     |                           |           |                   |
| Alignment (                                                                                                               | onditions<br>Quick (Only receivin                                                                                                        | ig optics)                                   |        | ize                     |                           |           |                   |
| Alignment of Full () (Registration                                                                                        | onditions<br>Quick (Only receivin<br>destination                                                                                         | ig optics)                                   | 1      | ize                     |                           |           |                   |
| Alignment of Full O Registration Optics attrib                                                                            | onditions<br>Quick (Only receivin<br>destination<br>pute: PB-0c(220                                                                      | ng optics)                                   | 1      | ize                     |                           |           |                   |
| Alignment of Full O Registration Optics attrik                                                                            | onditions<br>Quick (Only receivin<br>destination<br>oute: PB Cc(220                                                                      | ig optics)<br>)x2<br>ed setti gs             | 1      | ize<br>V Nev            | V                         |           |                   |
| Alignment of<br>Full O<br>Registration<br>Optics attrik<br>User set<br>System s                                           | conditions<br>Quick (Only receivin<br>destination<br>oute: PB Cc(220<br>angs User define<br>settings                                     | ng optics)<br>)x2<br>ed settings             | 1      | ize                     |                           |           |                   |
| Alignment of<br>Full<br>Registration<br>Optics attrik<br>User set<br>System s<br>Registration                             | conditions<br>Quick (Only receivin<br>destination<br>oute: PB Oc(220<br>angs User define<br>attings<br>date: 2024-05-7                   | ng optics)<br>)x2<br>ed setti gs<br>14:10:57 | 1      | Nev                     | V                         |           |                   |
| Alignment of<br>Full<br>Registration<br>Optics attrik<br>User set<br>System s<br>Registration<br>Post alignm              | conditions<br>Quick (Only receivin<br>destination<br>oute: PB-Oc(220<br>tings User define<br>attings<br>date: 2024-05-7<br>ent           | ng optics)<br>)x2<br>ed settings             | 1      | Nev                     | V                         |           |                   |
| Alignment of<br>Full<br>Registration<br>Optics attrik<br>User set<br>System s<br>Registration<br>Post alignm<br>Print out | conditions<br>Quick (Only receivin<br>destination<br>oute: PB (20220<br>angs User define<br>attings<br>date: 2024-05-7<br>ent<br>results | ng optics)<br>I)x2<br>ed settings            | 1      | Nev                     | V                         |           |                   |



### Attachment for general measurements







Adjust the mark of the detector adapter to 361.5 mm





# XRR Sample Alignment

Here we need to select the attachment.

|                              | Sample Alignment (Thin Film)                         | ? ×    |
|------------------------------|------------------------------------------------------|--------|
| Sample information           |                                                      |        |
| Thickness, mm: 1.0           | Width, mm: 60.8 Height, mm: 25.0                     | )      |
| Alignment conditions         |                                                      |        |
| Attachment and sample plate: | χφ attachment                                        | ~      |
| Direct beam half cut align   | Standard attachment head + 4-inch wafer sample plate |        |
|                              | χφ attachment                                        |        |
|                              | Surface density: High (> 4.0 g/cms)                  |        |
| ✓ Put a sample when the sam  | ple alignment starts                                 |        |
|                              |                                                      |        |
| Run recommended sequent      | ce O Customize conditions Customize                  |        |
| Run                          | ОК                                                   | Cancel |

Part1. Attachment 4-inch wafer sample plate. We need to add parameters of thickness, width and height of sample wafer and film density.

|                                | Sample Alignment (Thin Film)                                                      |
|--------------------------------|-----------------------------------------------------------------------------------|
|                                | Sample information                                                                |
|                                | Thickness, mm: 0.4 Width, mm: 11.4 Height, mm: 10.4 ①                             |
|                                | Alignment conditions                                                              |
|                                | Attachment and sample plate: Standard attachment head + 4-inch wafer sample plate |
|                                | 🗹 Direct beam half cut ang nment 🗹 Surface normal alignment                       |
|                                | Alignment criteria: Standard 🗸 🗸                                                  |
| La Optics Alignment (DR)       | Surface densit Low (1.0 – 2.5 g/cm3)                                              |
|                                | ✓ Put a sample whan the sample alignment starts                                   |
| + Sample Alignment (Thin Film) |                                                                                   |
| $\bigtriangledown$             | Run recommended sequence      Customize conditions     Customize                  |
| 🔝 Reflectivity Measurement     | Run OK Cancel                                                                     |
| $\bigtriangledown$             |                                                                                   |

| Sample Alignment                                     | (Thin Film) 💿 🗙                                |
|------------------------------------------------------|------------------------------------------------|
| Sample information                                   |                                                |
| Thickness, mm: 1.0 Width, mm: 60.8                   | Height, mm: 25.0 (i)                           |
| Alignment conditions                                 |                                                |
| Attachment and sample plate: χφ attachment           |                                                |
| Direct beam half cut alignment 🗹 Surface normal alig | gnment                                         |
| Alignment criteria:                                  | Standard                                       |
| Surface density:                                     | High (> 4.0 g/cm3)                             |
| Put a sample when the sample alignment starts        | Very low (<1.0 g/cm3)                          |
| Run recommended sequence      Customize condition    | Medium (2.5 – 4.0 g/cm3)<br>High (> 4.0 g/cm3) |
| Run                                                  | OK Cancel                                      |
|                                                      |                                                |

| Асцуще               |                                                                | Sample Alignment (Th         | ın Film)            | Û             |                                               |            |              |
|----------------------|----------------------------------------------------------------|------------------------------|---------------------|---------------|-----------------------------------------------|------------|--------------|
|                      | Sample information                                             |                              | [                   |               | Smart Mossage                                 |            |              |
| ral (BB)<br>ral (PB) | Thickness, mm: 0.4                                             | Width, mm: 11.4              | Height, mm: 10.4    | <b>4</b> 0    | Smart Wessage                                 |            |              |
| tion SAXS            | Alignment conditions                                           |                              |                     | Install samp  | le spacer 0-3 mm in standard attachment head. |            |              |
| ual Stress           |                                                                | Standard attachment head + 4 | l-inch wafer samp   |               |                                               |            |              |
| ctivity              | Direct beam half cut alignment                                 | ment 🗹 Surface normal alignm | ent                 |               |                                               |            |              |
| ng Curve             |                                                                | Alignment criteria: Star     | ndard               |               |                                               |            |              |
| Adjustme             | ✓ Put a sample when the same same same same same same same sam | nple alignment starts        | / (1.0 – 2.5 g/cm3, | Install 4-ind | h wafer sample plate in sample spacer 0-3 mm. |            |              |
| uator Con<br>tenance | Run recommended sequer                                         | nce () Customize conditions  | Customize           |               | f ti 🖶 itti                                   |            |              |
| tor                  | Run                                                            |                              |                     |               |                                               |            |              |
|                      | ×                                                              | -u opics Aignment            | (* 0)               | Place wafe    | sample in 4-inch wafer sample plate.          |            |              |
| ities                | @ * Q                                                          | Ja Cample Alignment          | (Thin Film)         |               |                                               |            |              |
|                      | ^                                                              | - Sample Alignment           |                     |               |                                               |            | 0.5          |
| ant Activity         |                                                                | A Reflectivity Measur        | rement              |               |                                               |            |              |
| ral Measur           | Hardware Control                                               |                              | $\bigtriangledown$  |               |                                               |            |              |
| Figure Mea           | Sample Alignment (Thin Film) o                                 | unning                       |                     | Hide figures  |                                               | ОК 🗸       | Stop         |
| ual Stress I         | Sample Alighment (min min)                                     | unning.                      |                     |               |                                               | -5.2800875 | 3527905.3526 |
| ng Curve I           |                                                                |                              |                     |               | ∡ <u>2</u> θ/ω                                | 0.4612     | 51700 0027   |
| ng Curve F           |                                                                |                              |                     |               | ✓ 0001_Scan2024May30-155509                   | 0.4612     | 51709.9827   |
| Measurem             | Running Smart message                                          |                              |                     |               | 4 V 25                                        | 1 4140750  | 47425 7522   |
| :tion SAXS           |                                                                |                              |                     |               | ✓ 0001_Scan2024May30-155542                   | -1.4143730 | 4/435./522   |
| ole Slit Me          |                                                                |                              |                     |               | ▲ ₩ 20                                        | 0.4610     | 27675 2517   |
| : Measurer           |                                                                |                              |                     |               | V 0001_3Ca112024Wiay30-153025                 | 0.4010     | 31013.2311   |
| vieasureme           | Chara                                                          |                              |                     |               | - U 0001 Scap2024May30-155719                 | 0.0350000  | 36172 8811   |
| nty                  | Stop                                                           |                              |                     |               |                                               | 0.000000   | 30172.0011   |

Part2.  $\chi\varphi$  attachment. We need to add parameters of width and height of sample wafer.



|                            | Sample Alignment           | (Thin Film)        | ?   | ) ×    |
|----------------------------|----------------------------|--------------------|-----|--------|
| Sample information         |                            |                    |     |        |
| Thickness, mm: 1.0         | Width, mm: 60.8            | Height, mm: 25.0   | (j) |        |
| Alignment conditions       |                            |                    |     |        |
| Attachment and sample plat | e: χφ attachment           |                    |     | $\sim$ |
| Direct beam half cut align | nment 🗹 Surface normal ali | gnment             |     |        |
|                            | Alignment criteria:        | Standard           |     | $\sim$ |
|                            | Surface density:           | High (> 4.0 g/cm3) |     | $\sim$ |
| Put a sample when the sa   | ample alignment starts     |                    |     |        |
| Run recommended seque      | ence 🔿 Customize conditior | Customize          |     |        |
|                            |                            |                    |     |        |

## Replace standard attachment with the $\chi\varphi$ attachment.

| Hardware Control                      | anager × DB Manager × Materials Manager ×                 |   |
|---------------------------------------|-----------------------------------------------------------|---|
| Sample Alignment (Thin Film) running. | Display Area                                              |   |
|                                       | $\omega m$ Ts 2 $\theta/\omega$ Zs 2 $\theta$ Zr $\omega$ |   |
|                                       | Smart Message                                             |   |
| Running Smart message                 |                                                           |   |
|                                       | Remove the standard attachment base.                      |   |
|                                       |                                                           |   |
| Char                                  | u-ri 🜩 ifriii                                             |   |
| Stop                                  |                                                           |   |
|                                       | Install xø attachment in diffractometer.                  |   |
|                                       |                                                           |   |
|                                       |                                                           |   |
| XRR (measurements) PB + Sample align  |                                                           |   |
| $\bigtriangledown$                    |                                                           |   |
| Optics Alignment (PB)                 | Place wafer sample in vo attachment.                      |   |
| $\bigtriangledown$                    |                                                           |   |
| Sample Alignment (Thin Film)          |                                                           |   |
| $\bigtriangledown$                    |                                                           |   |
| A Reflectivity Measurement            |                                                           |   |
| $\bigtriangledown$                    |                                                           |   |
|                                       |                                                           | C |







## Monochromator Ge(220)\*2







Remove gauge and set sample position as defined in picture.



## Sample alignment will take about an hour.



## Flow sequence completed.



## **XRR** Measurements

### Press Reflectivity measurements

|                                      | Reflectivity Measurement ⑦ ×                                     |   |
|--------------------------------------|------------------------------------------------------------------|---|
|                                      | Requested scan duration                                          |   |
|                                      | Requested scan duration, min: 25.0 🔅 Return to Default Value     |   |
|                                      | Run recommended sequence      Customize conditions     Customize |   |
| /                                    | Save measured data                                               |   |
| ARR (measurements) PB + Sample align | File name:         D:\qq\gold film xrr-1.rasx                    | ľ |
|                                      | Sample name:                                                     |   |
| +¦ □ Optics Alignment (PB)           | Memo:                                                            |   |
| $\bigtriangledown$                   | Calculated scan duration: 25min                                  |   |
| + Sample Alignment (Thin Film)       |                                                                  |   |
| $\bigtriangledown$                   | Kun OK Cancel                                                    |   |
| A Reflectivity Measurement           |                                                                  |   |
| $\bigtriangledown$                   | 1.100                                                            | Т |

#### Press Customize for set measurement conditions

| <u> </u>                                                         |           |                  |                |             | Custor          | mize – Refle                      | ctivity Measu    | rement               |                          |                       |                  | ? ×                   |
|------------------------------------------------------------------|-----------|------------------|----------------|-------------|-----------------|-----------------------------------|------------------|----------------------|--------------------------|-----------------------|------------------|-----------------------|
|                                                                  | Request   | ed scan duratio  | on             |             |                 |                                   |                  |                      |                          |                       |                  |                       |
| Reflectivity Measurement 🔹 🕐 🗙                                   | Paquart   | nd coan duratio  |                | 25.0 A Pate | um to Default V | alua                              |                  |                      |                          |                       |                  |                       |
| Requested scan duration                                          | Request   | eu scan uuratio  |                |             | in to belaut v  | aiue                              |                  |                      |                          |                       |                  |                       |
| Requested scan duration, min: 25.0 🗘 Return to Default Value     | Manu Manu | al exchange s    | lit conditions |             |                 | · ~ [                             |                  |                      |                          |                       |                  |                       |
| Run recommended sequence      Customize conditions     Customize | Length-I  | imiting slit: 10 | ) mm           | short)      | Receiv          | ring optics:<br>ring Soller slit: | Soller slit 2.5° |                      | ✓ Read Cu                | rrent Optics          |                  |                       |
| Save measured data                                               | Scan cor  | nditions         |                |             |                 |                                   |                  |                      |                          |                       |                  |                       |
| File name:     D:\qq\gold film xrr-1.rasx        Sample name:    | Exec.     | Scan Axis        | Range          | Start, *    | Stop, *         | Step, *                           | Speed, */min     | Incident Slit,<br>mm | Receiving Slit<br>#1, mm | Receiving S<br>#2, mm | it Atter         | uator                 |
| Memo:                                                            |           | 2θ/ω             | Absolute       | 0.0000      | 10.0000         | 0.0040                            | 0.400            | 0.050                | 0.150                    | 0.225                 | ✓ Auto           | ~                     |
| Coloristant and Antion 25min                                     |           |                  |                |             |                 |                                   |                  |                      |                          |                       |                  |                       |
| Calculated scan duration: 25min                                  |           |                  |                |             |                 |                                   |                  |                      |                          |                       |                  |                       |
| Run OK Cancel                                                    |           |                  |                |             |                 |                                   |                  |                      |                          |                       |                  |                       |
| A Reflectivity Measurement                                       |           |                  | Absolute       | 0.0000      | 10.0000         | 0.0100                            | 0.667            |                      | 0.250                    | 0.375                 | Auto             | $\sim$                |
|                                                                  |           |                  |                |             |                 |                                   |                  | Set F                | Recommended Va           | Calculate             | d scan dura<br>K | tion: 25min<br>Cancel |

### Press read current optics and press default values if default values are suitable for the analysis

|              |                                                                                            |                   |          | Custo    | mize – Refle | ectivity Measu | rement               |                          |                    |         | (?         | ) ×             |
|--------------|--------------------------------------------------------------------------------------------|-------------------|----------|----------|--------------|----------------|----------------------|--------------------------|--------------------|---------|------------|-----------------|
| Request      | equested scan duration                                                                     |                   |          |          |              |                |                      |                          |                    |         |            |                 |
| Request      | Requested scan duration, min: 25.0 💭 Return to Default Value                               |                   |          |          |              |                |                      |                          |                    |         |            |                 |
| 🗸 Man        | ual exchange s                                                                             | lit conditions    |          |          |              |                |                      |                          |                    |         |            | >               |
| Incident     | t Soller slit: So                                                                          | oller slit open ( | short)   | ✓ Receiv | ving optics: | Slit           |                      | ~                        |                    |         |            |                 |
| Length-l     | ength-limiting slit: 10 mm 🔽 Receiving Soller slit: Soller slit 2.5° 💟 Read Current Optics |                   |          |          |              |                |                      |                          |                    |         |            |                 |
|              |                                                                                            |                   |          |          |              |                |                      |                          |                    |         |            |                 |
| Scan mo      | ode: 0D(contin                                                                             |                   |          |          |              |                |                      |                          |                    |         |            |                 |
| Exec.        | Scan Axis                                                                                  | Range             | Start, ° | Stop, °  | Step, °      | Speed, °/min   | Incident Slit,<br>mm | Receiving Slit<br>#1, mm | Receivin<br>#2, mm | g Slit  | Attenu     | ator            |
| $\checkmark$ | 2θ/ω                                                                                       | Absolute          | 0.0000   | 10.0000  | 0.0040       | 0.400          | 0.050                | 0.150                    | 0.225              | $\sim$  | Auto       | $\sim$          |
|              |                                                                                            |                   |          |          |              |                |                      | 0.250                    | 0.375              | $\sim$  | Auto       | $\sim$          |
|              |                                                                                            |                   |          |          |              |                |                      | 0.250                    | 0.375              |         |            |                 |
|              |                                                                                            |                   |          |          |              |                |                      | 0.250                    | 0.375              |         |            |                 |
|              |                                                                                            |                   |          |          |              |                |                      | 0.250                    | 0.375              |         |            |                 |
|              |                                                                                            |                   |          |          |              |                | Set                  | Recommended Va           | Calcul             | ated so | an duratio | on: 25<br>ancel |

### Or press read current optics and press set recommended values

|              |                                                            |                    |          | Custo    | mize – Refle | ectivity Measu | rement               |                          |                    |         | (?           | 0     |
|--------------|------------------------------------------------------------|--------------------|----------|----------|--------------|----------------|----------------------|--------------------------|--------------------|---------|--------------|-------|
| Request      | quested scan duration                                      |                    |          |          |              |                |                      |                          |                    |         |              |       |
| Request      | quested scan duration, min: 25.0 💭 Return to Default Value |                    |          |          |              |                |                      |                          |                    |         |              |       |
| 🗸 Man        | ual exchange                                               | slit conditions    |          |          |              |                |                      |                          |                    |         |              |       |
| ncident      | t Soller slit: S                                           | Soller slit open ( | (short)  | ✓ Receiv | ving optics: | Slit           |                      | $\sim$                   |                    |         |              |       |
| .ength-      | gth-limiting slit: 10 mm                                   |                    |          |          |              |                |                      |                          |                    |         |              |       |
|              |                                                            |                    |          |          |              |                |                      |                          |                    |         | ,            |       |
| Scan co      | nditions                                                   |                    |          |          |              |                |                      |                          |                    |         | $\mathbf{i}$ |       |
| Scan mo      | ode: 0D(conti                                              | nuous) 🗸           |          |          |              |                |                      |                          |                    |         |              |       |
| Exec.        | Scan Axis                                                  | Range              | Start, ° | Stop, °  | Step, °      | Speed, °/min   | Incident Slit,<br>mm | Receiving Slit<br>#1, mm | Receivin<br>#2, mm | g Slit  | Attenua      | ator  |
| $\checkmark$ | 2θ/ω                                                       | Absolute           | 0.0000   | 6.0000   | 0.0040       | 0.240          | 0.050                | 0.150                    | 0.225              | $\sim$  | Auto         | ~     |
|              |                                                            |                    |          |          |              |                |                      | 0.250                    | 0.375              | $\sim$  | Auto         |       |
|              |                                                            |                    |          |          |              |                |                      | 0.250                    | 0.375              |         | A            |       |
|              |                                                            |                    |          |          |              |                |                      | 0.250                    | 0.375              | /       | Auto         |       |
|              |                                                            |                    |          |          |              |                |                      | 0.250                    | 0.375              | $\sim$  | Auto         |       |
|              |                                                            |                    |          |          |              |                |                      |                          |                    |         |              |       |
|              |                                                            |                    |          |          |              |                |                      |                          | Calcul             | ated so | an duratio   | on: 2 |

### Default values or Recommended values

| Read Current Optics       Incident Slit, mm     Receiving Slit #1, mm     Receiving Slit #2, mm     Attenuator |
|----------------------------------------------------------------------------------------------------------------|
| Read Current Optics       'min     Incident Slit, mm       #1, mm     #2, mm                                   |
| Read Current Optics       'min     Incident Slit, mm       #1, mm     #2, mm                                   |
| Read Current Optics       Mining     Incident Slit, mm     Receiving Slit #2, mm     Attenuator                |
| 'min Incident Slit, Receiving Slit Receiving Slit Attenuator #1, mm #2, mm                                     |
| /min Incident Slit, Receiving Slit Receiving Slit<br>mm #1, mm #2, mm Attenuator                               |
| rmin Incident Slit, Receiving Slit Receiving Slit #1, mm #2, mm Attenuator                                     |
|                                                                                                                |
| 0.050 0.150 0.225 💟 Auto 💟                                                                                     |
| 0.050 0.250 0.575 M Auto                                                                                       |
| 0.050 0.250 0.375 🗸 Auto                                                                                       |
| 0.050 0.250 0.375 🗸 Auto                                                                                       |
|                                                                                                                |
| 0.050 0.150 0.225 S                                                                                            |

The better results of the Gold film are achieved with these parameter settings of higher resolution

|                     |                                             |                           |             | Custor           | mize – Refle                    | ctivity Measu            | rement               |                                        |                    |         | (         | ) <mark>)</mark> |
|---------------------|---------------------------------------------|---------------------------|-------------|------------------|---------------------------------|--------------------------|----------------------|----------------------------------------|--------------------|---------|-----------|------------------|
| Request             | ted scan duratio                            | on                        |             |                  |                                 |                          |                      |                                        |                    |         |           |                  |
| Request             | ted scan duratio                            | on, min: 2                | 00.0 🗘 Retu | ırn to Default V | alue                            |                          |                      |                                        |                    |         |           |                  |
| 🗸 Man               | ual exchange s                              | lit conditions            |             |                  |                                 |                          |                      |                                        |                    |         |           |                  |
| Incident<br>Length- | t Soller slit: Soller slit: Soller slit: 10 | oller slit open (<br>) mm | short)      | Receiv           | ing optics:<br>ing Soller slit: | Slit<br>Soller slit 2.5° |                      | <ul> <li>✓</li> <li>Read Cu</li> </ul> | rrent Optic        | 5       |           |                  |
| Scan co             | nditions                                    |                           |             |                  |                                 |                          | 1                    |                                        |                    |         |           |                  |
| Exec.               | Scan Axis                                   | Range                     | Start, °    | Stop, °          | Step, °                         | Speed, °/min             | Incident Slit,<br>mm | Receiving Slit<br>#1, mm               | Receivin<br>#2, mm | g Slit  | Attenu    | ator             |
| $\checkmark$        | 2θ/ω                                        | Absolute                  | 0.0000      | 8.0000           | 0.0040                          | 0.04                     | 0.050                | 0.150                                  | 0.225              | $\sim$  | Auto      | $\sim$           |
|                     | 2θ/ω                                        | Absolute                  | 0.0000      | 10.0000          | 0.0100                          | 0.667                    | 0.050                | 0.250                                  | 0.375              |         |           |                  |
|                     |                                             |                           |             |                  |                                 |                          |                      | 0.250                                  | 0.375              |         |           |                  |
|                     |                                             |                           |             |                  |                                 |                          |                      | 0.250                                  | 0.375              |         |           |                  |
|                     |                                             |                           |             |                  |                                 |                          |                      | 0.250                                  | 0.375              |         |           |                  |
|                     |                                             |                           |             |                  |                                 |                          | Sat                  | Pacammandad V                          | Calculate          | ed scan | duration: | 3h 20r           |
|                     |                                             |                           |             |                  |                                 |                          | Set                  | Recommended Va                         | lues               | OK      | C         | ar               |

#### More Gold Results

XRR Data Analysis XRR measurement requirements:

- 1. The Wafer Size (film + Substrate)
  - a. Length (mm) =
  - b. Width (mm)=
  - c. Thickness optional (mm) =
- 2. Mark the density of the film (expected)
  - a. Very Low (<1.0 g/cm<sup>3</sup>
  - b. Low  $(1.0 \sim 2.5 \text{ g/cm}^3)$
  - c. Medium (<2.5 ~ 4 g/cm<sup>3</sup>
  - d. High (>4 g/cm<sup>3</sup>

#### XRR analysis requirements:

- 1. Material of the Film & Substrate e.g. Gold film on Glass.
- 2. Estimated thickness of the film.
- 3. If the structure of the film is multilayer, then mention
  - a. No. of layers.
  - b. Material of each layer.

If the material is not available in the SmartLab Studio II database, please provide the necessary information about the film to proceed with the analysis. For details follow the topic (Handling Materials Not in the Database).

| Film Thickness Range          | Interpreting the 20 Range      | Fitting Methods                   |
|-------------------------------|--------------------------------|-----------------------------------|
| Lower Limit: As low as 1-2    | Low-Angle Region (0.1° to 1°): | Levenberg-Marquardt (LM),         |
| nm, ideal for ultrathin films | Critical for surface roughness | Genetic Algorithm (GA), Simulated |
| like monolayers.              | and density, with the critical | Annealing (SA), Powell's Method,  |
|                               | angle visible here.            |                                   |
| Upper Limit: Up to a few      | Mid-Angle Region (1° to 3°):   |                                   |
| micrometers, with             | Contains Kiessig fringes       |                                   |
| limitations on thicker films  | essential for accurate         |                                   |
| due to reduced oscillation    | thickness determination.       |                                   |
| visibility.                   |                                |                                   |
|                               | Recommended Range:             |                                   |
|                               | Typically 0.1° to 4°-5° for    |                                   |
|                               | optimal results, possibly      |                                   |
|                               | extending to 8°-10° if needed. |                                   |

## Summary of XRR measurements and Analysis

## Analysis Steps

### Load XRR Measured Data



#### Press Configure sample model



Add Layer and define material (and set it parameters of thickness, density and roughness. This step is optional)



Here we can define thickness and the range of thickness and set this range by defining a minimum and maximum values



#### Select Oscillation Analysis and then Run Analysis + Optimize and Apply to Sample





#### Set Simulation Parameters => Simulation Parameters => Auto

Select Instrumental Function and set Parameters and values (Gauss Width 1.00e-002) as given in arrows and press "Set Fitting"



Select Fit Parameters from Genetic Algorithm, Newton Gaussian method, Nelder-Mead method and Parallel Tempring method



Change "Fit Method Parameters" from 50 to 55 or to 45, and press Fit, it will improve the fitness.





#### Run Fit with Genetic Algorithm (Select different Fit methods to improve the fitness)

#### Continue fitting till R-factor is minimized



#### **Create Report**



## XRR Theory and Concepts

The Rigaku SmartLab SE can accurately measure thin films with thicknesses ranging from a few nanometers (nm) to several micrometers ( $\mu$ m) using X-ray reflectivity (XRR).

### Typical Measurement Ranges:

- **Lower Limit**: For ultrathin films, XRR can accurately measure thicknesses as low as 1-2 nm. This is ideal for characterizing monolayers, ultra-thin coatings, and nanostructures.
- **Upper Limit**: XRR can also measure films up to a few micrometers thick, depending on the material and the quality of the measurement setup. For films thicker than this, the reflectivity may become difficult to analyze due to reduced oscillation visibility.

#### Factors Affecting Accuracy:

- **Surface Roughness**: Higher surface roughness can reduce the accuracy of thickness measurements.
- **Density and Composition**: The film's density and composition also play a role in determining the measurement range and accuracy.
- Instrument Calibration: Proper calibration and alignment of the SmartLab SE are crucial for achieving accurate results.

#### Thickness limit of the film for Accurate XRR measurements

In X-ray Reflectivity (XRR) measurements, the thickness of the thin film plays a significant role in achieving clear and accurate data. For the Rigaku SmartLab SE, the optimal thickness range is typically as follows:

Ideal Thickness Range for XRR on SmartLab SE

- Thin Films up to ~200 nm: XRR is well-suited for films with thicknesses from a few nanometers up to around 200 nm. In this range, the reflectivity oscillations (fringes) are clearly visible, allowing for precise measurement of thickness, density, and roughness.
- Limitations Beyond ~200 nm: As the film thickness increases beyond approximately 200 nm, the
  reflectivity fringes become closely spaced and harder to distinguish, making it challenging to
  perform accurate measurements. In some cases, up to 500 nm can be analyzed if the material
  has very sharp interfaces and low roughness, but accuracy decreases with increasing thickness.

Factors Impacting Thickness Limits

- 1. Density Contrast: If there's a strong density contrast between the thin film and the substrate, XRR can handle slightly thicker films.
- 2. Surface and Interface Roughness: Higher roughness blurs the fringes and limits the maximum measurable thickness.
- 3. Instrument Settings and Resolution: Using fine slits or a monochromator can enhance resolution, potentially allowing measurements for thicker films, though it's still limited.

If your films are significantly thicker and you want structural information, switching to X-ray Diffraction (XRD) might offer better insight into phase and crystallographic structure. For finer control on SmartLab SE, I'd recommend starting with test measurements to see if fringes are visible and adjusting parameters accordingly.

### Why Oscillations Appear in XRR

The oscillations you see in X-ray reflectivity (XRR) measurements, known as **Kiessig fringes**, occur due to constructive and destructive interference between X-rays reflected from different interfaces in a thin film structure.

#### Mechanism of Kiessig Fringes:

- 1. **Incident X-ray Beam**: When X-rays strike a thin film at a low angle, part of the beam is reflected from the top surface, and part penetrates the film and reflects from the interface between the film and the substrate (or from internal layers in the case of multilayer structures).
- 2. **Interference**: The two reflected beams (from the top surface and the internal interface) can interfere with each other. Depending on the phase difference between them, this interference can be constructive (resulting in a higher reflected intensity) or destructive (resulting in a lower reflected intensity).

3. **Oscillations**: As the angle of incidence (and hence the path difference between the reflected beams) changes, this interference leads to oscillations in the reflected intensity, which manifest as the Kiessig fringes in the XRR pattern.

#### Information from Oscillations:

- **Film Thickness**: The period of the oscillations is directly related to the thickness of the film. Thicker films produce more closely spaced oscillations.
- **Density and Roughness**: The amplitude and decay of the oscillations can provide information about the film's density, surface roughness, and interface quality.

### Why Oscillations Become Noise at Higher 20 Angles

As you move to higher  $2\theta$  angles in XRR measurements, several factors contribute to the oscillations becoming less distinct and eventually appearing as noise:

#### 1. Decreasing Intensity:

- As the angle increases, the intensity of the reflected X-rays decreases exponentially due to the reduced reflectivity at higher angles.
- With lower signal intensity, the fringe visibility diminishes, making the oscillations harder to distinguish from noise.

#### 2. Instrumental Limitations:

- The signal-to-noise ratio decreases at higher angles due to limitations in the detector sensitivity and the X-ray source's intensity.
- Background noise and scattered radiation become more prominent, masking the weaker oscillations.

#### 3. Surface and Interface Roughness:

- Roughness at the film's surface or interfaces causes scattering, which can blur the fringes at higher angles.
- If the roughness is significant, it can cause the oscillations to decay more rapidly and merge into the noise.

#### 4. Multiple Reflections and Complexity:

• At higher angles, multiple reflections and refractions within the film can lead to complex interference patterns that are difficult to resolve, further contributing to the noise.

For optimal data analysis, it's essential to focus on the range where the oscillations are clear and distinct, typically in the lower to mid-angle regions of the XRR spectrum.

It is generally advisable to focus on the area where the Kiessig fringes are clear and exclude the noisy region for XRR calculations when using the SmartLab SE. Here's why and how to approach this:

### Why Focus on the Clear Kiessig Fringes?

#### 1. Accuracy of Data:

- The clear Kiessig fringes represent the reliable interference pattern that corresponds directly to the film's thickness, density, and roughness.
- Using this well-defined region ensures that the fitting models accurately represent the physical characteristics of the film.

#### 2. Signal-to-Noise Ratio:

- Including the noisy regions in the calculation can degrade the signal-to-noise ratio, leading to less accurate parameter determination.
- Noise can introduce artifacts in the data analysis, leading to incorrect conclusions about the film properties.

#### 3. Model Fitting:

- The fitting algorithms used in XRR analysis, such as those in the SmartLab SE software, work best with clear, well-defined oscillations.
- Excluding the noisy data allows the algorithm to focus on the meaningful data, improving the fit quality and the accuracy of the extracted parameters.

#### How to Focus on the Kiessig Fringes in SmartLab SE:

#### 1. Data Trimming:

- Select Range: When setting up your analysis, select the 2θ range that includes the clear Kiessig fringes. This typically involves starting from the critical angle and extending through the region where the fringes are distinct.
- **Exclude Noise**: Cut off the data at the point where the oscillations become indistinguishable from noise.

#### 2. Fitting the Data:

- Use the SmartLab SE's software to fit the XRR data within the selected range.
- The software may allow you to manually adjust the fitting range, ensuring that the focus remains on the usable data.

#### 3. Cross-Validation:

 After fitting, cross-validate the results by considering physical parameters such as known film density and expected thickness. This helps confirm that the fitting model accurately reflects the sample's characteristics.

The Rigaku SmartLab SE offers four fitting methods for XRR analysis, which typically include different optimization algorithms and approaches to model the reflectivity data. While it may be tempting to use all four methods to cover all bases, it's essential to understand their strengths and how to choose the most appropriate one for your specific analysis. Here's a guideline on how to approach this:

### Understanding the Fitting Methods

- Levenberg-Marquardt (LM) Algorithm:
  - **Strength**: This method is widely used for non-linear least squares optimization and is effective for converging quickly when the initial model is close to the actual data.
  - **Use When**: Your initial parameters are well-known, and you need a fast, reliable fit.
- Genetic Algorithm (GA):
  - Strength: GA is a global optimization method that is particularly useful when you have little information about the initial parameters or when the parameter space is large and complex.
  - **Use When**: The model fitting may involve multiple local minima, and a broader search of the parameter space is required.
- Simulated Annealing (SA):
  - **Strength**: This method is another global optimization technique that is less likely to get stuck in local minima, providing robust solutions over complex parameter spaces.
  - **Use When**: The data may involve a complex landscape of solutions, and you need to ensure that the global minimum is found.
- Powell's Method:
  - **Strength**: This method is a direction-set optimization technique, which can be faster but might not always find the global minimum.
  - **Use When**: The problem is well-behaved and doesn't require a global search.

#### Should You Use All Four Methods?

#### Advantages of Using Multiple Methods:

- **Cross-Verification**: Running multiple fitting methods can provide a way to cross-verify results. If different methods converge on similar parameters, this increases confidence in the fit.
- **Robustness**: By trying different methods, you can ensure that the solution isn't biased by the choice of the fitting algorithm, especially in complex or poorly understood systems.

#### Potential Downsides:

- **Time-Consuming**: Running all four methods can be time-consuming, especially if you have a large number of samples or if some of the methods (like GA or SA) take longer to converge.
- **Overfitting**: There's a risk of overfitting if you choose the results that simply give the best numerical fit without considering the physical meaning of the parameters.

#### **Recommended Approach**

- Start with a Robust Method: Begin with a method like the Genetic Algorithm (GA) or Simulated Annealing (SA) if you suspect the model is complex or if you're unsure about initial parameters. These methods are more likely to find a global minimum.
- **Fine-Tuning with LM**: Once you have a general fit from a global method, use the Levenberg-Marquardt (LM) method to fine-tune the fit, as it is faster and often more precise when close to the solution.
- **Cross-Verification**: If the fitting is critical, or if you're dealing with an unfamiliar material, run another method like Powell's for cross-verification.
- **Check Consistency**: Compare the results across methods. Consistent results reinforce the reliability of the parameters. Significant discrepancies may indicate that the model needs adjustment or that certain parameters are not well-constrained.

Using all four methods can be beneficial for cross-validation, but it may not always be necessary. A practical approach is to use a global method like GA or SA for initial fitting, followed by LM for refinement. If the results are critical, consider using an additional method for verification. This strategy balances thoroughness with efficiency.

The  $2\theta$  range Selection for the best XRR results



| Layer<br>Numb<br>er | Material | Thickness,<br>nm |       | Density,<br>g/cm³ <d></d> |       | Roughness,<br>nm <rgh></rgh> |        |
|---------------------|----------|------------------|-------|---------------------------|-------|------------------------------|--------|
| L1                  | Au       | 10.579           | ±0.06 | 17.64665                  | ±0.19 | 0.405                        | ±0.003 |
| Sub                 | Si       |                  |       | 2.32924                   |       | 1.072                        | ±0.017 |



| Layer<br>Numb<br>er | Material | Thickness,<br>nm |       | Density,<br>g/cm³ <d></d> |       | Roughness,<br>nm <rgh></rgh> |        |
|---------------------|----------|------------------|-------|---------------------------|-------|------------------------------|--------|
| L1                  | Au       | 10.609           | ±0.03 | 18.13896                  | ±0.09 | 0.454                        | ±0.005 |
| Sub                 | Si       |                  |       | 2.32924                   |       | 1.110                        | ±0.01  |

The 2θ range is crucial in XRR measurements, as it determines the quality of the reflectivity data and the ability to accurately model the thin film's properties.

### Interpreting the Graph:

- 1. Low-Angle Region (0.1° to 1°):
  - This region is where total external reflection occurs, and it provides information about the surface roughness and density of the film.
  - The critical angle (around 0.2° to 0.4° in many materials) can be seen in this region.

#### 2. Mid-Angle Region (1° to 3°):

- This is where the oscillations (known as Kiessig fringes) appear. These fringes are related to the thickness of the film and are essential for determining the film's thickness accurately.
- For thin films, capturing several oscillations is crucial to obtain a precise fit during analysis.
- 3. High-Angle Region (3° to 6° and beyond):
  - As the angle increases, the intensity of the reflected X-rays decreases, and the fringes may become less pronounced or disappear.
  - This region may provide information about the interface roughness and additional layers if present.

### Recommended 20 Range:

- **Starting Angle**: Around 0.1° to 0.2°, to capture the critical angle and total reflection.
- **Upper Limit**: Typically, a range up to 4° to 6° is sufficient for most thin films. However, if you see that the oscillations continue beyond 6°, you might want to extend the range to 8° or 10°.

#### For Your Sample:

Based on the graph for  $2\theta$  range from 0 to about  $10^\circ$ :

- Ideal Range: A 2θ range from 0.1° to about 4°-5° seems appropriate for this measurement.
- Adjustment: If you notice more oscillations or features at higher angles, consider extending the range slightly beyond 5° to capture more data.

This range should provide a good balance between capturing the critical features and maintaining measurement efficiency. Adjustments can be made depending on the specific requirements of your analysis.

### Significance of X-ray reflectivity (XRR) Kiessig fringes

X-ray reflectivity (XRR) fringes, also known as Kiessig fringes, arise due to interference between X-rays reflected from different interfaces within a thin film sample, such as between the film surface and the film-substrate interface. These fringes are highly informative for thin film analysis, and their characteristics—such as amplitude, spacing, and shape—can reveal important details about the sample.

#### Significance of XRR Fringes:

#### 1. Thickness of the Film:

 The spacing between fringes is inversely proportional to the film thickness. Closer fringes indicate a thicker film, while wider fringes represent a thinner film. This is one of the primary pieces of information extracted from XRR measurements.

#### 2. Density of the Film:

 The amplitude of the fringes is related to the electron density contrast between the layers (film and substrate). Higher density contrast between the layers will produce higher fringe amplitudes, while lower contrast will lead to smaller amplitudes. For instance, if a film is denser than the substrate, the fringes will have a higher amplitude.

#### 3. Surface and Interface Roughness:

 The sharpness or decay of the XRR fringe amplitude also depends on the roughness of the film surfaces and interfaces. Higher roughness tends to dampen the fringe amplitude more quickly as the rough surface causes scattering, reducing the coherent interference necessary for strong fringes. Smooth films will maintain higher amplitudes over a longer range.

#### Why Some Samples Have Higher Amplitude Fringes:

- **Higher Density Contrast:** A greater difference in density between the film and substrate results in larger amplitude fringes.
- Lower Surface/Interface Roughness: If the film has a smooth surface and a well-defined interface with the substrate, the fringes will have a higher amplitude.

#### Why Some Samples Have Smaller Amplitude Fringes:

- Lower Density Contrast: A smaller difference in density between the film and substrate will reduce the fringe amplitude.
- **Higher Surface/Interface Roughness:** Increased roughness scatters X-rays and diminishes the coherence of reflected beams, leading to reduced fringe amplitudes and faster damping.

In summary, the amplitude of XRR fringes provides insight into the material's density contrast and the roughness of its surfaces and interfaces.

## Gold Film Results

Path: Unsaved Sharing in DB level: Shared **Content:** Oscillation analysis: 1

### Fits: 1 Measured data: 2 **General Info**

| Analysis date | 05/09/2024 4:50:42 pm | Measured data             | gold film xrr-3.rasx |
|---------------|-----------------------|---------------------------|----------------------|
|               |                       | name                      |                      |
| Analyst       | Administrator         | Measurement<br>start time | 2024-09-04 10:43:15  |
| Sample name   | Sample                | Comment                   |                      |
| Sample name   | Sample                |                           |                      |

# **Measurement Conditions Summary**

## gold film xrr-3

| X-ray generator | 40 kV, 50 mA   | Scan step | 0.002 ° |
|-----------------|----------------|-----------|---------|
| Scan mode       | 0D(continuous) | Scan axis | 2θ/ω    |
| Scan speed      | 0.04 °/min     |           |         |
|                 |                |           |         |

# gold film xrr-3

| X-ray generator | 40 kV, 50 mA   | Scan step | 0.002 ° |
|-----------------|----------------|-----------|---------|
| Scan mode       | 0D(continuous) | Scan axis | 2θ/ω    |
| Scan speed      | 0.04 °/min     |           |         |

# **Oscillation Analysis**

# Sample Parameters

| Use | Laye<br>r<br>Num<br>ber | Material | Thickness, nm |   | Density,<br>g/cm³ <d></d> |   | Roughness,<br>nm <rgh></rgh> |   |
|-----|-------------------------|----------|---------------|---|---------------------------|---|------------------------------|---|
| v   | L1                      | Au       | 10.371        |   | 17.18074                  |   | 0.451                        |   |
|     |                         |          |               | - |                           | - |                              | - |
| v   | Sub                     | Si       |               |   | 2.32924                   |   | 1.109                        |   |
|     |                         |          |               |   |                           |   |                              | - |

# Sample Profile



**Profile Plot** 



2<del>0</del>, °

Oscillations



**Residual oscillation components:** 

| Thickness, nm | Roughness, nm | Density, g/cm <sup>3</sup> | E density, 1/nm <sup>3</sup> |
|---------------|---------------|----------------------------|------------------------------|
| 1.696         | 0.494         | 2.788                      | 814.563                      |
| 11.908        | 0.678         | 12.149                     | 2972.283                     |

FFT



# Fit container

## **Fit Parameters**

R-factor, %: 3.920 Fit every: 1 point Residual type: |Δ(LogI)| Max iterations: 500 Tolerance: 1.00e-010

## **Sample Parameters**

| Use | Layer<br>Numbe<br>r | Material | Thickness,<br>nm |       | Density,<br>g/cm³ <d></d> |      | Roughness,<br>nm <rgh></rgh> |        |
|-----|---------------------|----------|------------------|-------|---------------------------|------|------------------------------|--------|
| v   | L1                  | Au       | 10.860           | ±0.06 | 19.25634                  | ±0.2 | 1.254                        | ±0.03  |
| v   | Sub                 | Si       |                  |       | 2.32924                   |      | 0.388                        | ±0.004 |

## Sample Profile



Profiles



Fit ranges: 0° - 7°

## **Simulation Parameters**

Points: 2001 20,°: 0.000 - 8.000 step=0.004 offset=0.000e+000

### **Instrumental Function**

Instrumental function: Pseudo-Voigt Lorentz fraction: 0.00 Lorentz width: 1.00e-002 Gauss width: 1.00e-002 Irradiated area correction: Off Sample curvature effect: Off Radius of curvature, m: 10 Sample size, mm: 10 Wavelength, nm: 0.1540593

## Handling Materials Not in the Database

If the material is not available in the database for XRR measurements, you can still perform analysis by manually defining key parameters of the material in the XRR software. Here's what you can do:

- Input Known Material Properties: Enter the known properties such as density, refractive index (δ and β values), and atomic composition. These values can usually be found in scientific literature or through separate material analysis.
- 2. **Estimate Unknown Properties**: If certain properties like density or thickness are unknown, you can still perform the measurement and use the software to fit these parameters based on the measured reflectivity curve.
- 3. Use Similar Materials: If the exact material isn't available, you can select a similar material from the database and modify its properties according to your needs. This works well if you're working with a material of similar density or atomic composition.
- 4. **Custom Database Entry**: Some advanced XRR software allows you to create custom entries in the database by defining the material's characteristics, allowing you to reuse it for future measurements.
- 5. **Fitting Models**: The software often provides fitting algorithms (e.g., Levenberg-Marquardt, Genetic Algorithm, Simulated Annealing) that can help optimize the unknown parameters based on the reflectivity data.

By manually adjusting these parameters, you can still achieve accurate XRR results even when the material is not pre-defined in the system's database.

## For new crystalline material



| r |                  |                          | Ne                  | ew Crysta   | alline Ma    | terial      |            | ?       | ×      |
|---|------------------|--------------------------|---------------------|-------------|--------------|-------------|------------|---------|--------|
|   | ID               | 27                       | 672d82-afe          | e-4039-897  | 74-958f5bc4  | 8392        |            |         |        |
| - | Custom name      | ۲                        | Enter custo         | om name     |              |             |            |         |        |
|   | Space group name | 8                        | Chose spa           | ce group na | ame          |             |            |         | $\sim$ |
|   |                  | Crystal symmetry:UNKNOWN |                     |             |              |             |            |         |        |
|   | a, nm            | 8                        | 0.0000000           |             |              |             |            |         |        |
| - | b, nm            | ₿                        | 0.0000000           |             |              |             |            |         |        |
|   | c, nm            | 8                        | 0.0000000           |             |              |             |            |         |        |
| ٦ | α, °             | ₿                        | 0.000               |             |              |             |            |         |        |
|   | β, °             | 8                        | 0.000               |             |              |             |            |         |        |
|   | γ, °             | 8                        | 0.000               |             |              |             |            |         |        |
|   | Volume, nm³      | 8                        | 3 0.000             |             |              |             |            |         |        |
|   | Created          | 20                       | 2024-09-06 10:39:22 |             |              |             |            |         |        |
|   | Modified         | 20                       | 2024-09-06 10:39:22 |             |              |             |            |         |        |
|   | Comment          |                          |                     |             |              |             |            |         |        |
| _ |                  |                          | Atom                | Wyckoff     | Occupa       | x           | у          | z       |        |
|   |                  | ►                        | 8                   | 2           | 1            | 0.00000     | 0.00000    | 0.00000 | $\sim$ |
|   |                  |                          |                     |             |              |             |            |         |        |
|   | Atoms            |                          |                     |             |              |             |            |         |        |
| 1 |                  |                          |                     |             |              |             |            |         |        |
|   |                  |                          |                     |             |              |             |            |         | $\sim$ |
|   |                  |                          | + -                 |             | Gene         | erate Wycko | off letter |         |        |
|   |                  |                          | [                   | Debye-W     | aller tensor | Stiffn      | ess tensor |         |        |
|   |                  |                          | Ap                  | oply        | Ca           | ancel       |            |         |        |

### For new structureless material



|                            |                                      | New Structu         | reless | Material     | ? | ×      |  |  |
|----------------------------|--------------------------------------|---------------------|--------|--------------|---|--------|--|--|
| ID                         | b3ef60c8-53da-4f30-af6e-d0ec9d152374 |                     |        |              |   |        |  |  |
| Custom name                | S Enter custom name                  |                     |        |              |   |        |  |  |
| Density, g/cm <sup>3</sup> | 0.000                                |                     |        |              |   |        |  |  |
| Created                    | 2024-09-06 16:15:59                  |                     |        |              |   |        |  |  |
| Modified                   | 20                                   | 2024-09-06 16:15:59 |        |              |   |        |  |  |
| Comment                    |                                      |                     |        |              |   |        |  |  |
|                            |                                      | Atom                |        | Concentratio | n |        |  |  |
|                            | ₽                                    | 8                   |        | 8            | ( | $\sim$ |  |  |
|                            |                                      |                     |        |              |   |        |  |  |
| Atoms                      |                                      |                     |        |              |   |        |  |  |
|                            |                                      |                     |        |              |   |        |  |  |
|                            |                                      |                     |        |              |   | $\sim$ |  |  |
|                            |                                      | +                   |        | _            |   |        |  |  |
|                            |                                      |                     |        |              |   |        |  |  |
|                            |                                      | Apply               |        | Cancel       |   |        |  |  |

To perform XRR analysis for a new crystalline material in the Rigaku SmartLab SE software, you need to input accurate crystallographic parameters. Here's how you can source the correct values:

- 1. Lattice Constants (a, b, c,  $\alpha$ ,  $\beta$ ,  $\gamma$ ): Lattice constants refer to the set of six parameters that define the geometry of a unit cell in a crystal lattice
- 2. **Space Group:** It specifies the symmetry group of the crystal lattice, which defines how the unit cell repeats in space.
- 3. **Wyckoff Positions:** It represents the symmetry-equivalent positions of atoms in the unit cell based on the space group.
- 4. Atom Types and Coordinates (x, y, z): Atomic coordinates are usually expressed in terms of fractional coordinates, (x, y, z). This coordinate system coincides with the cell axes (a, b, c) and relates to the position of the atom in terms of the fraction along each axis.
- 5. **Volume:** The calculated volume of the unit cell based on the lattice parameters and angles

#### **Recommended Approach:**

- 1. **Search in Databases:** Use crystallographic databases like ICSD (Inorganic Crystal Structure Database), COD (Crystallography Open Database) or Pearson's Crystal Data to search for your material or closely related ones.
- 2. Experimental Methods: If your material is new or unavailable in databases, perform XRD or similar characterization techniques to gather the necessary lattice parameters and atomic coordinates.
- 3. Literature Review: You can source this data from specialized literature or material property databases such as <u>Materials Project</u> or <u>MatWeb</u>. If the material is not in the database, starting with a closely related material for initial analysis and refining the parameters experimentally would be a good approach.